
Log-linear models
and

conditional random fields

Notes for a tutorial at CIKM’08

Charles Elkan
elkan@cs.ucsd.edu

October 20, 2008



Contents

1 Likelihood and logistic regression 2
1.1 Principle of maximum likelihood . . . . . . . . . . . . . . . . . . 2
1.2 Maximum likelihood for Bernoulli distributions . . . . . . . . . . 3
1.3 Conditional likelihood . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Stochastic gradient training 6
2.1 Logistic regression gradient . . . . . . . . . . . . . . . . . . . . . 6
2.2 Gradient ascent, one example at a time . . . . . . . . . . . . . . . 7
2.3 Properties of stochastic gradient training . . . . . . . . . . . . . . 8

3 Log-linear models 10
3.1 The general log-linear model . . . . . . . . . . . . . . . . . . . . 10
3.2 Feature functions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Conditional random fields 12
4.1 A typical CRF application . . . . . . . . . . . . . . . . . . . . . 12
4.2 Linear-chain CRFs in general . . . . . . . . . . . . . . . . . . . . 13
4.3 Inference algorithms for linear-chain CRFs . . . . . . . . . . . . 15
4.4 Training CRFs by stochastic gradient ascent . . . . . . . . . . . . 17

5 Alternative CRF training methods 20
5.1 The Collins perceptron . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Gibbs sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Contrastive divergence . . . . . . . . . . . . . . . . . . . . . . . 23

6 Tutorials and selected papers 24

1



Chapter 1

Likelihood and logistic regression

Logistic regression is the simplest example of a log-linear model, so this section
examines logistic regression in detail. All log-linear models are based on the idea
of maximizing likelihood, so we shall discuss that general idea first of all.

1.1 Principle of maximum likelihood
Consider a family of probability distributions defined by a set of parameters θ.
The distributions may be either probability mass functions (pmfs) or probability
density functions (pdfs). Suppose we have a random sample drawn from a fixed
but unknown member of this family. The random sample is a training set of n ex-
amples x1 to xn. We assume that the examples are independent so the probability
of the set is the product of the probabilities of the individual examples:

f(x1, . . . , xn; θ) =
∏

j

fθ(xj; θ).

Usually we think of the distribution θ as fixed and the examples xj as unknown,
or varying. However, we can think of the training data as fixed and consider
alternative parameter values. This is the point of view behind the definition of the
likelihood function:

L(θ; x1, . . . , xn) = f(x1, . . . , xn; θ).

Note that if f(x; θ) is a probability mass function, then the likelihood is always
less than one, but if f(x; θ) is a probability density function, then the likelihood
can be greater than one, since densities can be greater than one.

2



The principle of maximum likelihood says that we should use as our model
the distribution f(·; θ̂) that gives the greatest possible probability to the training
data. Formally,

θ̂ = argmaxθL(θ; x1, . . . , xn).

This value θ̂ is called the maximum likelihood estimator (MLE) of θ. Note that in
general each xj is a vector of values, and θ is a vector of real-valued parameters.
For example, for a Gaussian distribution θ = 〈µ, σ2〉.

Notational note: In the expression p(y|x; β) the semicolon indicates that β is
a parameter, not a random variable that is being conditioned on, even though it
is to the right of the vertical bar. Viewed as a mapping, this expression is simply
a function of three arguments. Viewed as a probability, it is a property of two
random variables. In a Bayesian framework, parameters are also viewed as ran-
dom variables, and one can write expressions such as p(β|x). We are not doing a
Bayesian analysis, so we indicate that β is not a random variable.

1.2 Maximum likelihood for Bernoulli distributions
As a first example of finding a maximum likelihood estimator, consider the pa-
rameter of a Bernoulli distribution. A random variable with this distribution is a
formalization of a coin toss. The value of the random variable is 1 with probability
θ and 0 with probability 1− θ. Let X be a Bernoulli random variable. We have

P (X = x) =
θ if x = 1

1− θ if x = 0
.

For mathematical convenience write this as

P (X = x) = θx(1− θ)1−x.

Suppose the training data are x1 through xn where each xj ∈ {0, 1}. We maximize
the likelihood function

L(θ; x1, . . . , xn) = f(x1, . . . , xn; θ) = θh(1− θ)n−h

where h =
∑

i xi. The maximization is over the possible values 0 ≤ θ ≤ 1.
We can do the maximization by setting the derivative with respect to θ equal

to zero. The derivative is
∂

∂p
θh(1− θ)n−h = hθh−1(1− θ)n−h + θh(n− h)(1− θ)n−h−1(−1)

= θh−1(1− θ)n−h−1[h(1− θ)− (n− h)θ]

3



which has solutions θ = 0, θ = 1, and θ = h/n. The solution which is a maximum
is clearly θ = h/n while θ = 0 and θ = 1 are minima. So we have the maximum
likelihood estimate θ̂MLE = h/n.

The log likelihood function is simply the logarithm of the likelihood function.
Because logarithm is a monotonic strictly increasing function, maximizing the log
likelihood is precisely equivalent to maximizing the likelihood, or to minimizing
the negative log likelihood.

