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Why

List the alphabet forwards
+ List the alphabet backwards

Tell me the lyrics to a song
-+ Start the lyrics of the song in the middle of a verse

Lots of information that you store in your brain is not random access
* You learned them as a sequence

- How can we incorporate this into the machine learning algorithm?

“Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) - I Am Trask.” Accessed January 31, 2016.
https://iamtrask.github.io/2015/11/15/anyone-can-code-Istm/.




Why — Use Cases

« Predict the next word 1n a sentence
+ The woman took out __ purse

« Predict the next frame in a video

- All these tasks are easier when you know what
happened earlier in the sequence

“Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) - I Am Trask.” Accessed January 31, 2016.
https://iamtrask.github.io/2015/11/15/anyone-can-code-Istm/.




Why — Markov Models

« Traditional Markov model approaches are limited because their states must
be drawn from a modestly sized discrete state space S

- Standard operations become infeasible when the set of possible hidden
states grows large

« Markov models are computationally impractical for modeling long-range
dependencies

Lipton, Zachary C., John Berkowitz, and Charles Elkan. “A Critical Review of Recurrent Neural Networks for Sequence Learning.”
arXiv:1506.00019 [cs], May 29, 2015. http:/arxiv.org/abs/1506.00019.




Why — Neural Network

input -> hidden -> output

“Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) - I Am Trask.” Accessed January 31, 2016.
https://iamtrask.github.io/2015/11/15/anyone-can-code-Istm/.




Why — Neural Network, Extended

(input + prev_input) -> hidden -> output

“Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) - I Am Trask.” Accessed January 31, 2016.
https://iamtrask.github.io/2015/11/15/anyone-can-code-Istm/.




Why — Neural Network, Extended

(input + empty_ input) -> hidden -> output
(input + prev_input) -> hidden -> output
(input + prev_input) -> hidden -> output
(input + prev_input) -> hidden -> output

“Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) - I Am Trask.” Accessed January 31, 2016.
https://iamtrask.github.io/2015/11/15/anyone-can-code-Istm/.




Why — Recurrent Neural Network

(input + prev_hidden) -> hidden -> output

“Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) - I Am Trask.” Accessed January 31, 2016.
https://iamtrask.github.io/2015/11/15/anyone-can-code-Istm/.




Why — Recurrent Neural Network
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“Recurrent Neural Network Tutorial, Part 4 — Implementing a GRU/LSTM RNN with Python and Theano.” Wild ML, October 27,2015.
http://www.wildml.com/2015/1 O/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/.




Why — Recurrent Neural Network

(input + empty__hidden) -> hidden -> output
(input + prev_hidden) -> hidden -> output
(input + prev_hidden) -> hidden -> output
(input + prev_hidden) -> hidden -> output

“Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) - I Am Trask.” Accessed January 31, 2016.
https://iamtrask.github.io/2015/11/15/anyone-can-code-Istm/.




Why — Continued Influence

Neural Network, Extended Recurrent Neural Network

(input + prev_input) -> hidden -> output (input + prev_hidden) -> hidden -> output

(input + empty_input) -> hidden -> output (input + empty_hidden) -> hidden -> output
(input + prev_input) -> hidden -> output (input + prev_hidden) -> hidden -> output
(input + prev_input) -> hidden -> output (input + prev_hidden) -> hidden -> output
(input + prev_input) -> hidden -> output (input + prev_hidden ) -> hidden -> output

“Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) - I Am Trask.” Accessed January 31, 2016.
https://iamtrask.github.io/2015/11/15/anyone-can-code-Istm/.



Why — Recurrent Neural Network
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“Anyone Can Learn To Code an LSTM-RNN in Python (Part 1: RNN) - I Am Trask.” Accessed January 31, 25362

https://iamtrask.github.io/2015/11/15/anyone-can-code-Istm/.




Why - LSTM

- Designed to overcome:
+ Long-term dependencies
+ Vanishing/exploding gradients




Why — Long-Term Dependencies

- We don’t want to remember everything, just the important things for a long time

Outputs ’ ,
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Figure 4.1: The vanishing gradient problem for RNNs. The shading of
the nodes in the unfolded network indicates their sensitivity to the inputs at
time one (the darker the shade, the greater the sensitivity). The sensitivity
decays over time as new inputs overwrite the activations of the hidden layer,
and the network ‘forgets’ the first inputs.

Graves, Alex. Supervised sequence labelling. Springer Berlin Heidelberg, 2012.




Why — Long-Term Dependencies
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Figure 4.4: Preservation of gradient information by LSTM. As in Fig-
ure 4.1 the shading of the nodes indicates their sensitivity to the inputs at time
one; in this case the black nodes are maximally sensitive and the white nodes
are entirely insensitive. The state of the input, forget, and output gates are
displayed below, to the left and above the hidden layer respectively. For sim-
plicity, all gates are either entirely open (‘O’) or closed (*—’). The memory cell
‘remembers’ the first input as long as the forget gate is open and the input gate
is closed. The sensitivity of the output layer can be switched on and off by the
output gate without affecting the cell.

