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Deep Learning

A branch of machine learning
Model high-level abstractions in data & Learn representations of data.

Replacing handcrafted features with efficient algorithms for unsupervised or semi-
supervised feature learning

Inspiration: Neuron cells
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History

Perceptrons

‘Born in 1960 (by Frank Rosenblatt), First generation

Input layer + a fixed hand-crafted feature+ an output layer

‘Classify some basic shapes

- Fundamentally limited learning abilities

Hand-crafted feature

Single struction



History

2nd-generation neural network
*In around 1985 (by Geoffrey Hinton)

*Replaced the original single fixed feature layer with several hidden layers
*Back-propagation

*The correcting signal will be weakened

*Too slow

*Get stuck in poor local optima



History

Support Vector Machines(SVM)
*Raised by Vladimir N. Vapnik and his co-workers in 1995
*Statistical learning theory

*The kernel function

*Features are directly obtained not learnt from the data itself
X A
2




History

Convolutional Neural Network

*Exploit its advantages related to "deep" and overcome the limitations
*The one milestones architecture

*Only uses local connections and shared weights

*Big success in ILSVRC 2012
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Traditional Approach

Features are the key
Multitude of hand-designed features
SIFT HOG...

Felzenszwalb, Girshick,
McAllester and Ramanan, PAMI 2007
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“Shallow” vs. “deep” architectures

Traditional recognition: “Shallow” architecture

Im_age/ Object
Video ‘:> Class
Pixels

Deep learning: “Deep” architecture

Image/ Obiject
video :9-:> e ssifier |~ Class
Pixels




Pros

Learn features hierarchy all the way from pixels to classifier
Each layer extracts features from the output of previous layer
Train all layers jointly

Simple classifier "NN” in the last layer

Deep architecture can fit various images fast

Higher level layers encode more abstract features

Higher level layers show more invariance to instantiation parameters (translation,
rotation,lighting changes)

Convolutional neural network image statistics are translation invariant (objects and
viewpoint translates)



Cons

Large-scale training database

« Compute capability

Xeon(R) CPU E3-1241 v3 3.50GHz*8/16G/Quadro K2200/CUDA 7.5
MNIST Ubuntu 14.04 on CPU: 270s
MNIST Ubuntu 14.04 on GPU:160s
MNIST Ubuntu 14.04 on GPU with cuDNN : 30s
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MN'ST 50 results collected

Units: error %
dataset page.

Method

Regularization of Neural Networks using DropConnect »

Multi-column Deep Neural Networks for Image
Classification

APAC: Augmented PAttern Classification with Neural
Networks

Batch-normalized Maxout Network in Network |

Generalizing Pooling Functions in Convolutional
Neural Networks: Mixed, Gated, and Tree

Recurrent Convolutional Neural Network for Object
Recognition

On the Importance of Normalisation Layers in Deep
Learning with Piecewise Linear Activation Units

Fractional Max-Pooling >

Competitive Multi-scale Convolution |

Deep Big Simple Neural Nets Excel on Handwritten
Digit Recognition

C-SVDDNet: An Effective Single-Layer Network for

»

>

Venue
ICML 2013
CVPR 2012

arXiv 2015

arXiv 2015

AISTATS
2016

CVPR 2015

arXiv 2015

arXiv 2015

arXiv 2015

Neural
Computation
2010

arXiv 2014

Classify handwriten digits. Some additional results are available on the original

Details

Details

Details

Details

Details
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CIFAR-10 45 resuns conectea

Units: accuracy %
Classify 32x32 colour images.

dUELEEESaan
Result Method Venue Details
96.53% Fractional Max-Pooling > arXiv 2015 Details
95.59% Striving for Simplicity: The All Convolutional Net > ICLR 2015 Details
94.16% All you need is a good init > ICLR 2016 Details
94% Lessons learned from manually classifying CIFAR-10 >  unpublished Details
2011
93.95% Generalizing Pooling Functions in Convolutional ~ AISTATS Details
Neural Networks: Mixed, Gated, and Tree 2016
93.72% Spatially-sparse convolutional neural networks > arXiv 2014
93.63% Scalable Bayesian Optimization Using Deep Neural » ICML 2015
Networks
93.57% Deep Residual Learning for Image Recognition > arXiv 2015 Details
93.45% Fast and Accurate Deep Network Learning by ~ arXiv 2015 Details
Exponential Linear Units :
93.34% Universum Prescription: Regularization using » arXiv 2015
Unlabeled Data '
93.25% Batch-normalized Maxout Network in Network > arXiv 2015 Details

93.13% Competitive Multi-scale Convolution * arXiv 2015




=EET 53

E-.E-.. e - 31 results collectec

SEEEEMWESS  CIFAR-100 o o comcis
[ - .