1.3 Conditional likelihood
An important extension of the idea of likelihood is conditional likelihood. The
conditional likelihood of θ given data x and y is L(θ; y|x) = f(y|x; θ). Intuitively,
y follows a probability distribution that is different for different x, but x itself is
never unknown, so there is no need to have a probabilistic model of it. Technically,
for each x there is a different distribution f(y|x; θ) of y, but all these distributions
share the same parameters θ.

Given training data consisting of 〈xi, yi〉 pairs, the principle of maximum con-
ditional likelihood says to choose a parameter estimate θ̂ that maximizes the prod-
uct

∏
i f(yi|xi; θ). Note that we do not need to assume that the xi are independent

in order to justify the conditional likelihood being a product; we just need to as-
sume that the yi are independent conditional on the xi. For any specific value of
x, θ̂ can be used to predict values for y; we assume that we never want to predict
values of x.

1.4 Logistic regression
If y is a binary outcome and x is a real-valued vector, then the conditional model

p = p(y|x; α, β) =
1

1 + exp−[α +
∑d

j=1 βjxj]

is called logistic regression. We use j to index over the feature values x1 to xd of
a single example of dimensionality d, since we use i below to index over training
examples 1 to n.

The logistic regression model is easier to understand in the form

log
p

1− p
= α +

∑
j

βjxj.

4



The ratio p/(1 − p) is called the odds of the event y given x, and log[p/(1 − p)]
is called the log odds. Since probabilities range between 0 and 1, odds range
between 0 and +∞ and log odds range unboundedly between −∞ and +∞. A
linear expression of the form α +

∑
j βjxj can also take unbounded values, so

it is reasonable to use a linear expression as a model for log odds, but not as a
model for odds or for probabilities. Essentially, logistic regression is the simplest
possible model for a random yes/no outcome that depends linearly on predictors
x1 to xd.

For each feature j, exp(βjxj) is a multiplicative scaling factor on the odds
p/(1 − p). If the predictor xj is binary, then exp(βj) is the extra odds of having
the outcome y = 1 when xj = 1, compared to when xj = 0.

Note that it is acceptable, and indeed often beneficial, to include a large num-
ber of features in a logistic regression model. Some features may be derived,
i.e. computed as deterministic functions of other features. One great advantage
of logistic regression in comparison to other classifiers is that the training process
will find optimal coefficients for features regardless of whether the features are
correlated. Other learning methods, in particular naive Bayes, do not work well
when the feature values of training or test examples are correlated.

A second major advantage of logistic regression is that it gives well-calibrated
probabilities. The numerical values p(y = 1|x) given by a logistic regression
model are not just scores where a larger score means that the example x is more
likely to have label y = 1; they are meaningful conditional probabilities. This
implies that given a set of n test examples with numerical predictions v1 to vn,
the number of examples in the set that are truly positive will be close to

∑n
i=1 vi,

whatever this sum is.
Last but not least, a third major advantage of logistic regression is that it is not

sensitive to unbalanced training data. What this means is that even if one class (ei-
ther the positive or negative examples) is much larger than the other (correspond-
ingly, the negative or positive examples), logistic regression training encounters
no difficulties and the final classifier will still be well-calibrated. The conditional
probabilities predicted by the trained classifier will range below and above the
base rate, i.e. the unconditional probability p(y = 1).

5



Chapter 2

Stochastic gradient training

All training algorithms for log-linear models are based on the gradient of the con-
ditional likelihood function, or on a closely related idea. The simplest of these
training algorithms, which are often the fastest and most useful in practice, use
the gradient computed from one training example at a time. These algorithms are
called stochastic gradient methods.

2.1 Logistic regression gradient
We shall continue with the special case of logistic regression. Given a single
training example that consists of x and y values, the conditional log likelihood is
log L(β; x, y) = log p if y = 1 and log L(β; x, y) = log(1 − p) if y = 0. The
goal of training is to maximize the conditional log likelihood. So, let us evaluate
its partial derivative with respect to each parameter βj . To simplify the following
discussion, assume that α = β0 and x0 = 1 for every example x from now on. If
y = 1 the partial derivative is

∂

∂βj

log p =
1

p

∂

∂βj

p

while if y = 0 it is

∂

∂βj

log(1− p) =
1

1− p

(
− ∂

∂βj

p
)
.

Let e = exp[−
∑

j βjxj] where the sum ranges from j = 0 to j = d, so p =
1/(1 + e) and 1 − p = (1 + e − 1)/(1 + e) = e/(1 + e). With this notation we

6



have

∂

∂βj

p = (−1)(1 + e)−2 ∂

∂βj

e

= (−1)(1 + e)−2(e)
∂

∂βj

[−
∑

j

βjxj]

= (−1)(1 + e)−2(e)(−xj)

=
1

1 + e

e

1 + e
xj

= p(1− p)xj.