Graves, Alex. Supervised sequence labelling. Springer Berlin Heidelberg, 2012.




Why — Vanishing/Exploding Gradients

- When weight or activation functions (their derivatives) are:
- <1 Vanishing Gradients
- > 1 Exploding Gradients
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“(1) How Does LSTM Help Prevent the Vanishing (and Exploding) Gradient Problem in a Recurrent Neural Network? - Quora.” Accessed
February 19, 2016. https//www.quora.com/How-does-LSTM-help-prevent-the-vanishing-and-exploding-gradient-problem-in-a-recurrent-neura
network.

“Transfer Functions - Nn.” Accessed February 19, 2016. http://nn.readthedocs.org/en/rtd/transfer/.




Why — Backpropagation
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Why — Vanishing Gradients
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“Recurrent Neural Network Tutorial, Part 4 — Implementing a GRU/LSTM RNN with Python and Theano.” Wild ML, October 27,2015.
http://www.wildml.com/2015/1 O/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/.




Why — Vanishing Gradients
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“Recurrent Neural Networks Tutorial, Part 3 — Backpropagation Through Time and Vanishing Gradients.” Wild ML, October 8, 2015.
http://www.wildml.com/2015/1 0/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/.




Why — Vanishing Gradients
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“Recurrent Neural Networks Tutorial, Part 3 — Backpropagation Through Time and Vanishing Gradients.” Wild ML, October 8, 2015.
http://www.wildml.com/2015/1 0/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-gradients/.




How — Vanishing Gradients
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How — History

- Foundational research done in the 1980’s
+ 1982 — Hopfield: Introduction of family of recurrent neural networks
+ 1986 — Jordan: RNN architecture
+ 1989 — Williams and Zipser: Truncated BackProp Through Time (TBPTT)
+ 1990 — Elman: simpler RNN architecture
+ 1997 — Hochreiter and Schmidhuber: LSTM networks
© 1999 — Gers, Schmidhuber, Cummins: Forget gate
+ 2005 — Graves and Schmidhuber: Bidirectional LSTM
+ 2012 — Pascanu, Mikolov, Bengio: Gradient clipping
+ 2014 — Cho, Bahdanau, van Merrienboer, Bougares: Gated Recurrent Unit
+ 2014 — Sutsekver, et al.: Sequence-to-Sequence Learning with Neural Nets

Lipton, Zachary C., John Berkowitz, and Charles Elkan. “A Critical Review of Recurrent Neural Networks for Sequence Learning.”
arXiv:1506.00019 [cs], May 29, 2015. http:/arxiv.org/abs/1506.00019.




How — 1982, Hopfield

« Recurrent neural networks with
pattern recognition capabilities

« The net stores 1 or more patterns

- Recalls the pattern given partial
Input

half of image
corrupted by

Original ‘T’
noise

“A Hopfield Net Example.” Accessed January 30, 2016. http://web.cs.ucla.edu/~rosen/161/motes/hopfield. html.

Lipton, Zachary C., John Berkowitz, and Charles Elkan. “A Critical Review of Recurrent Neural Networks for Sequence Learning.”
arXiv:1506.00019 [cs], May 29, 2015. http:/arxiv.org/abs/1506.00019.




How — 1986, Jordan

- Feed-forward recurrent neural
network for supervised learning

« Output layer into special units

- Special units are self-connected Output

+ Allow for information to be sent across
multiple time steps without changing

. . . . Hidd
output during intermediate time steps Layer
\Context L)nits
/
> Weights
Input ‘ fixed at 1
Edge to next
-——p time step

Lipton, Zachary C., John Berkowitz, and Charles Elkan. “A Critical Review of Recurrent Neural Networks for Sequence Learning.”
arXiv:1506.00019 [cs], May 29, 2015. http:/arxiv.org/abs/1506.00019.




How — 1989, Williams and Zipser

« Truncated BackPropagation Through Time (TBPTT)

- Mitigates issues of exploding gradients
+ Comes at the cost of long-term dependencies due to vanishing gradient

Lipton, Zachary C., John Berkowitz, and Charles Elkan. “A Critical Review of Recurrent Neural Networks for Sequence Learning.”
arXiv:1506.00019 [cs], May 29, 2015. http:/arxiv.org/abs/1506.00019.




How — 1990, Elman

Simpler than Jordan network

Hidden representation into special
units

Output

« Trained with backprop

Fundamental to the development of Hidden
LSTMs

~Context Units

Weights

fixed at 1
Input
Edge to next

time step

Lipton, Zachary C., John Berkowitz, and Charles Elkan. “A Critical Review of Recurrent Neural Networks for Sequence Learning.”
arXiv:1506.00019 [cs], May 29, 2015. http:/arxiv.org/abs/1506.00019.




How — 1997, Sepp & Jiirgen

Hochreiter and Schmidhuber

+ Designed to overcome the problem of vanishing/exploding gradients
* Introduction of the memory cell
- Each memory cell has a self-connected recurrent edge

Lipton, Zachary C., John Berkowitz, and Charles Elkan. “A Critical Review of Recurrent Neural Networks for Sequence Learning.”
arXiv:1506.00019 [cs], May 29, 2015. http:/arxiv.org/abs/1506.00019.




