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What Topic? 
• Machine Learning 

• Regression 

• Bayesian ML 

• Bayesian Regression 

• Bayesian Non-parametric 

• Gaussian Process (GP) 

• GP – Regression 

• GP – Regression with Squared Exponential Kernel 
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Regression 
• Predict real value as output 

• Learn underlying target function 

• Some data samples of target function 

(with noise) 

• E.g. Predict Credit Score 

• Estimate model parameters from data 

points. 

• 𝑦 = 𝒘 ∙ 𝒙, estimate 𝒘, to minimize loss 
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Paper Titles 
• Gaussian process classification for segmenting and annotating sequences 

• Discovering hidden features with Gaussian processes regression 

• Active learning with Gaussian processes for object categorization 

• Semi-supervised learning via Gaussian processes 

• Discriminative Gaussian process latent variable model for classification 

• Computation with infinite neural networks 

• Fast sparse Gaussian process methods: The informative vector machine 

• Approximate Dynamic Programming with Gaussian Processes 
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Paper Titles 
• Learning to control an octopus arm with Gaussian process temporal 

difference measure 

• Gaussian Processes and Reinforcement Learning for Identification and 

Control of an Autonomous Blimp 

• Gaussian process latent variable models for visualization of high 

dimensional data 

• Bayesian unsupervised signal classification by Dirichlet process mixtures of 

Gaussian processes 
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Bayesian ML 
• Probability Theory 

• What makes function a Prob. Dist? 

• Estimate distribution over model parameters, 𝜽, that generated 𝑫 

• AKA function or hypothesis 

• Important distributions 

• Prior:  p(𝜽)  

• Data Likelihood: p(𝑫|𝜽) 

• Posterior: p 𝜽 𝐃 =  
𝟏

𝒑(𝑫)
 ∗ p 𝑫 𝜽 ∗ p(𝜽)   

• Posterior Predictive: 𝑝 𝑦 𝒙 =   𝑝 𝑦 𝒙, 𝜽 p 𝜽 𝐃 𝒅𝜽  

• Let all possible functions (one per 𝜽)  vote for the correct value 
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Running Example 
• Predict weight given height 

• Lbs & inches 

• Let’s use a linear model with Gaussian Noise 

• 2 parameters: 𝑚, 𝜎2 

• Let’s assume that 𝜎2 = 5 

• 𝑊𝑒𝑖𝑔ℎ𝑡 ~ 𝑁 𝑚 ∗ ℎ𝑒𝑖𝑔ℎ𝑡, 𝜎2  

• p 𝑥;  𝜇, 𝜎2 = 
1

2𝜋𝜎
𝑒
− 𝑥 − 𝜇 2

𝜎2  

• Let’s use a prior for 𝑚 
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Prior 

GENERAL 

• p(𝜽) 

• Your own bias about what 

makes a good solution 

• Score solutions without 

seeing data 

• Encoded as a distribution 

over parameters 

EXAMPLE 

• Let’s get 5 good guesses about 

what m is 

• Units are lbs/inch 

• 𝑝 𝑚 = 𝑔𝑢𝑒𝑠𝑠𝑖 = 0.2 

• Other possible m get 0 prob. 

under our prior 

• Normally use a prior which assigns 
everything a non-zero probability. 
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Data Likelihood 

GENERAL 

• p(𝑫|𝜽) 

• 𝜽 describes the process of 

creating 𝑫 

• Assuming 𝜽 reflects reality, out 

of all the 𝑫’, how likely is the 𝑫 

we got? 

• Maximum Likelihood Estimation 

EXAMPLE 

• Data: Height -> Weight (ℎ𝑖 → 𝑤𝑖) 

• 70in -> 150lbs 

• 80in -> 200lbs 

• 60in -> 130lbs 

• p 𝑫 m, 𝜎2 =  𝑁(𝑤𝑖; ℎ𝑖 ∗ 𝑚, 𝜎
2)

|𝐷|
𝑖=1  

• The m that maximizes ^ is the MLE 
solution. 

• Is it one of our 5 guesses?   

• No.  What is it? 

• 𝑚 =
686

298
= 2.302 
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Posterior 

GENERAL 

• p 𝜽 𝐃 =  
p 𝑫 𝜽 ∗p(𝜽) 

𝒑(𝑫)
 

• Bayes Theorem 

• Combines Prior with Data Likelihood 

• Often find 𝜽 that maximizes p 𝜽 𝐃  

• Maximum a posteriori (MAP) 
estimate 

• Can ignore 𝒑(𝑫) in this case 

EXAMPLE 

• Plug in each of our guesses 

for m into the numerator 

• Get denominator by 
 𝑝 𝑚 = 𝑔𝑢𝑒𝑠𝑠𝑖|𝑫 = 1 

• Guess with highest 

probability is the MAP 

estimate 
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Posterior Predictive 

GENERAL 

• 𝑝 𝑦 𝒙 =   𝑝 𝑦 𝒙, 𝜽 p 𝜽 𝐃 𝒅𝜽 

• Let all 𝜽 vote, weighted by posterior 

probability 

• Bayes Optimal Ensemble 

• Rarely tractable integral 

• MLE or MAP is easier 

• Really want:   argmaxy 𝑝 𝑦 𝒙  

• Can also do confidence intervals 

EXAMPLE 

• Given a test point height = 75in, 

predict weight 

• Using MLE? 