AN BT B Units: accuracy %

Result
75.72%

75.7%

73.61%

72.60%

72.44%

72.34%

71.14%

70.80%

69.17%

69.12%
68.53%

68.40%

Classify 32x32 colour images.

Method

Fast and Accurate Deep Network Learning by
Exponential Linear Units

Spatially-sparse convolutional neural networks *|

Fractional Max-Pooling >

Scalable Bayesian Optimization Using Deep Neural
Networks

Competitive Multi-scale Convolution >

All you need is a good init >
Batch-normalized Maxout Network in Network *

On the Importance of Normalisation Layers in Deep
Learning with Piecewise Linear Activation Units

Learning Activation Functions to Improve Deep Neural

Networks
Stacked What-Where Auto-encoders >
Multi-Loss Regularized Deep Neural Network >

Spectral Representations for Convolutional Neural
Networks

>

>

>

Venue
arXiv 2015

arXiv 2014

arXiv 2015

ICML 2015

arXiv 2015

ICLR 2015

arXiv 2015

arXiv 2015

ICLR 2015

arXiv 2015
CSVT 2015

NIPS 2015

Details

Details

Detalls

Details

Details

Detalls

Details



STL'1 0 18 results collected

Units: accuracy %
Similar to CIFAR-10 but with 96x96 images. Original dataset website.

Result Method Venue Details
74.33% Stacked What-Where Auto-encoders > arXiv 2015
74.10% Convolutional Clustering for Unsupervised Learning > arXiv 2015 Details
73.15% Deep Representation Learning with Target Coding > AAAI 2015
72.8% Discriminative Unsupervised Feature Learning with »~ NIPS 2014 Details
(£0.4%) Convolutional Neural Networks
70.20 % (0.7 An Analysis of Unsupervised Pre-training in Light of » ICLR 2015 Details
%) Recent Advances
70.1% Multi-Task Bayesian Optimization > NIPS 2013 Details
(£0.6%)
68.23% £ 0.5 C-SVDDNet: An Effective Single-Layer Network for » arXiv 2014
Unsupervised Feature Learning
68% (£0.55%) Committees of deep feedforward networks trained with ~ arXiv 2014
few data
67.9% Stable and Efficient Representation Learning with » ICML 2014 Details
(£0.6%) Nonnegativity Constraints
64.5% (£1%) Unsupervised Feature Learning for RGB-D Based » ISER 2012 Details

Object Recognition
62.32% Convolutional Kernel Networks arXiv 2014 Details



SVHN 17 results collected

Units: error %

The Street View House Numbers (SVHN) Dataset.

SVHN is a real-world image dataset for developing machine learning and object
recognition algorithms with minimal requirement on data preprocessing and
formatting. It can be seen as similar in flavor to MNIST(e.g., the images are of small
cropped digits), but incorporates an order of magnitude more labeled data (over
600,000 digit images) and comes from a significantly harder, unsolved, real world
problem (recognizing digits and numbers in natural scene images). SVHN is
obtained from house numbers in Google Street View images.

Result Method Venue Details
1.69% Generalizing Pooling Functions in Convolutional I8 AISTATS Details
Neural Networks: Mixed, Gated, and Tree 2016
1.76% Competitive Multi-scale Convolution > arXiv 2015
1.77% Recurrent Convolutional Neural Network for Object » CVPR 2015 Details
Recognition
1.81% Batch-normalized Maxout Network in Network > arXiv 2015 Details
1.92% Deeply-Supervised Nets > arXiv 2014
1.92% Multi-Loss Regularized Deep Neural Network > CSVT 2015 Details
1.94% Regularization of Neural Networks using DropConnect » ICML 2013
1.97% On the Importance of Normalisation Layers in Deep js arXiv 2015
Learning with Piecewise Linear Activation Units
2% Estimated human performance > NIPS 2011 Details
2.15% BinaryConnect: Training Deep Neural Networks with » NIPS 2015

binary weights during propagations



ImageNet

Large Scale Visual Recognition Challenge

One of the largest and the most challenging computer vision challenge.
14,197,122 images

Five hundred images per category

Very useful resource for researchers


http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html

AlexNet

Presented by Alex Krizhevsky et al. in NIPS 2012
Won the ILSVRC 2012 challenge

Classify the 1.2 million high-resolution images into the 1000 different classes, and
in, we achieved top-1 and top-5 error rates of 37.5% and 17.0% in the ImageNet
LSVRC-2010 contest

60 million parameters and 650,000 neurons, consists of five convolutional layers,
some of which are followed by max-pooling layers, and three fully-connected layers
with a final 1000-way softmax

"Dropout” to reduce overfitting in the fully-connected layers

Achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by
the second-best entry in the ILSVRC-2012 competition
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896-43,264—
4096-4096-1000.