So (∂/∂βj) log p = (1 − p)xj and (∂/∂βj) log(1 − p) = −pxj . Given training
examples 〈x1, y1〉 to 〈xn, yn〉, the total partial derivative of the log likelihood with
respect to βj is ∑

i:yi=1

(1− pi)xij +
∑

i:yi=0

−pixij =
∑

i

(yi − pi)xij

where xij is the value of the jth feature of the ith training example. Setting the
total partial derivative to zero yields∑

i

yixij =
∑

i

pixij.

We have one equation of this type for each parameter βj . The equations can be
used to check the correctness of a trained model.

2.2 Gradient ascent, one example at a time
There are several sophisticated ways of actually doing the maximization of the
total conditional log likelihood, i.e. the conditional log likelihood summed over all
training examples 〈xi, yi〉. However, here we consider a method called stochastic
gradient ascent. This method changes the parameter values to increase the log
likelihood based on one example at a time. It is called stochastic because the
derivative based on a randomly chosen single example is a random approximation
to the true derivative based on all the training data.

Consider a single training example 〈x, y〉, where again we drop the subscript i
for convenience. Consider the jth parameter for 0 ≤ j ≤ d. The partial derivative

7



of the log likelihood given this single example is

∂

∂βj

log L(β; x, y) = (y − p)xj

where y = 1 or y = 0. For each j, we increase the log likelihood incrementally by
doing the update βj := βj + λ(y− p)xj . Here λ is a multiplier called the learning
rate that controls the magnitude of the changes to the parameters.

Stochastic gradient ascent (or descent, for a minimization problem) is a method
that is often useful in machine learning. Experience suggests some heuristics for
making it work well in practice.

• The training examples are sorted in random order, and the parameters are
updated for each example sequentially. One complete update for every ex-
ample is called an epoch. Typically, a small constant number of epochs is
used, perhaps 3 to 100 epochs.

• The learning rate is chosen by trial and error. It can be kept constant across
all epochs, e.g. λ = 0.1 or λ = 1, or it can be decreased gradually as a
function of the epoch number.

• Because the learning rate is the same for every parameter, it is useful to
scale the features xj so that their magnitudes are similar for all j. Given
that the feature x0 has constant value 1, it is reasonable to normalize every
other feature to have mean zero and variance 1, for example.

For the state of the art in guidelines for applying the stochastic gradient idea, see
http://leon.bottou.org/p̃rojects/sgd.

2.3 Properties of stochastic gradient training
Stochastic gradient ascent (or descent) has some properties that are very useful in
practice. First, suppose that xj = 0 for most features j of a training example x.
Then updating βj based on x can be skipped. This means that the time to do one
epoch is O(nfp) where n is the number of training examples, p is the number of
features, and f is the average number of nonzero feature values per example. If
an example x is the bag-of-words representation of document, then p is the size of
the vocabulary but fp is the average length of a document.

8



Second, suppose that the number n of training examples is very large, as is the
case in many modern applications. Then, a stochastic gradient method may con-
verge to good parameter estimates in less than one epoch of training. In contrast,
a training method that computes the log likelihood of all data and uses this in the
same way regardless of n will be inefficient in how it uses the data.

For each example, a stochastic gradient method updates all parameters once.
The dual idea is to update one parameter at a time, based on all examples. This
method is called coordinate ascent (or descent). For feature j the update rule is

βj := βj + λ
∑

i

(yi − pi)xij.

The update for the whole parameter vector β̄ is

β̄ := β̄ + λ(ȳ − p̄)T X

where the matrix X is the entire training set and the column vector ȳ consists of
the 0/1 labels for every training example. Often, coordinate ascent converges too
slowly to be useful. However, it can be useful to do one update of β̄ after all
epochs of stochastic gradient ascent.

Regardless of the method used to train a model, it is important to remember
that optimizing the model perfectly on the training data usually does not lead to
the best possible performance on test examples. There are several reasons for this:

• The model with best possible performance may not belong to the family of
models under consideration. This is an instance of the principle “you cannot
learn it if you cannot represent it.”

• The training data may not be representative of the test data, i.e. the training
and test data may be samples from different populations.

• Fitting the training data as closely as possible may simply be overfitting.

• The objective function for training, namely log likelihood or conditional log
likelihood, may not be the desired objective from an application perspective;
for example, the desired objective may be classification accuracy.

9



Chapter 3

Log-linear models

This chapter describes the general log-linear model, which are a far-reaching ex-
tension of logistic regression. Conditional random fields (CRFs), which are ex-
plained in the next chapter, are a special case of log-linear models. Section 3.1 in
this chapter explains what a log-linear model is, and then Section 3.2 explains a
very important representational idea, the generalization from features to feature-
functions.

3.1 The general log-linear model
Let x be an example, and let y be a possible label for it. A log-linear model
assumes that

p(y|x; w) =
exp

∑
j wjFj(x, y)

Z(x, w)
(3.1)

where the partition function Z(x, w) =
∑

y′ exp
∑

j wjFj(x, y′). Therefore, given
x, the label predicted by the model is

ŷ = argmaxyp(y|x; w) = argmaxy

∑
j

wjFj(x, y).