How — 1999, Gers, Schmidhuber, Cummins

- Added the Forget Gate to the LSTM structure, published in “Learning to
Forget: Continual Prediction with LSTM”

Gers, Felix A., Jirgen Schmidhuber, and Fred Cummins. “Learning to Forget: Continual Prediction with LSTM.” Neural Computation 12,
no. 10 (October 1, 2000): 2451-71.d0i:10.1162/089976600300015015.




How — A Reddit Explanation

SCRN vs LSTM by asymptotics in MachineLearning
[-] pranv 124 points 4 days ago &

LSTM is the most sensible RNN architecture. It can be derived directly from Vanilla RNN in 2 steps:
1. Don't Multiply, use Addition instead

2. Gate all operations so that you don't cram everything.

“SCRN vs LSTM -+ /r/MachineL.earning.” Reddit. Accessed February 10,2016.
https://www.reddit.com/r/MachinelLearning/comments/4 4bxdj/scrn_vs_lstm/.




Why — Don’t multiply

1st statement means instead of multiplying the previous hidden state by a matrix to get the new state, you add
something to your old hidden state and get the new state (not called "hidden" , but called "cell", explained below).
Why? Because Multiplication == Vanishing Gradients.

“SCRN vs LSTM -+ /r/MachineLearning.” Reddit. Accessed February 10, 2016.
https://www.reddit.com/r/MachinelLearning/comments/44bxdj/scrn_vs_lstm/.




Why — Gate all operations

Now, we are capable of long term memory since we are not losing it by repeated multiplications. But is storing
everything useful? Obviously no. Also, do we want to output everything we have stored at each instant? Again no.

There are 3 projections in a vanilla RNN: input to hidden, hidden to hidden, hidden to output. LSTM regulates each
one of them projections with input, forget and output gates respectively. Each of these gates are calculated as a
function of what we already know, and current input i.e f(H_prev, X). Now our internal hidden state will become holy
and the access to it becomes highly restricted. So it has a new name - The Cell.

“SCRN vs LSTM -+ /r/MachineLearning.” Reddit. Accessed February 10, 2016.
https://www.reddit.com/r/MachinelLearning/comments/44bxdj/scrn_vs_lstm/.




How

Simple RNN LSTM
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“Understanding LSTM Networks -- Colah’s Blog.” Accessed January 25, 2016. http:/colah.github.io/posts/2015-08-Understanding-LSTMs/.




How — LSTM Structure
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How — Step by Step: Cell State

S

“Understanding LSTM Networks -- Colah’s Blog.” Accessed January 25, 2016. http:/colah.github.io/posts/2015-08-Understanding-LSTMs/.




How — Step by Step: Forget Layer
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“Understanding LSTM Networks -- Colah’s Blog.” Accessed January 25, 2016. http:/colah.github.io/posts/2015-08-Understanding-LSTMs/.




How — Step by Step: Input Gate Layer

, it =0 (Wi-lhi—1,x¢] + b;)
. C’t :tanh(WC'[ht_l,ﬂft] + bc>

i

“Understanding LSTM Networks -- Colah’s Blog.” Accessed January 25, 2016. http:/colah.github.io/posts/2015-08-Understanding-LSTMs/.




How — Step by Step: Cell State Update
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“Understanding LSTM Networks -- Colah’s Blog.” Accessed January 25, 2016. http:/colah.github.io/posts/2015-08-Understanding-LSTMs/.




How — Step by Step: Output Value

he &\
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“Understanding LSTM Networks -- Colah’s Blog.” Accessed January 25, 2016. http:/colah.github.io/posts/2015-08-Understanding-LSTMs/.




How - LSTM Memory Cell

Input node: g.(t) A

vt =:s£t) o) olt)

Input gate: 1.(t)

Internal state: s.(t)

Forget gate: f.(t)

Output gate: o.(t)

Edge to next
time step

Final output: v (t)

Edge from previous
time step
(and current input)

_>
weight fixed at 1

Lipton, Zachary C., John Berkowitz, and Charles Elkan. “A Critical Review of Recurrent Neural Networks for Sequence Learning.”
arXiv:1506.00019 [cs], May 29, 2015. http:/arxiv.org/abs/1506.00019.




How — Backpropagation
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Mazur. “A Step by Step Backpropagation Example.” Matt Mazur, March 17, 2015. http://mattmazur.com/2015/03/17/a-step-
by-step-backpropagation-example/.




How — Backpropagation

!




How — RNN Backpropagation

« Normal BPTT (Backprop Through Time)




How — Clarifications
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Figure 1: The standard LSTM cell has a linear unit with a recurrent self-connection with weight 1.0
(CEC). Input and output gate regulate read and write access to the cell whose state is denoted s.. The
function g squashes the cell’s input; h squashes the cell’s output (see text for details).