GoogLenet

‘The new state of the art for classification and detection in the Im
* Google team

*A 22 layers deep network

‘Increasing the depth and width of the network

*keeping the computational budget constant

"Going Deeper with Convolutions”




SoWhat?

Deep learning (Convolutional Neural Network) is best performing image-
classification method for ImageNet

What about Object Recognition/Detection?
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PASCAL VOC Challenge datasets

PASCAL Visual Object Classes Challenge

Provides standardized image data sets for object class recognition
Enables evaluation and comparison of different methods

Ran challenges evaluating performance on object class recognition

20 classes, ~10K images, ~25K annotated objects

Evaluation: e Average Precision (AP) per class ® mean Average Precision
R-CNN

DPM



Object Detection

Localizing objects
Classify objects

Training data can be insufficient



R-CNN: Region proposals + CNN

ﬂl aeroplane? no.

é :
%9 person” ves.
|

CNNS

--------------------

q[ tvmonitor? no.
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DPM

Deformable Parts Mode
- The winner forVOC 07,08,09
PEDRO F. FELZENSZWALB

Visual Object Challenge "Lifetime Achievement” Prize, 2010

- Advanced version of "HOG+SVM”




HOG

The histogram of oriented gradients

The technique counts occurrences of gradient orientation in localized portions of
an image

Navneet Dalal and Bill Triggs, researchers for the French National Institute for
Research in Computer Science and Automation (INRIA), first described HOG
descriptors at the 2005 Conference on Computer Vision and Pattern Recognition
(CVPR)

Pedestrian detection (HOG+SVM)



Gradients

HOG

f(x,yv)

f(x+1,vy)

(x, y+1)
f(x+1, v+1) ’

1 |10

0| -1
0 1
-1 0

Magnitude = J xGradient * xGradient + yGradient * yGradient

Theta = tan™}(yGradient/xGradient)










HOG

+ The local object appearance and shape within an image can be described by the
distribution of intensity gradients or edge directions.

« Theimage is divided into small connected regions called cells, and for the pixels
within each cell, a histogram of gradient directions is compiled. The descriptor is
then the concatenation of these histograms.

- For improved accuracy, the local histograms can be contrast-normalized by
calculating a measure of the intensity across a larger region of the image, called a
block, and then using this value to normalize all cells within the block. This
normalization results in better invariance to changes in illumination and shadowing.






Gamma/Colour Normalization

For better invariance to illumination, shadowing,nosing, it is also useful to contrast-

normalize the local responses before using them

I(x,y) = I(x’y)gamma




Gradient Computation

For color images, we calculate separate gradients for each color channel, and take
the one with the largest norm as the pixel’s gradient vector

G(xy)=H(x+ly)-H(x-1y)
G xy)=H(x,y+)-H(x,y-1)

G(x,y) = |G, (x,)* +C, (x,)*
o 4,G(x5)
a(x,y) = tan (_G,(x.y))
—




Spatial / Orientation Binning

- Each pixel calculates a weighted vote for an edge orientation histogram channel
based on the orientation of the gradient element centered on it, and the votes are
accumulated into orientation bins over local spatial regions




Spatial / Orientation Binning

- Increasing the number of orientation bins improves performance significantly up
to about g bins, but makes little difference beyond this

+  Cells can be either rectanqular or radial (log-polar sectors).

DET - effect of number of orientation bins

false positives per window (FPPW)
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Normalization and Descriptor Blocks

Normalize all cells across block, and then using this value to within the block
Better invariance to changes in illumination and shadowing.

Optimal setting for Pedestrian detection : 6*6/cell, 3*3/block, gbins

=3
Cam

—DIOCK_oy




8*8/cell

2*2/block

g bins

Stepsize:8

Image size 64%128

HOG Vector=?-D

HOG

4,*9=36/block
7 windows in X
15 windows in'y

36*7*15=3780-D



SIFT

Scale-invariant feature transform (or SIFT)
Published by David Lowe in 1999, ICCV
SIFT can robustly identify objects even among clutter and under partial occlusion

Invariant to uniform scaling, orientation, and partially invariant to affine distortion
and illumination changes

Uses a much larger number of features from the images to reduces the
contribution of the errors

SIFT-like GLOH, PCA-SIFT...

For scale changes in the range 2-2.5 and image rotations in the range 30 to 45
degrees, SIFT and SIFT-based descriptors again outperform other contemporary
local descriptors with both textured and structured scene content.



ldea of SIFT

Image content is transformed into local feature coordinates that are invariant to
translation, rotation, scale, and other imaging parameters

AR
-‘.‘A

S

-

SIFT Features




Scales Space

Scale-space theory is a framework for multi-scale signal representation developed
by the computer vision, image processing and signal processing communities with
complementary motivations from physics and biological vision.