Each expression Fj(x, y) is called a feature-function.
Mathematically, log-linear models are very simple: there is one real-valued

weight for each feature-function, no more and no fewer. There are several possi-
ble justifications for the form of the expression (3.1). First, a linear combination∑

j wjFj(x, y) can take any positive or negative real value; the exponential makes

10



it positive, like a valid probability. Second, the division makes the results be-
tween 0 and 1, i.e. makes them be valid probabilities. Third, the ranking of the
probabilities will be the same as the ranking of the linear values.

A function of the form
bk =

exp ak∑
k′ exp ak′

is called a softmax function because the exponentials enlarge the bigger ak values
compared to the smaller ak values. Other functions have the same property of
being similar to the maximum function, but differentiable. Softmax is widely used
now, perhaps because its derivative is especially simple; see Section 4.4 below.

3.2 Feature functions
In general, a feature-function can be any real-valued function of both the data
space X and the label space Y . Formally, a feature-function is any mapping
Fj : X × Y → R.

Often, a feature-function is zero for all values of y except one particular value.
Given some attribute of x, we can have a different weight for this attribute and
each different label. The weights for these feature-functions can then capture the
affinity of this attribute-value for each label. Often, feature-functions are pres-
ence/absence indicators, so the value of the feature-function is either 0 or 1. If we
have a conventional attribute a(x) with k alternative values, and n classes, we can
make kn different features as defined above. With log-linear models, anything
and the kitchen sink can be a feature. We can have lots of classes, lots of features,
and we can pay attention to different features for different classes.

Feature-functions can overlap in arbitrary ways. For example, if x is a word
different feature-functions can use attributes of x such as “starts with a capital let-
ter,” “starts with G,”, is “Graham,” “is six letters long.” Generally we can encode
suffixes, prefixes, facts from a lexicon, preceding/following punctuation, etc., as
features.

11



Chapter 4

Conditional random fields

Now that we understand log-linear models, at last, we can explain conditional
random fields (CRFs), specifically so-called linear-chain CRFs. First, Section 4.1
presents linear-chain CRFs through an example application. Next, Section 4.2
generalizes the example, and Section 4.3 explains the special algorithms that make
inference tractable for linear-chain CRFs. Section 4.4 gives a general derivation of
the gradient of a log-linear model; this is the foundation of all log-linear training
algorithms.

4.1 A typical CRF application
To begin, consider an example of a learning task for which a CRF is useful. Given
a sentence, the task is to tag each word as noun, verb, adjective, preposition, etc.
There is a fixed known set of these part-of-speech (POS) tags. Each sentence
is a separate training or test example. We will represent a sentence by feature-
functions based on its words. Feature-functions can be very varied:

• Some feature-functions can be position-specific, e.g. to the beginning or
to the end of a sentence, while others can be sums over all positions in a
sentence.

• Some feature-functions can look just at one word, e.g. at its prefixes or
suffixes.

• Some features can also use the words one to the left, one to the right, two to
the left etc., up to the whole sentence.

12



The highest-accuracy POS taggers currently use over 100,000 feature-functions.
An important restriction (that will be explained and justified below) is that each
feature-function can depend on only one tag, or on two neighboring tags.

POS tagging is an example of what is called a structured prediction task. The
goal is to predict a complex label (a sequence of POS tags) for a complex input (an
entire sentence). This task is difficult, and significantly different from a standard
classifier learning task. There are at least three important sources of difficulty.
First, too much information would be lost by learning just a per-word classifier.
Influences between neighboring tags must be taken into account. Second, different
sentences have different lengths, so it is not obvious how to represent all sentences
by vectors of the same fixed length. Third, the set of all possible sequences of tags
constitutes an exponentially large set of labels.

A linear conditional random field is a way to apply a log-linear model to this
type of task. Use the bar notation for sequences, so x̄ means a sequence of variable
length. Specifically, let x̄ be a sequence of n words and let ȳ be a corresponding
sequence of n tags. Define the log-linear model

p(ȳ|x̄; w) =
1

Z(x̄, w)
exp

∑
j

wjFj(x̄, ȳ).

Assume that each feature-function Fj is actually a sum along the sentence, for
i = 1 to i = n where n is the length of x̄:

Fj(x̄, ȳ) =
∑

i

fj(yi−1, yi, x̄, i).

This notation means that each low-level feature-function fj can depend on the
whole sentence, the current tag and the previous tag, and the current position i
within the sentence. A feature-function fj may depend on only a subset of these
four possible influences. Examples of features are “the current tag is NOUN and
the current word is capitalized,” “the word at the start of the sentence is Mr.” and
“the previous tag was SALUTATION.”

4.2 Linear-chain CRFs in general
Summing each fj over all positions i means that we can have a fixed set of feature-
functions Fj for log-linear training, even though the training examples are not
fixed-length.