Gers, Felix A., J. urgen Schmidhuber, and Fred Cummins. "Learning to Forget: Continual Prediction with LSTM." (1999).




How — Clarifications

- CEC

« Constant error carousel
- Weights = 1

- Identity function as activation function




How — Clarifications
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Figure 2: Memory block with only one cell for the extended LSTM. A multiplicative forget gate can reset
the cell’s inner state s..

Gers, Felix A., J. urgen Schmidhuber, and Fred Cummins. "Learning to Forget: Continual Prediction with LSTM." (1999).




How — Clarifications
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Gers, Felix A., J. urgen Schmidhuber, and Fred Cummins. "Learning to Forget: Continual Prediction with LSTM." (1999).

/

“Deep Learning Lecture 12: Recurrent Neural Nets and LSTMs - YouTube.” Accessed February 27, 2016.
https://www.youtube.com/watch?v=56TYLaQN4N8.




How — Clarifications
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Graves, Alex. Supervised sequence labelling. Springer Berlin Heidelberg, 2012.

“Deep Learning Lecture 12: Recurrent Neural Nets and LSTMs - YouTube.” Accessed February 27, 2016.
https://www.youtube.com/watch?v=56TYLaQN4N8.




How — Clarifications

Forget Gate

LSTMs (with no forget gate) have difficulty with continual input streams
- A continual input stream is not segmented into subsequences (no starts, no ends)

A forget (reset) gate allows the memory cell to reset itself

Without the reset the cell state may grow indefinitely

Gers, Felix A., Jirgen Schmidhuber, and Fred Cummins. “Learning to Forget: Continual Prediction with LSTM.” Neural Computation 12,
no. 10 (October 1, 2000): 2451-71.d0i:10.1162/089976600300015015.




How — Clarifications

- Vanishing/Exploding Gradients

- In RNNs, caused by the repeated use
of weight matrices
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How — LSTM Backpropagation

- Same as BPTT but must take into account fancy activation functions

“LSTM.” Accessed February 20,2016. http://arunmallya.github.iod/writeups/nn/lstm/Andex.html#.




How — Derive Weight Updates




How — Solving Life’s Problems

- The cell state’s weights are the
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Gers, Felix A., J. urgen Schmidhuber, and Fred Cummins. "Learning to Forget: Continual Prediction with LSTM." (1999).




How — Solving Life’s Problems

\ }TIC/ - Derivative is the forget gate
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Gers, Felix A., J. urgen Schmidhuber, and Fred Cummins. "Learning to Forget: Continual Prediction with LSTM." (1999).

“Why Can Constant Error Carousels (CECs) Prevent LSTM from the Problems of Vanishing/exploding Gradients? * /r/MachineLearning.”
Reddit. Accessed March 1, 2016.

https://www.reddit.com/r/MachinelLearning/comments/34piyi/why_can_constant_error_carousels_cecs_prevent/.




How — 2012, Pascanu et al.

In Hochreiter and Schmidhuber (1997); Graves et al.
(2009) a solution is proposed for the vanishing gra-
dients problem, where the structure of the model is
changed. Specifically it introduces a special set of
units called LSTM units which are linear and have a
recurrent connection to itself which is fixed to 1. The
flow of information into the unit and from the unit is
guarded by an input and output gates (their behaviour
is learned). There are several variations of this basic
structure. This solution does not address explicitly the
exploding gradients problem.

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. “On the Difficulty of Training Recurrent Neural Networks.” arXiv:1211.5063
[es], November 21, 2012. http:/arxiv.org/abs/1211.5063.




Why can Constant Error Carousels (CECs) prevent LSTM from the problems of vanishing/exploding
gradientS? (self.MachineLearning)

submitted 10 months ago by freemind2009

5 comments share save hide give gold report

all 5 comments

sorted by: best v
[-] sieisteinmodel 5 points 10 months ago*
To understand this, you will have to go through some math. The most accessible article wrt recurrent gradient
problems IMHO is Pascanu's ICML2013 paper [1].

A summary: vanishing/exploding gradient comes from the repeated application of the recurrent weight matrix [2].
That the spectral radius of the recurrent weight matrix is bigger than 1 makes exploding gradients possible (it is a
necessary condition), while a spectral radius smaller than 1 makes it vanish, which is a sufficient condition.

Now, if gradients vanish, that does not mean that all gradients vanish. Only some of them, gradient information local
in time will still be present. That means, you might still have a non-zero gradient--but it will not contain long term
information. That's because some gradient g + 0 is still g.

If gradients explode, all of them do. That is because some gradient g + infinity is infinity.

That is the reason why LSTM does not protect you from exploding gradients, since LSTM also uses a recurrent
weight matrix, not only internal state-to-state connections. Successful LSTM applications typically use gradient
clipping.

LSTM overcomes the vanishing gradient problem, though. That is because if you look at the derivative of the internal

state at T to the internal state at T-1, there is no repeated weight application. The derivative actually is the value of
the forget gate. And to avoid that this becomes zero, we need to initialise it properly in the beginning.