It is a formal theory for handling image structures at different scales, by
representing an image as a one-parameter family of smoothed images, the scale-
space representation, parametrized by the size of the smoothing kernel used for

suppressing fine-scale structures.

The parameter t inthis family is referred to as the scale parameter, with the
interpretation that image structures of spatial size smaller than about have 4
largely been smoothed away in the scale-space level at scale t.



Scale-space representation L(x, y; t)at scale Scale-space representation L(x, y; t)at scale
t = () comesponding to the onginal image f =1

Scale-space representation L(_r_ y; ) at scale Scale-space representation L(,r‘ y; ) at scale
t=4 t =16

Scale-space representation (x| y; 1) at scale Scale-space repeesentation (x| y; {) at scale

t =64 t = 256



Gaussian Blur

[ (x-x)+(-y))
-exp| - ~ |
2m0° 20° )

G(x.y.0)=

L
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L(x,y.0)=G(x.y.0)*I(x.y) Original
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Gaussian Blur




Image Pyramids

o And so on.

3" level is derived from the
2"d level according to the same
funtion

2nd level is derived from the
original image according to
some function

- Bottom level is the original image.




Example: Subsampling

1/2



DoG (Difference of Gaussian)

Qo

o

Octave 5

Octave 4

Octave 3

Octave 2

Octave |



Lowe’s Pyramid Scheme
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Difference of |
Gaussian Gaussian (DOG)



Key Point Localization

» Detect maxima and
minima of difference-of-
Gaussian in scale space

» Each point is compared
to its 8 neighbors in the
current image and 9
neighbors each in the
scales above and below

A ’ L L L Lz

7’ L A AT
o L S s
L s

£ L L

For each max or min found,
output is the location and
the scale.



Orientation Assignment

Each key point has : :
m(x,y) = JLc+1,0) = Lx=1, 1)) + (L(x, y+1) - L(x,y -1)°

-Location (Lx,y+D-L(x,y-1)
é(x, y) = arctan
\L(x+L»-L(x-1y))

‘Scale

‘Orientation Lx.y)=G(x.y.0)*I(x.y)

Next is to compute a descriptor for the local image region about each keypoint



Keypoint Descriptors

- Shown with 2 X 2 descriptors over 8 X 8
- In experiments, 4x4 arrays of 8 bin histogram is used,

- Atotal of 32features for one keypoint
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noint descriptor

@ Keypoint
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DPM

Deformable Parts Mode

The winner forVOC 07,08,09

PEDRO F. FELZENSZWALB

Visual Object Challenge "Lifetime Achievement” Prize, 2010

Advanced version of "HOG+SVM”
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DPM

- Part-Based models
- Parts —local appearance templates

»  Springs — spatial connections between parts




Part configuration score function

spring costs

score(Py, ..., Pn) = Zmi(pi) — Z dij(pivpj)
i=1

(i,j)€E
Part match scores

test image “star” model detection






feature map at twice the resolution

.......

:::::

response of root filter

color encoding of filter
response values

— combined score of

low value high value



Questions:
e Whatisit?

e Whereis it?

Object Recognition




Exhaustive Search

Exhaustive search:

 Windows to evaluate: 100,000 — 1,000,000
* Simple-to-compute features

 Weak classifiers




So what?

Deep learning (Convolutional Neural Network) is best performing image-
classification method for ImageNet

- What about Object Recognition/Detection?

background
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Selective Search

background

otorbike




Selective Search

Goals:

1. Detect objects at any scale.

a. Hierarchical algorithms are good at this.
2. Consider multiple grouping criteria.

a. Detect differences in color, texture, brightness, etc.
3. Be fast.

Idea: Use bottom-up grouping of image regions to generate a hierarchy of
small to large regions.



Segmentation as Selective Search

Selective search based on hierarchical grouping
» Initial segments from oversegmentation [Felzenszwalb2004]
« Group adjacent regions on region-level similarity:
« Texture (gradient orientations)
* Region size
» Consider all scales of the hierarchy




Selective Search

Step 1: Generate initial sub-segmentation
Goal: Generate many regions, each of which belongs to at most one object.

Input Iage Candidate objects



Efficient Graph-Based Image
Segmentation

Published y Felzenszwalb in 1JCV 2004
Image vs Graph

MST (Minimun Spanning Tree)

A spanning tree of a connected, undirected graph. It connects all the vertices together with
the minimal total weighting for its edges.




Definition

We define the internal difference of a component C' C V' to be the largest weight
in the minimum spanning tree of the component, M ST(C, E). That is,

Int(C) = X w(e) . (1)

One intuition underlying this measure is that a given component ' only remains
connected when edges of weight at least Int(C) are considered.