13



Training a CRF means finding the weight vector w that gives the best possible
prediction

ȳ∗ = argmaxȳ p(ȳ|x̄; w) (4.1)

for each training example x̄. However, before we can talk about training there are
two major inference problems to solve. First, how can we do the argmax compu-
tation in Equation 4.1 efficiently, for any x̄ and any weights w? This computation
is difficult since the number of alternative tag sequences ȳ is exponential.

Second, given any x̄ and ȳ we want to evaluate

p(ȳ|x̄; w) =
1

Z(x̄, w)
exp

∑
j

wjFj(x̄, ȳ).

The difficulty here is that the denominator again ranges over all tag sequences ȳ:
Z(x̄, w) =

∑
ȳ′ exp

∑
j wjFj(x̄, ȳ′). For both these tasks, we will need tricks to

account for all possible ȳ efficiently, without enumerating all possible ȳ. The fact
that feature-functions can depend on at most two tags, which must be adjacent,
makes these tricks exist.

The next section explains how to solve the two inference problems just de-
scribed, and then the following section explains to do training via gradient follow-
ing.

An issue that is the topic of considerable research is the question of which
objective function to maximize during training. Often, the objective function used
for training is not exactly the function that we really want to maximize on test
data. Traditionally we maximize CLL on the training data. However, instead of
maximizing CLL we could maximize yes/no accuracy of the entire predicted ȳ, or
pointwise conditional log likelihood, or we could minimize mean-squared error if
tags are numerical, or some other measure of distance between true and predicted
tags. A fundamental question is whether we want to maximize a pointwise ob-
jective. For a long sequence, we may have a vanishing chance of predicting the
entire tag sequence correctly. The single sequence with highest probability may
be very different from the most probable tag at each position.

14



4.3 Inference algorithms for linear-chain CRFs
Let’s solve the first problem above efficiently. First note that we can ignore the
denominator, and also the exponential inside the numerator. We want to compute

ȳ∗ = argmaxȳ p(ȳ|x̄; w) = argmaxȳ

∑
j

wjFj(x̄, ȳ).

Use the definition of Fj to get

ȳ∗ = argmaxȳ

∑
j

wj

∑
i

fj(yi−1, yi, x̄, i) = argmaxȳ

∑
i

gi(yi−1, yi)

where gi(yi−1, yi) =
∑

j wjfj(yi−1, yi, x̄, i). Note that the x̄ and i arguments of fj

have been dropped in the definition of gi. Each gi is a different function for each
i, and depends on w as well as on x̄ and i.

Remember that each entry of the ȳ vector is one of a finite set of tags. Given
x̄, w, and i the function gi can be represented as an m by m matrix where m is the
cardinality of the set of tags.

Let v range over the tags. Define U(k, v) to be the score of the best sequence
of tags from 1 to k, where tag k is required to be v. This is a maximization over
k − 1 tags because tag number k is fixed to have value v. Formally,

U(k, v) = max
{y1,...,yk−1}

[
k−1∑
i=1

gi(yi−1, yi) + gk(yk−1, v)].

Now we can write down a recurrence that lets us compute U(k, v) efficiently:

U(k, v) = max
yk−1

[U(k − 1, yk−1) + gk(yk−1, v)]

With this recurrence we can compute ȳ for any x̄ in O(m2n) time, where n is
the length of x̄ and m is the cardinality of the set of tags. This algorithm is
a variation of the Viterbi algorithm for computing the highest-probability path
through a hidden Markov model. The base case of the recurrence is an exercise
for the reader.

The second fundamental computational problem is to compute the denomina-
tor of the probability formula. This denominator is called the partition function:

Z(x̄, w) =
∑

ȳ

exp
∑

j

wjFj(x̄, ȳ).

15



Remember that ∑
j

wjFj(x̄, ȳ) =
∑

i

gi(yi−1, yi),

where i ranges over all positions 1 to n of the input sequence x̄, so we can write

Z(x̄, w) =
∑

ȳ

exp
∑

i

gi(yi−1, yi) =
∑

ȳ

∏
i

exp gi(yi−1, yi).

We can compute the expression above efficiently by matrix multiplication. For
t = 1 to t = n + 1 let Mt be a square m by m matrix such that Mt(u, v) =
exp gt(u, v) for any two tag values u and v. Note that M2 to Mn are fully defined,
while M1(u, v) is defined only for u = START and Mn+1(u, v) is defined only for
v = STOP.

Consider multiplying M1 and M2. We have1

M12(START, w) =
∑

v

M1(START, v)M2(v, w) =
∑

v

[exp g1(START, v)][exp g2(v, w)].

Similarly,

M123(START, x) =
∑

w

M12(START, w)M3(w, x)

=
∑

w

[
∑

v

M1(START, v)M2(v, w)]M3(w, x)

=
∑
v,w

M1(START, v)M2(v, w)M3(w, x)

and so on. Consider the 〈START, STOP〉 entry of the entire product M123...n+1. This
is

M123...n+1(START, STOP) = T =
∑

ȳ

M1(START, y1)M2(y1, y2) . . . Mn+1(yn, STOP).