That makes it clear why the states can act as "a wormhole through time", because they can bridge long time lags and
then (if the time is right) "re inject" it into the other parts of the net by opening the output gate.

[1] Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. "On the difficulty of training recurrent neural networks."
arXiv preprint arXiv:1211.5063 (2012).

[2] It might "vanish" also due to saturating nonlinearities, but that is sth that can also happen in shallow nets and can
be overcome with more careful weight initialisations.

permalink save give gold




How — Exploding Gradients
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“Simple LSTM.” Accessed March 1, 2016. http://nicodjimenez.github.10/2014/08/08/1stm.htm].

+ [top_diff_s);.




How — Example

Inputs Network Weights

x t 0.1 0.9 0->0 1>0 0->1 1->1
= i [0.9 0.2] [0.8 0.3]

ctl 0.5 0.4 f [01 03] [07 08]

T 0 1 o [01 08 [02 0.1]

learning rate 0.1

0->0 1>0 O0->1 1->1
[0.2 0.4] [0.7 0.4]
[0.1 0.2] [0.3 0.9]
[0.7 0.5] [0.2 0.5]
[0.8 0.3] [0.9 0.7]

o == o




How — Forward Pass: Equations

a' = tanh(W,x' + U,h'™!) = tanh(@")
i' = o(Wix' + Uk = 6(})

f=o(Wx' + Ush™") = o(f )

o' = o(Wox' + Uh'™") =0(0") |
d=i'od+fod! §§

0.6}
0.5+
—1

3 0.4l
c —C 0.3k

0.2}

K = o' ® tanh(c") "ol

-10

10

“LSTM.” Accessed February 20,2016. http://arunmallya.github.io/writeups/mn/lstm/index.html#.




How — Forward Pass

a = tanh(W,.x' + U.h""!) = tanh(a")
i' = o(Wix' + Uih™Y) = 6(0)

f' = o(Wx' + Ush™1) = o(f )

o' = c(Wox' + U,h'™1) = 6(8")
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How — Forward Pass

a = tanh(W,.x' + U.h""!) = tanh(a")
i' = o(Wix' + Uih™Y) = 6(0)
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How — Forward Pass

a = tanh(W,.x' + U.h""!) = tanh(a")
i' = o(Wix' + Uih™Y) = 6(0)

f' = o(Wx' + Ush™1) = o(f )

o' = c(Wox' + U,h'™1) = 6(8")




How — Forward Pass

a = tanh(W,.x' + U.h""!) = tanh(a")
i' = o(Wix' + Uih™Y) = 6(0)

f' = o(Wx' + Ush™1) = o(f )

o' = c(Wox' + U,h'™1) = 6(8")




How — Forward Pass

d=i'od+f o

K =o' ® tanh(c")




How — Forward Pass

Ct=itht+ft®c_1

K = o' ® tanh(c")

0 1
c_t 0.786032719 0.85228885
h_t 0.518914596 0.496404923




How — Forward Pass

0 1 0 1
3 0.9 1.04 a tanh(a_hat) | 0.716297870.777888067,
i 0.41 0.89 i sig(i_hat) |0.601087879 0.708890173
°f 0.9 1.11 f sig(f_hat) |0.7109495030.752129111
) 1.33 0.93 0 sig(o_hat) |0.790840635 0.717075285
0 1
c_t 0.786032719 0.85228885
h_t 0.518914596|  0.496404923




How — Backward Pass: Equations

OE OE OH OE OE Oh
oc. — oK ac! 00: ~ oW 40

= . - 0! - (1 — tanh?(c)) = 6h; - tanh(c’)
. 60" = 6h' O tanh(c')

s8¢ =h @ o' ® (1 —tanh?(c"))




How — Backward Pass

oh_t OE/oh_t
do_t O0E/do_t
oc_t O0E/dc_t
OE OE OK 0E OE Ok
oc. ~ o ac! do.  on. 00!
= 5ht - 0! - (1 — tanh?(ct)) = h; - tanh(c})
8¢ = 5h' ®0' ® (1 — tanh?(¢')) | -~ 60 = 6h" © tanh(c’)




How — Backward Pass

oh_t OE/dh_t 0.518914596 -0.503595077
do_t dE/do_t 0.340488773 -0.348620404

oc_t OE/dc_t 0.233694154 -0.188058699




How — Backward Pass: Equations

OE _OE Oc 0E O0E oc
0it  ac! . ot off — oct ' o}
= 6c; - a; = 6ct - ¢!
sl =6c 0d noff =6c O 1
OFE _ OE 0c 0E OE od
oa;  oc; oa; oct-!  oc ' oc'~!
=6Cf.lf =5cf .ﬂt

. od =6c O s ocl =8 Of




How — Backward Pass
OE _ 0E Oc OE OE o
oif — oc; i off ~ oct  of]
= éc; - a; = 6ct - ¢!
Lol =6c 0d Lo =68 @
OE _ OE 0c 0E OE od
0_af B aC: aa: acg—l — dcf . acé‘—l
=5C§.lf =5C: '.fit

. od =6cOf s oc =6ct of!