We define the difference between two components C'y.C; C V' to be the minimum
weight edge connecting the two components. That is.

Dif(C.C)= _ min  w((v.vy)). (2)

vleCl evjec"z s(vt!vj )GE



Predicate for Segmentation

C
Predicate D determines whether there is a boundary for @
segmentation. o
true if Dif(Cl, C2) > MInt(C,, Cr)
D(Cy, Cr) = .
false otherwise -
Dif(Cy, Cy) = min w(v;, vj).

v,€Cy,v;€Cy,(v;,v))EE

The different between two components is the minimum weight
edge that connects a node v. in component C, to node V, in C,



Predicate for Segmentation

Predicate D determines whether there is a boundary for @

segmentation.
true if Dif(Cl, C2) > MInt(C,, Cr)

D(C,, Cy) =
(€1, €) false otherwise

Dif(Cy, Cy) = min w(v;, vj).

v;,€Cy,v;€C,,(v;,v))EE

Int(C) = eeul?r%.s) w(e).

Int(C) is to the maximum weight edge that connects two nodes in
the same component.



Predicate for Segmentation

Predicate D determines whether there is a boundary for @

segmentation.
true if Dif(Cl, C2) > MInt(C,, Cr)

D(C,, Cy) =
(€1, €) false otherwise

Dif(Cy, Cy) = min w(v;, vj).

v;,€Cy,v;€C,,(v;,v))EE

Int(C) = CGMI?T%.E) w(e).

Mint(C,, C»)

= min(Int(C,) + ©(C)), Int(C>) + 1(Cy)). where t(C) =k/|C|



Predicate for Segmentation

C,
Predicate D determines whether there is a boundary for @ @

segmentation. £ DIf(Cy. Cp) > MIniCy. Cs) o
true if Dif(Cy, C2) > Mint(C,, C; 0

D(C,, Cy) =
(€1, €) false otherwise

C

Where

Dif(C1, CQ) Is the difference between two components.

MiInt(C., C,) is the internal different in the components C, and C,

MiInt(Cy,C3) = min(Int(C) + 7(Ch ). Int(Cy) + 7(C3)).

7(C) = k/|C|



Predicate for Segmentation

Mint(C,, Cy)

= min(Int(C)) + 7(C)), Int(C3) + t(C»)). where (C) = k/|C]|

T(C) sets the threshold by which the components need to be different from
the internal nodes in a component.

Properties of constant k:

e Ifkislarge, it causes a preference of larger objects.
e k does not set a minimum size for components.

@ small k large k



Algorithm 1 Segmentation algorithm.

The input is a graph G = (V. E), with n vertices and m edges. The output is a
segmentation of V' into components S = (C.....C,).

0. Sort E into © = (0y.....0y). by non-decreasing edge weight.

1. Start with a segmentation 59, where each vertex v; is in its own component.

2. Repeat step 3 forg=1,...,m.

3. Construct S? given S*! as follows. Let v; and v; denote the vertices connected
by the ¢g-th edge in the ordering, i.e., o, = (v;,v;). If v; and v; are in disjoint
components of S9! and w(o,) is small compared to the internal difference of
both those components, then merge the two components otherwise do nothing.
More formally, let C¢~" be the component of S9! containing v; and C}"l the
component containing v;. If C#~' # C;-’" and w(o,) < MI nt(C}"',C}’") then
S9 is obtained from S9! by merging C{~" and C7~'. Otherwise S9 = S9-1.

4. Return S = 5™,



Algorithm

§0 %
90

0.

1.

2.
3.

Sort E into 7 = (oy, ..., 0m), by non-decreasing
edge weight.

Start with a segmentation $% where each vertex v;
is in its own component.

Repeatstep3 forg=1,...,m

Construct §9 given S9! as follows. Let v; and
v; denote the vertices connected by the g-th edge
in the ordering, i.e., o, = (v;,v;). If v; and v;
are in disjoint components of S~ and w(o,) is
small compared to the internal difference of both
those components, then merge the two components
otherwise do nothing. More formally, let C;~ ' be
the component of S9~! containing v; and C;’
the component contalmng v IfCI" # C" and
w(o,) < MInC?™', C?” ‘) then S7 is obtained
from $9~! by merging C?~' and C;?" . Otherwise
§9 = §971,

4. Return § = S™.



Algorithm

smallest

“8o 9
90

0.

1.

2.
3.

Sort E into 7 = (oy, ..., 0m), by non-decreasing
edge weight.

Start with a segmentation $% where each vertex v;
is in its own component.

Repeatstep3 forg=1,...,m

Construct §9 given S9! as follows. Let v; and
v; denote the vertices connected by the g-th edge
in the ordering, i.e., o, = (v;,v;). If v; and v;
are in disjoint components of S~ and w(o,) is
small compared to the internal difference of both
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Selective Search

Step 2: Recursively combine similar regions into larger ones.