We have

T =
∑

ȳ

exp[g1(START, y1)] exp[g2(y1, y2)] . . . exp[gn+1(yn, STOP)]

=
∑

ȳ

∏
i

exp[gi(yi−1, yi)]

1Note on notation: u, v, w, and x here are all single tags; w is not a weight and x is not a
component of x̄.

16



which is exactly what we need.
Computational complexity: Each matrix is m by m where m is the cardinality

of the tag set. Each matrix multiplication requires O(m3) time, so the total time
is O(nm3). We have reduced a sum over an exponential number of alternatives
to a polynomial-time computation. However, even though polynomial, this is
worse than the time needed by the Viterbi algorithm. An interesting question is
whether computing the partition function is harder in some fundamental way than
computing the most likely label sequence.

The matrix multiplication method for computing the partition function is called
a forward-backward algorithm. A similar algorithm can be used to compute any
function of the form

∑
ȳ hi(yi−1, yi).

Some extensions to the basic linear-chain CRF are not difficult. The output ȳ
must be a sequence, but the input x̄ is treated as a unit, so it does not have to be
a sequence. It could be an image for example, or a collection of separate items,
e.g. telephone customers.

In general, what is fundamental for making a log-linear model tractable is that
the set of possible labels ȳ should either be small, or have some structure. In order
to have structure, ȳ should be made up of parts (e.g. tags) such that only small
subsets of parts interact directly with each other. Here, every interacting subset
of tags is a pair. Often, the real-world reason interacting subsets are small is that
interactions between parts are short-distance.

4.4 Training CRFs by stochastic gradient ascent
The learning task for a log-linear model is to choose values for the weights (also
called parameters). Given a set of training examples, we assume now that the
goal is to choose parameter values wj that maximize the conditional probability
of the training examples. In other words, the objective function for training is the
conditional log-likelihood (CLL) of the set of training examples. Since we want
to maximize CLL, we do gradient ascent as opposed to descent.

For online gradient ascent (also called stochastic gradient ascent) we update
parameters based on single training examples. Therefore, we evaluate the partial
derivative of CLL for a single training example, for each wj . (There is one weight
for each feature-function, so we use j to range over weights.) Start with

∂

∂wj

log p(y|x; w) = Fj(x, y)− ∂

∂wj

log Z(x, w)

17



= Fj(x, y)− 1

Z(x, w)

∑
y′

∂

∂wj

exp
∑

j′

wj′Fj′(x, y′)

= Fj(x, y)− 1

Z(x, w)

∑
y′

[exp
∑

j′

wj′Fj′(x, y′)]Fj(x, y′)

= Fj(x, y)−
∑
y′

Fj(x, y′)
exp

∑
j′ wj′Fj′(x, y′)∑

y′′ exp
∑

j′′ wj′′Fj′′(x, y′′)

= Fj(x, y)−
∑
y′

Fj(x, y′)p(y′|x; w)

= Fj(x, y)− Ey′∼p(y′|x;w)[Fj(x, y′)].

In words, the partial derivative with respect to weight number i is the value of
feature-function i for the true training label y, minus the average value of the
feature-function for all possible labels y′. Note that this derivation allows feature-
functions to be real-valued, not just zero or one.

The gradient of the CLL given the entire training set T is the sum of the gra-
dients for each training example. At the global maximum this entire gradient is
zero, so we have ∑

〈x,y〉∈T

Fj(x, y) =
∑

〈x,·〉∈T

Ey∼p(y|x;w)[Fj(x, y)].

This equality is true only for the whole training set, not for training examples
individually.

The left side above is the total value of feature-function j on the whole training
set. The right side is the total value of feature-function j predicted by the model.
For each feature-function, the trained model will spread out over all labels of all
examples as much mass as the training data has just on those examples for which
the feature-function is nonzero.

For any particular application of log-linear modeling, we have to write code to
evaluate numerically the symbolic derivatives. Then we can invoke an optimiza-
tion routine to find the optimal parameter values. There are two ways that we can
verify correctness. First, check for each feature-function Fj that∑

〈x,y〉∈T

Fj(x, y) =
∑

〈x,·〉∈T

∑
y′

p(y′|x; w)Fj(x, y′).

Second, check that each partial derivative is correct by comparing it numerically
to the value obtained by finite differencing of the CLL objective function.

18



Suppose that every feature-function Fj is the product of an attribute value
aj(x) that is a function of x only, and a label function bj(y) that is a function
of y only, i.e. Fj(x, y) = aj(x)bj(y). Then ∂

∂wj
log p(y|x; w) = 0 if aj(x) = 0,

regardless of y. This implies that given example x with online gradient ascent,
the weight for a feature-function must be updated only for feature-functions for
which the corresponding attribute aj(x) is non-zero, which can be a great saving
of computational effort. In other words, the entire gradient with respect to a sin-
gle training example is typically a sparse vector, just like the vector of all Fj(x, y)
values is sparse for a single training example. A similar savings is possible when
computing the gradient with respect to the whole training set. Note that the gra-
dient with respect to the whole training set is a single vector that is the sum of
one vector for each training example. Typically these vectors being summed are
sparse, but their sum is not.