How — Backward Pass

0E OE oc
6—1'5 ~act . oi!
= 5Cf . a?

6t =8c 0d

0E OE Oc
oa;  oc; oa;

néd =6 Of

0E OE oc|
off — oci off
= 5C§ . C§_1

~ o =6c @ !

OE  O0E o
A
= oc; - f}

soc =6 Of!

0.8

da_l1
-0.133312964

da_0
0.140470723




How — Backward Pass
OE _ 0E Oc OE OE o
oif — oc; i off ~ oct  of]
= éc; - a; = 6ct - ¢!
Lol =6c 0d Lo =68 @
OE _ OE 0c 0E OE od
0_af B aC: aa: acg—l — dcf . acé‘—l
=5C§.lf =5C: '.fit

. od =6cOf s oc =6ct of!




How — Backward Pass

0E OE oc
6—1'5 ~act . oi!
= 5Cf . a?

6t =8c 0d

0E OE Oc
oa;  oc; oa;

néd =6 Of

0E OE oc|
off — oci off
= 5C§ . C§_1

~ o =6c @ !

OE  O0E o
A
= oc; - f}

soc =6 Of!

0.9

di_1
-0.146288618

0i_0
0.167394625




How — Backward Pass
OE _ 0E Oc OE OE o
oif — oc; i off ~ oct  of]
= éc; - a; = 6ct - ¢!
Lol =6c 0d Lo =68 @
OE _ OE 0c 0E OE od
0_af B aC: aa: acg—l — dcf . acé‘—l
=5C§.lf =5C: '.fit

. od =6cOf s oc =6ct of!




How — Backward Pass
oE _ oE 6c§ oE 3 oE aci‘ )
oif — oc; i off ~ oct  of]
= éc; - a; = 6ct - ¢!
Lol =oc od Lo =8 @c!
OE _ OE 0c 0E OE od
0_af B aC: aa: acg—l — dcf . acé‘—l
=5C§.lf =5C: '.fit
. od =6cOf s oc =6ct of!

of 0 of 1
0.116847077 -0.07522348



How — Calculate oc_t-1




How — Backward Pass

da_t dE/da_t 0.140470723 -0.133312964
di_t dE/di_t 0.167394625 -0.146288618
of t OE/of t 0.116847077 -0.07522348
dc_t-1 dE/dc_t-1 0.166144743| -0.141444422




How — Backward Pass: Equations
sa' = 6a' ® (1 — tanh?(@"))
51 =6 @O (1 -1
At
of =of of o -f)
50" =80 ®0' © (1 —0)
t _ |ent ool oAt d
o7 = |6a , o1 ,6f , 60




How — Backward Pass
sa' = 6a' ® (1 — tanh?(@"))
5 =8t @i' O — i

At
of =of of o -1
60" =60 ©o O (1 -0

A A T
57 = [5&’,5it,5ft,66’]

da_0 da_l1
0.140470723 -0.133312964



How — Backward Pass
sa' = 6a' ® (1 — tanh?(@"))
5t =6 QIO -1

of =of of o -1
60" =60 ©o O (1 -0

¢ [ent & ot anr]?
o7 = |oa , o1 ,6f , 60




How — Backward Pass
sa' = 6a' ® (1 — tanh?(@"))
5 =8t @i' O — i

At
of =of of o -1
60" =60 ©o O (1 -0

A A T
57 = [5&’,5it,5ft,66’]

9i_0 di_1
0.167394625 -0.146288618



How — Backward Pass

sa' = 6a' ® (1 — tanh?(@"))
5t =6 QIO -1

of =of of o -1
60" =60 ©o O (1 -0




How — Backward Pass

sa' = 6a' ® (1 — tanh?(@"))
5 =8t @i' O — i

At
of =of of o -1
60" =60 ©o O (1 -0

57

||
| —— |
o
2,
o
N'-\Z;
n
N
O
Q>
—
bﬂ

of 0 of 1
0.116847077 -0.07522348



How — Backward Pass
sa' = 6a' ® (1 — tanh?(@"))
5t =6 QIO -1

of =of of o -1
60" =60 ©o O (1 -0

A A T
57 = [5&’,5it,5ft,66’]

7

@ 0
Jaf_1 af 0
-0.014023982 0.02401211
0.9

0.710949503 \0.752129111




How — Backward Pass

sa' = 6a' ® (1 — tanh?(@"))
5 =8t @i' O — i

At
of =of of o -1
60" =60 ©o O (1 -0

57

||
| —— |
o
2,
o
N'-\Z;
n
N
O
Q>
—
bﬂ

do_0 do_1
0.340488773 -0.348620404



How — Backward Pass
sa' = 6a' ® (1 — tanh?(@"))
5t =6 QIO -1

of =of of o -1
60" =60 ©o O (1 -0

¢ [ent & ot anr]?
o7 = |oa , o1 ,6f , 60




How — Backward Pass

0a_t 0.068397634 -0.052643977

3z t di_t 0.040138091 -0.030188835
- 0°f t 0.02401211 -0.014023982
06_t 0.056320835 -0.070727522