Greedy algorithm:

1. From set of regions, choose two that are most similar.
2. Combine them into a single, larger region.
3. Repeat until only one region remains.

This yields a hierarchy of successively larger regions, just like we want.



Selective Search

Step 2: Recursively combine similar regions into larger ones.
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Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {ry,---,r,} using [13]

Initialise similarity set S =0

foreach Neighbouring region pair (r;,r;) do
Calculate similarity s(r;,r;)

\\ S= SUS(I’,',I’,')

while S # 0 do
Get highest similarity s(r;, ;) = max(S)
Merge corresponding regions r; = r;Ur;
Remove similarities regarding r; : S = S\ s(r;.r.)
Remove similarities regarding r; : S = S\ s(r,.r;)
Calculate similarity set S; between r; and its neighbours
S=SUS,

- R=RUr,

Extract object location boxes L from all regions in R




Similarity
What do we mean by “similarity”?

Two-pronged approach:

1. Choose a color space that captures interesting things.
a. Different color spaces have different invariants, and different
responses to changes in color.
2. Choose a similarity metric for that space that captures everything we're
interested: color, texture, size, and shape.



Similarity

Similarity Measures: Color Similarity

Create a color histogram C for each channel in region r.
In the paper, 25 bins were used, for 75 total dimensions.

We can measure similarity with histogram intersection:

n
scolour(riarj) - Z min(cf‘(ac/_;)
k=1




Similarity
Similarity Measures: Texture Similarity

Can measure textures with a HOG-like feature:

1. Extract gaussian derivatives of the image in 8
directions and for each channel.

2. Construct a 10-bin histogram for each, resulting in a
240-dimensional descriptor.

Stexture (i rj Z min(z




Similarity
Similarity Measures: Size Similarity

We want small regions to merge into larger ones, to create
a balanced hierarchy.

Solution: Add a size component to our similarity metric,
that ensures small regions are more similar to each other.

size(r;) + size(r;)
size(im)

Ssize(riarj) =1-




Similarity

Similarity Measures: Shape Compatibility

We also want our merged regions to be cohesive, so we
can add a measure of how well two regions “fit
together”.

size(BB;;) — size(r;) — size(r;)
size(im)

ﬁll(r,-, I‘j) =1




Similarity

Final similarity metric:

We measure the similarity between two patches as a linear combination of
the four given metrics:

S(I‘,',I‘j) = alscolour(riarj) +a2stexture(riarj) +

a3Ssize(ris7'j) +aas fin (ri, rj),

Then, we can create a diverse collection of region-merging strategies by
considering different weighted combinations in different color spaces.

where q; € {0.1} denotes if the similarity measure is used or not



Selective Search

Step 3: Use the generated regions to produce candidate object locations.

Input Image
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Deep Learning is back!

UToronto “SuperVision” CNN
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When labeled training data are scarce, supervised pre-training for an auxiliary task,
followed by domain-specific fine-tuning, boosts performance significantly.

Improves mean average precision (mAP) by more than 5o percent relative to the
previous best result on VOC



Object Recognition
using Deep Learning

Image features are the engine of recognition.

R-CNN: Regions with CNN features

warped region ﬂ‘ acroplane? no.
"""""""""" ',- :
E-D person? yes.
I it Wi "SR CNNIN, :
tvmonitor? no

1. Input 2. Extract fegion 3. Compute 4. Classify
image  proposals (~2k) CNN features regions



Region Proposal

Sliding window + CNN = High computational cost

Selective Search!

.R-CNN Regtons with CNN features
$ \\’-glrpcd rcglon ﬂlderoplzmc? no.

--------------------

=B person? yes.
ke S S CNN:N
2 tv momtor" no.
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Region Warping

Regardless of size and aspect ratio

Warp to 224*224 patch

s N,
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Object Proposal Transformations

(B) (D) (A)

(€)

-
-

(A)

(B) (€ (D)

Fig. 7. Different object proposal transformations. (A) the original object
proposal at its actual scale relative to the transformed CNN inputs; (B)
tightest square with context; (C) tightest square without context; (D)
warp. Within each column and example proposal, the top row corre-
sponds to p = 0 pixels of context padding while the bottom row has
p = 16 pixels of context padding.