When maximizing the conditional log-likelihood by online gradient ascent,
the update to weight wj is

wj := wj + α(Fj(x, y)− Ey′∼p(y′|x;w)[Fj(x, y′)]) (4.2)

where α is a learning rate parameter.

19



Chapter 5

Alternative CRF training methods

This chapter explains three special CRF training algorithms. One is a variant of
the perceptron method, the second is called contrastive divergence, and the third
is an approximate method named Gibbs sampling.

The partial derivative for stochastic gradient training of a CRF model is

∂

∂wj

log p(ȳ|x̄; w)

= Fj(x̄, ȳ)−
∑
ȳ′

Fj(x̄, ȳ′)p(ȳ′|x̄; w)

= Fj(x̄, ȳ)−
∑
ȳ′

Fj(x̄, ȳ′)
exp

∑
j′ wj′Fj′(x̄, ȳ′)

Z(x̄, w)
.

The first term Fj(x̄, ȳ) is fast to compute because x̄ and its training label ȳ are
fixed. Section 4.3 above shows how to compute Z(x̄, w) efficiently. The remain-
ing difficulty is to compute

∑
ȳ′ Fj(x̄, ȳ′) exp

∑
j wjFj(x̄, ȳ′).

If the set of alternative labels {y} is large, then it is computationally expensive
to evaluate the expectation Ey′∼p(y′|x;w)[Fj(x, y′)]). We can find approximations
to this expectation by finding approximations to the distribution p(y|x; w). Each
section below describes a method based on a different approximation.

5.1 The Collins perceptron
Suppose we place all the probability mass on the most likely y value, i.e. we use
the approximation p̂(y|x; w) = I(y = ŷ) where ŷ = argmaxy p(y|x; w) as before.

20



Then the update rule (4.2) at the end of the previous chapter simplifies to the
following rule:

wj := wj + αFj(x, y)

wj := wj − αFj(x, ŷ).

Given a training example x, the label ŷ can be thought of as an “impostor” com-
pared to the genuine label y. The concept to be learned is those vectors of feature-
function values 〈F1(x, y), . . .〉 that correspond to correct 〈x, y〉 pairs. The vector
〈F1(x, y), . . .〉, where 〈x, y〉 is a training example, is a positive example of this
concept. The vector 〈F1(x, ŷ), . . .〉 is a negative example of the same concept.
Hence, the two updates above are perceptron updates: the first for a positive ex-
ample and the second for a negative example.

The perceptron method causes a net increase in wj for features Fj whose value
is higher for y than for ŷ. It thus modifies the weights to directly increase the
probability of y compared to the probability of ŷ.

5.2 Gibbs sampling
Computing the most likely label ŷ does not require computing the partition func-
tion Z(x, w). Nevertheless, sometimes identifying ŷ is still too difficult. In this
case one option for training is to estimate Ey∼p(y|x;w)[Fj(x, y)] approximately by
sampling y values from the distribution p(y|x; w).

A method known as Gibbs sampling can be used to find the needed samples of
y. Gibbs sampling is the following algorithm. Suppose the entire label y can be
written as a set of parts y = {y1, . . . , yn}. For example, if y is the part-of-speech
sequence that is the label of an input sentence x, then each yi can be the tag of one
word in the sentence. Suppose the marginal distribution

p(yi|x, y1, yi−1, . . . , yi+1, yn; w)

can be evaluated numerically in an efficient way for every i. Then we can get a
stream of samples by the following process:

(1) Select an arbitrary initial guess 〈y1, . . . , yn〉.

(2) Draw y′
1 according to p(y1|x, y2, . . . , yn; w);

• draw y′
2 according to p(y2|x, y′

1, y3, . . . , yn; w);

21



• draw y′
3 according to p(y2|x, y′

1, y
′
2, y4, . . . , yn; w);

• and so on until y′
n.

(3) Set {y1, . . . , yn} := {y′
1, . . . , y

′
n} and repeat from (2).

It can be proved that if Step (2) is repeated an infinite number of times, then
the distribution of y = {y′

1, . . . , y
′
n} converges to the true distribution p(y|x; w)

regardless of the starting point. In practice, we do Step (2) some number of times
(say 1000) to come close to convergence, and then take several samples y =
{y′

1, . . . , y
′
n}. Between each sample we repeat Step (2) a smaller number of times

(say 100) to make the samples almost independent of each other.
Using Gibbs sampling to estimate the expectation Ey∼p(y|x;w)[Fj(x, y)] is com-

putationally intensive because the accuracy of the estimate only increases very
slowly as the number s of samples increases. Specifically, the variance decreases
proportional to 1/s.

Gibbs sampling relies on drawing samples efficiently from marginal distribu-
tions. Let y−i be an abbreviation for the set {y1, . . . , yi−1, ji+1, . . . , yn}. We need
to draw values according to the distribution p(yi|x, y−i; w). The straightforward
way to do this is to evaluate p(v|x, y−i; w) numerically for each possible value v
of yi. In typical applications the number of alternative values v is small, so this
approach is feasible, if p(v|x, y−i; w) can be computed.