How — Update Weights




How — Backward Pass

Update Weights

da_0 da_l1
0.140470723 -0.133312964



How — Backward Pass

Update Weights

9i_0 di_1
0.167394625 -0.146288618



How — Backward Pass

Update Weights

of 0 of 1
0.116847077 -0.07522348



How — Backward Pass

Update Weights

do_0 do_1
0.340488773 -0.348620404



How — Backward Pass

deltas

0 1 0 1
C 0.006839763 0.061557871f -0.005264398 -0.047379579
i 0.004013809 0.036124282| -0.003018884] -0.027169952
f 0.002401211 0.021610899 -0.001402398 -0.012621584
0 0.005632084| 0.050688752 -0.007072752 -0.06365477
C 0.04103858  0.061557871] -0.031586386/ -0.021057591
i 0.00403134{ 0.036124282 -0.018113301] -0.012075534
f 0.001683447| 0.021610899 -0.008414389 -0.005609593
o 0.005614446| 0.050688752] -0.042436513] -0.028291009




How — Old Weights

0->0 1->0 0->1 1->1

w (o [0.8 0.6] [0.1 0.5]
i [0.9 0.2] [0.8 0.3]

f [0.1 0.3] [0.7 0.8]

o [0.1 0.8] [0.2 0.1]

0->0 1>0 O0->1 1->1

U C [0.2 0.4] [0.7 0.4]
i [0.1 0.2] [0.3 0.9]

f [0.7 0.5] [0.2 0.5]

o [0.8 0.3] [0.9 0.7]




How — Backward Pass

new weights

0

1

0

1

0.799316024

0.593844213

0.10052644

0.504737958

0.899598619

0.196387572

0.800301888

0.302716995

0.099759879

0.29783891

0.70014024

0.801262158

o=+ |— 0O

0.099436792

0.794931125

0.200707275

0.106365477

0.195896142

0.393844213

0.703158639

0.402105759

0.099596866

0.196387572

0.30181133

0.901207553

0.699831655

0.49783891

0.200841439

0.500560959

o=+ |—|0O

0.799438555

0.294931125

0.904243651

0.702829101




How — Previous Timestep

- Need to calculate dE/dx_t and dE/dh_t-1

« Need to calculate dE/c_t+1




How — Backward Pass

Find error to pass back

da_0 da_l1
0.140470723 -0.133312964



How — Backward Pass

Find error to pass back

9i_0 di_1
0.167394625 -0.146288618



How — Backward Pass

Find error to pass back

of 0 of 1
0.116847077 -0.07522348



How — Backward Pass

Find error to pass back

do_0 do_1
0.340488773 -0.348620404



How — Backward Pass

0xX_t 0.045497926 0.047655923

oh_t-1 -0.032808519 -0.040459821




How — Backward Pass: Equations

OE  O0E Oc
oci=!  ac] | oci™!
= ocl - f]

ocl =6 Of!




How — Backward Pass: Equations

oE 0E Oc

o=l oct oci™!
o

socl =6t Of!

oc_t-1 0.166144743 -0.141444422




What — Lessons LLearned

- Computational Graphs in Theano
- Computing partial derivatives/gradients in Theano is awesome

« Numerical stability ®




What - Datasets

- Text generation (char-to-char, word-to-word)
* Book of Mormon
+ English
+ Portuguese
+ Spanish




What — Book of Mormon, c2c

- Seed: and it came to pass

- and it came to pass that the Lord of the vineyard said unto them: behold, I
am a descendant of the death of the seed of Joseph, have I prepared for the
same being was a men of God, or of our prophecies which I have spoken,
which is the season of his words, and I will bring the Father in the name of

Jesus.

« Capitals added




What — O Livro de Mormon, c2c

« Seed: e 0 senhor disse

- e 0 Senhor dissera a meus irmaos, os lamanitas e os anlicitas nas eras de
meu povo que se dirigiram para a terra de meu pail, meus irmaos, que
haviam sido mortos para a terra de Néfi, de modo que ele nos deu os que se
lembram de seu coracao e conservante de sua morte;

+ Capitals added




What — El Libro de Mormon, c2c

« Seed: y el senhor dice

- y el senhor dice todas las cosas que estan escritas de las palabras que hablo
el angel del senor de los ejércitos, de modo que no pudieron ser en ellas; y
también le dije a su pueblo: esto fue para llevar a causa de la iniquidad de
ammoriah por el espacio de muchos dias




What — Book of Mormon, w2w

- and thus it did come to pass that the people began to wax strong in wickedness
and abominations ; and he begat sons and daughters ; and he begat corlantum ,
and he anointed coriantum to reign in his stead .

- and it came to pass that the lamanites did come down against us to battle .

- and we did gatherin the city of gid , when they did come unto the city of night,
the city desolation .

- and it was one day that there was no contention among all the people , but
insomuch that there was no wars , and rumors of wars; and every kind that they
might read the ways which he desired to murder the people .

- and he did teach them the words which had been spoken by the mouth of all the
pro%hets ; and all the people who were in the land were called by the people of
nephi.