Feature Extraction

Extracts a fixed-length feature vector From each proposal using a CNN
4096-dimensional feature vector

their own implementation of the CNN of (Krizhevsky et al. ECCV 2012)
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Inference

Then classifies each region with category-specific linear SVMs

Training + Testing using SVMs (with negative mining)

Efficient: shared CNN parameters + low dimensional features
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Training

Supervised Pre-Training
Pre-trained the CNN on ILSVRC2012 classification
Domain-Specific Fine-Tuning
(N +1)-way classification
0.5 loU overlap with a ground-truth boxas positives
Learning rate of 0.001
32 positive and 96 background to construct a minibatch of size 128
Object Category Classifiers
SVM per class
Only ground truth as positive
Less then 0.3 loU overlap as negative (decrease mAP by 5 points if 0.5)

Drop from 54.2 to 50.9 percent mAP in 21-way softmax in VOC 2007



Testing

Run selective search to extract around 2,000 region proposals ( “fast mode”)
Warp each proposal and forward propagate it through the CNN
Score each extracted feature vector using the SVM trained for that class.

Greedy non-maximum suppression (for each class independently)

Rejects a region if it has an intersection-over-union (loU) overlap with a higher scoring
selected region larger than a learned threshold

Bounding box regression

Use a simple bounding-box regression stage to improve localization performance



Results Analysis

* Comparison with other method
* RunTime Analysis

* Ablation study



TABLE 2
Detection Average Precision (Percent) on VOC 2007 Test

VOC2007 test  aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
R-CNN poolg 518 602 364 278 232 528 606 492 183 478 443 408 566 587 424 234 461 367 513 557 442
R-CNN fey 593 618 431 340 251 53.1 606 528 217 478 427 478 525 585 446 256 483 340 33.1 580 462
R-CNN fey 576 579 385 318 237 512 589 514 200 505 409 460 516 559 433 233 481 353 510 574 447
R-CNNFTpooly, 582 633 379 276 261 541 669 514 267 555 434 431 577 590 458 281 508 406 53.1 564 473
R-CNN FT feg 635 660 479 37.7 299 625 702 602 320 579 470 535 60.1 642 522 313 550 500 57.7 630 53.1
R-CNNFTfe; 642 697 500 419 320 626 710 607 327 585 465 561 606 668 542 315 528 489 579 647 542
R-CNNFTfc; BB 68.1 728 568 430 368 663 742 676 344 635 545 612 69.1 686 587 334 629 511 62.5 648 585
DPM v5 (23] 332 603 102 161 273 543 582 230 200 241 267 127 581 482 432 120 211 361 46.0 435 337
DPM ST [61] 238 582 105 85 271 504 520 73 192 228 181 80 559 448 324 133 159 228 4.2 449 291
DPMHSC[62] 322 583 115 163 306 499 548 235 215 277 340 137 581 516 399 124 235 344 474 452 343

Rows 1-3 show R-CNN performance without fine-tuning. Rows 4-6 show results for the CNN pre-trained on ILSVRC 2012 and then fine-tuned (FT) on VOC
2007 tramoal. Row 7 includes a simple bounding-box regression stage that reduces localzation errors (Section 7.3). Rows 8-10 present DPM methods as a strong
baseline. The first uses only HOG, while the next two use different feature learning approaches to augment or replice HOG. All R-CNN results use TorontoNet.



TABLE 1
Detection Average Precision (Percent) on VOC 2010 Test

VOC2010test  aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
DPM v5 [23] 492 538 131 153 355 534 497 270 172 288 147 178 464 512 477 108 342 207 438 383 334
UVA [21] 562 424 153 126 218 493 368 461 129 321 300 365 435 529 329 153 411 318 470 448 351
Regionlets [54] 650 489 259 246 245 561 545 512 17.0 289 302 358 402 557 435 143 439 326 540 459 397
SegDPM [57] 614 534 256 252 355 517 506 508 193 338 268 404 483 544 471 148 3BT 350 528 431 404
R-CNN T-Net 67.1 641 467 320 305 564 572 659 270 473 409 666 578 659 536 267 565 381 528 502 502
R-CNNT-NetBB 718 658 530 368 359 597 600 699 279 506 414 700 620 .0 581 295 594 393 612 524 537
R-CNNO-Net 765 704 580 402 396 618 637 810 362 645 457 805 719 743 606 315 647 525 646 572 598
R-CNNO-Net BB 793 724 63.1 440 444 646 663 849 388 673 484 823 750 767 657 358 662 548 69.1 588 629

T-Net stands for TorontoNet and O-Net for OxfordNet (Section 3.1.2). R<CNNss are most directly comparable to UV A and Regionlets since all methods use selec-
tive search region proposals. Boundmg-box regression is described in Section 7.3. At publication time, SegDPM wus the top-performer on the PASCAL VOC

leaderboard. DPM and SegDPM use context rescoring not used by the other methods.

¢DPM and all R-CNNSs use additional traiming data.