Suppose the entire conditional distribution is a Markov random field

p(y|x; w) ∝
M∏

m=1

φm(ym|x; w) (5.1)

where each φm is a potential function that depends on just a subset ym of com-
ponents of y. Linear-chain conditional random fields are a special case of Equa-
tion (5.1). In this case

p(yi|x, y−i; w) ∝
∏
m∈C

φm(ym|x; w) (5.2)

where C indexes those potential functions ym that include the part yi. To compute
p(yi|x, y−i; w) we evaluate the product (5.2) for all values of yi, with the given
fixed values of y−i = {y1, . . . , yi−1, ii+1, . . . , yn}. We then normalize using

Z(x, y−i; w) =
∑

v

∏
m∈C

φm(ym|x; w)

where v ranges over the possible values of yi.

22



5.3 Contrastive divergence
A third training option is to choose a single y∗ value that is somehow similar to the
training label y, but also has high probability according to p(y|x; w). Compared to
the “impostor” ŷ, the “evil twin” y∗ will have lower probability, but will be more
similar to y.

The idea of contrastive divergence is to obtain a single value y∗ = 〈y∗
1, . . . , y

∗
n〉

by doing only a few iterations of Gibbs sampling (often only one), but starting at
the training label y instead of at a random guess.

23



Chapter 6

Tutorials and selected papers

The following are four tutorials that are available on the web.

1. Hanna M. Wallach. Conditional Random Fields: An Introduction. Techni-
cal Report MS-CIS-04-21. Department of Computer and Information Sci-
ence, University of Pennsylvania, 2004.

2. Charles Sutton and Andrew McCallum. An Introduction to Conditional
Random Fields for Relational Learning. In Introduction to Statistical Rela-
tional Learning. Edited by Lise Getoor and Ben Taskar. MIT Press, 2006.

3. Rahul Gupta. Conditional Random Fields. Unpublished report, IIT Bom-
bay, 2006.

4. Roland Memisevic. An Introduction to Structured Discriminative Learning.
Technical Report, University of Toronto, 2006.

All four surveys above are very good. The report by Memisevic places CRFs in the
context of other methods for learning to predict complex outputs, especially SVM-
inspired large-margin methods. Sutton’s survey is a longer discussion, with many
helpful comments and explanations. The tutorial by Wallach is easy to follow
and provides high-level intuition. One difference between the two tutorials is that
Wallach represents CRFs as undirected graphical models, whereas Sutton uses
undirected factor graphs. Sutton also does parallel comparisons of naive Bayes
(NB) and logistic regression, and of hidden Markov models (HMMs) and linear-
chain CRFs. This gives readers a useful starting point if they have experience
with NB classifiers or HMMs. Gupta’s paper gives a detailed derivation of the
important equations for CRFs.

24



Bibliographies on CRFs have been compiled by Rahul Gupta and Hanna Wal-
lach. The following papers may be particularly interesting or useful. They are
listed in approximate chronological order. Note that several are on topics related
to CRFs, not on CRFs directly.

1. Michael Collins. Discriminative training methods for hidden Markov mod-
els: Theory and experiments with perceptron algorithms. Proceedings of
the ACL-02 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 1-8, 2002.

2. Sham Kakade, Yee Whye Teh, Sam T. Roweis. An alternate objective func-
tion for Markovian fields. In Proceedings of the 19th International Confer-
ence on Machine Learning (ICML), 2002.

3. Andrew McCallum. Efficiently inducing features of conditional random
fields. In Proceedings of the 19th Conference on Uncertainty in Artificial
Intelligence (UAI-2003), 2003.

4. Sanjiv Kumar and Martial Hebert. Discriminative random fields: A dis-
criminative framework for contextual interaction in classification. In Pro-
ceedings of the Ninth IEEE International Conference on Computer Vision,
2003.

5. Ben Taskar, Carlos Guestrin and Daphne Koller. Max-margin Markov net-
works. In Advances in Neural Information Processing Systems 16 (NIPS),
December 2003.

6. Thomas G. Dietterich, Adam Ashenfelter and Yaroslav Bulatov. Training
conditional random fields via gradient tree boosting. In Proceedings of the
21st International Conference on Machine Learning (ICML), 2004.

7. Vladimir Kolmogorov and Ramin Zabih. What energy functions can be
minimized via graph cuts? In IEEE Transactions on Pattern Analysis and
Machine Intelligence, February 2004.

8. Charles Sutton, Andrew McCallum. Collective segmentation and labeling
of distant entities in information extraction. ICML Workshop on Statistical
Relational Learning, 2004.

9. Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Al-
tun. Large margin methods for structured and interdependent output vari-
ables. Journal of Machine Learning Research, December 2005.

25



10. Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured
prediction. Submitted for publication, 2006.

11. Samuel Gross, Olga Russakovsky, Chuong Do, and Serafim Batzoglou.
Training conditional random fields for maximum labelwise accuracy. In
Advances in Neural Processing Systems 19 (NIPS), December 2006.

26