- and thus did the people of nephi, throughout all the land of zarahemla , and
there was no contention by the nephites .

- and thus they had become weak , because of their wickedness and their
?boorlmnatlons . and it came to pass that the people did wax more strong in the
and .




What - Translation




What — Gated Recurrent Units

- Differences from LSTMs:
* GRU has 2 gates while LSTM has 3 gates
* GRU’s internal memory is completely exposed as output
- No output gate

“Recurrent Neural Network Tutorial, Part 4 — Implementing a GRU/LSTM RNN with Python and Theano.” Wild ML, October 27,2015.
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/.




What — 2005, Graves and Schmidhube

- Bidirectional LSTM networks

« Introduced architecture for phoneme
classification

« Not useful for online applications

Graves, Alex, and Jirgen Schmidhuber. “Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network Architectures.”
Neural Networks 18, no. 5—6 (July 2005): 602—10. doi:10.1016/j.neunet.2005.06.04 2.

“Recurrent Neural Networks Tutorial, Part 1 — Introduction to RNNs.” Wild ML, September 17,2015. http//www.wildml.com/2015/09/recurrent-
neural-networks-tutorial-part-1-introduction-to-rnns/.




What — 2012, Pascanu et al.

3.2. Scaling down the gradients

As suggested in section 2.3, one simple mechanism to
deal with a sudden increase in the norm of the gradi-
ents is to rescale them whenever they go over a thresh-
old (see algorithm 1).

Algorithm 1 Pseudo-code for norm clipping the gra-

dients whenever they explode
g 0o
if ||g| > threshold then
g — thrcffzoldg
&l

end if

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. “On the Difficulty of Training Recurrent Neural Networks.” arXiv:1211.5063
[es], November 21, 2012. http:/arxiv.org/abs/1211.5063.




What — 2014, Cho, et al.

Gated Recurrent Unit

hy
heq( - Q\ L <t — 0 (Wz : [ht—laxt])
ry = U(Wr . [ht—lywt])

|<J;| |J0| [tann ]| Bt:tanh(W-[rt*ht_l,xt])

Y, ht:(l—zt)*ht_l‘i—zt*ﬁt

i |

“Understanding LSTM Networks -- Colah’s Blog.” Accessed January 25, 2016. http:/colah.github.io/posts/2015-08-Understanding-LSTMs/.




What — Gated Recurrent Unit

- Reset to normal RNN by setting:
- Reset gate to all 1s
+ Output gate to all Os

« GRU only has 2 gates

* Reset — how to combined previous hidden state and current input
- Update —how much of the internal memory to keep

“Recurrent Neural Network Tutorial, Part 4 — Implementing a GRU/LSTM RNN with Python and Theano.” Wild ML, October 27,2015.
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/.




What — LSTM vs. GRU

- Unclear which 1s better

« GRUs have fewer parameters
- May train faster and require less data for generalization

- LSTMs are very expressive
+ May require much more data

“Recurrent Neural Network Tutorial, Part 4 — Implementing a GRU/LSTM RNN with Python and Theano.” Wild ML, October 27,2015.
http://www.wildml.com/2015/10/recurrent-neural-network-tutorial-part-4-implementing-a-grulstm-rnn-with-python-and-theano/.




What — 2014, Sutskever, et al.

3.3 Reversing the Source Sentences

While the LSTM is capable of solving problems with long term dependencies, we discovered that
the LSTM learns much better when the source sentences are reversed (the target sentences are not
reversed). By doing so, the LSTM’s test perplexity dropped from 5.8 to 4.7, and the test BLEU
scores of its decoded translations increased from 25.9 to 30.6.

While we do not have a complete explanation to this phenomenon, we believe that it is caused by
the introduction of many short term dependencies to the dataset. Normally, when we concatenate a

“NIPS: Oral Session 4 - Ilya Sutskever - Microsoft Research.” Accessed March 1, 2016.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. “Sequence to Sequence Learning with Neural Networks.” arXiv: 1409.3215 [cs], September 10,
2014. http://arxiv.org/abs/1409.3215.




What — Input/Output Architectures

(. (

3

(a) [

L J

tire hidden state of the neural network. (a) This is the conventional independent

case, as assumed by standard feedforward networks. (b) Text and video classi-
OO ) fication are tasks in which a sequence is mapped to one fixed length vector. (c)
Image captioning presents the converse case, where the input image is a single
(d) (e) non-sequential data point. (d) This architecture has been used for natural lan-
( J ( J ( J E L J ( J ( ) guage translation, a sequence-to-sequence task in which the two sequences may
have varying and different lengths. (e) This architecture has been used to learn

{ H H H H } [ H H H H } a generative model for text, predicting at each step the following character.

). (U [ GRS G G

J

Lipton, Zachary C., John Berkowitz, and Charles Elkan. “A Critical Review of Recurrent Neural Networks for Sequence Learning.”
arXiv:1506.00019 [cs], May 29, 2015. http:/arxiv.org/abs/1506.00019.
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