Results

ILSVRC2013 detection test set mAP ILSVRC2013 detection test set class AP box plots
*R-CNN BB : 1 ® 1
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Fig. 3. (Left) Mean average precision on the ILSVRC2013 detection test set. Methods preceeded by * use outside training data (images and labels
from the ILSVRC classification dataset in all cases). (Right) Box plots for the 200 average precision values per method. A box plot for the post-com-
petition OverFeat result is not shown because per-class APs are not yet available. The red line marks the median AP, the box bottom and top are the
25th and 75th percentiles. The whiskers extend to the min and max AP of each method. Each AP is plotted as a green dot over the whiskers (best
viewed digitally with zoom).



Results Analysis

R-CNNs vs OverFeat detection system

« Usesasliding-window CNN for detection

* Atop-performing method on the ILSVRC 2013 detection challenge

 mAP of 31.4 percent vs 24.3 percent on the 200-class

R-CNNs vs The popular deformable part models

 mAP of 62.9 percent vs 33.4. percent on VOC2010

R-CNNs vs Same region proposals with a spatial pyramid and bag-of-visual words

 mAP of 62.9 percent vs 35.1 percent on VOC2010



Run-Time Analysis

Two properties make detection efficient

All CNN parameters are shared across all categories

The feature vectors computed by the CNN are low-dimensional when compared to
other common approaches (360 k versus 4 k-dimensional)

Computing region proposals and features

The only class specific computations are dot products between features and SVM
weights

Around 10 sfimage on a GPU or 53 s/image on a CPU(TorontoNet)

Takes only 30 ms longer to detect 200 classes than 20 classes on a CPU
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Ablation Study

With or without fine-tuning

Last three layers: pools, fCg and fc;

Color helps (40.1% -> 43.4% VOC 2007 on fcg)

POOls uses only 6% parameters (possible to use DPM on top)

VOC 2007 test | aero bike bird boat bowle bus car cat chair cow table dog horse mbike person plant sheep sofa train v |mAP
R-CNN pool, 493 58.0 297 222 206 47.7 568 436 160 397 377 396 496 556 375 206 405 374 478 51.3|40.1
R-CNN fcg 56.1 588 344 296 226 504 580 525 183 40.1 413 468 495 535 397 230 464 364 508 590|434
R-CNN fc; 53.1 589 354 296 223 500 57.7 524 19.1 435 408 436 476 540 391 230 423 336 514 552|426
R-CNN FT poolg | 55.6 575 31.5 23.1 232 463 59.0 492 165 43.1 378 397 515 554 404 239 463 379 49.7 541|421
R-CNNFTfcg |61.8 62.0 388 357 294 525 619 539 226 49.7 405 488 499 573 445 285 504 40.2 543 61.2|47.2
R-CNN FT fc; |60.3 625 41.4 379 290 52.6 61.6 563 249 523 419 4811 543 570 450 269 518 38.1 56.6 62.2| 48.0
DPM HOG [1V] |33.2 603 102 16.1 273 543 582 230 20.0 24.1 267 127 58.1 482 432 120 21.1 36.1 46.0 435|337
DPM ST [V] 238 582 105 85 27.1 504 520 192 228 18.1 8.0 559 448 324 133 159 228 46.2 449 29.1
DPM HSC [2] 322 583 115 163 30.6 499 548 235 215 27.7 340 137 581 516 399 124 235 344 474 452|343



Latest Versions

Fast R-CNN

» Afast framework for object detection with deep ConvNets
« ox fasterthan traditional R-CNN

* Involved ROI pooling layer to speed up

» Reduces detection times (excluding region proposal computation) to 5o to 300 ms per
image

Faster R-CNN
 Runs 200x faster than R-CNN and 10x faster than SPPnet at test-time
« Asignificantly higher mAP on PASCALVOC than R-CNN

* Region proposal network
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Implementation

*Convolution Architecture For Feature Extraction
*Written in C++
*Seamless switch between CPU and GPU


http://caffe.berkeleyvision.org/

Implementation

M)
iid
bhh

Person Score=1.942 Bicycle Score=0.439


https://github.com/rbgirshick/rcnn
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Latest Applications

DeepDream

A computer vision program created by Google which uses a convolutional neural
network to find and enhance patterns in images via algorithmic




Latest Applications

Deep Artist

Neural Algorithm Can ‘Paint’ Photos In Style Of Any Artist From Van Gogh To
Picasso

Can morph an image to resemble a painting in the style of the great masters

The system uses neural representations to separate and recombine content and
style of arbitrary images, providing a neural algorithm for the creation of artistic

Images



A Neural Algorithm of Artistic Style




The Shipwreck of
the Minotaur by
I.M.W. Turner, 1805

Der Schrei

The Starry Night by by Edvard
Vincent van Gogh, Munch, 1893

1889
Composition
VII by
E Femme nue assise K\a/\r/f:l?rflslﬁ
by Pablo Picasso, 1913 y

1910
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