• Using MAP? 

• Posterior Predictive 

• Guess a weight and score it 

• Score weight using each of 5 m 

• Weight scores by p(m) 

• Iterate until argmaxw 𝑝 𝑤 ℎ  
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Other Regression Methods 
• Simple Linear Regression (LR) 

• 𝑦 = 𝒘 ∙ 𝒙  or in Bayesian Land: 𝑦 ~ 𝑁(𝒘 ∙ 𝒙, 𝜎2) 

• Ordinary Least Squares: find 𝒘 to minimize 𝑆𝑆𝐸 =   (𝒘 ∙ 𝒙 − 𝑦𝑡)
2 

• Equivalent to maximizing 𝑝 𝑫 =   𝑝 𝑦𝑡 𝒙,𝒘 =   𝑁 𝑦𝑡 𝒘 ∙ 𝒙; 𝜎2) 

• Closed form solution: 𝒘 = 𝑿𝑇𝑿 −1𝑿𝑇𝒚 

• Kernelized Linear Regression (KLR) 

• In LR, replace 𝒙 with φ(𝒙), where φ is a non-linear feature 

transform 

• Kernel trick allows you to do implicit φ 𝒙  for efficiency 

• E.g. Learn coefficients of order N polynomial 
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Other Regression Methods 
• Ridge Regression (RR) 

• Like LR, but with L2 weight penalty to encourage small weights 

• More robust to outliers (less overfit) 

• L2 weight penalty = Gaussian Prior on weights 

• 𝑤𝑖  ~ 𝑁(0, 𝜎
2)    =>   p 𝐰 ∝  𝑒

−𝑤𝑖
2

𝜎2    =>    −log p 𝐰 ∝   𝑤𝑖
2 

• Find 𝒘 to minimize Obj 𝐰 =   (𝒘 ∙ 𝒙 − 𝑦𝑡)
2 +  𝜆  𝑤𝑖

2 

• Lasso Regression (Lasso) 

• LR with L1 penalty  

• Laplacian Distribution Prior:   p 𝑤𝑖  ∝  𝑒−|𝑤𝑖| 

• Fewer non-zero weights (sparse) 
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Other Regression Methods 
• Bayesian Regression (BR) 

• Like RR, but estimate λ from data 

• Prior over the Prior 

• 𝑤𝑖  ~ 𝑁(0, 𝜎
2) but 𝜎2~ Γ(𝛼, 𝛽) 

• 𝛼, 𝛽 are user set 

• Automatic Relevance Determination (ARD) 

• Like BR, but 𝑤𝑖  ~ 𝑁(0, 𝜎𝑖) and 𝜎𝑖  ~ Γ(𝛼, 𝛽) 

• Each weight comes from different prior distribution 

• Good for feature selection 

CS 478 – INTRODUCTION 14 



Gaussian Process 
• GP = Stochastic Process where Random Variables are Gaussian 

Distributed 
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x = 1 

Distribution of f(1) 



Gaussian Process - MVN 
• Generalization of Multi-Variate Normal to ∞ dimensions 
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Gaussian Process - Background 
• First theorized in 1940s 

• Used in geostatistic and meterology in 1970s for time series 

prediction 

• Under the name kriging 
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Smooth Functions 
• How would you measure the smoothness of a function? 

• “Smooth” functions is a common prior or bias 

• Smoothness: function values close in input space should be 

similar 

• How similar is f(1) to f(1.1)?  

• Compared to f(1) to f(10)? 

• For any finite # of points, {𝒙𝒊}, can fit a MVN based on training set 

composed of smooth functions to learn (𝝁, 𝜮) 

• 𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 𝑓 ≔ 𝑝𝑀𝑉𝑁(𝑓 𝒙𝟎 , … 𝑓 𝒙𝒊 |𝝁, 𝜮) 

CS 478 – INTRODUCTION 18 



Dist. Over Functions 
• Functions  == infinite lookup table == infinite vector of values 

• Vector entries are value of function at some input 

• Problem with our MVN smoothness at finite # of points 

• Functions score well if not smooth between those points 

• GP solves this by being non-parametric 

• 𝜮 replaced by 𝑘(𝒙, 𝒙′) 

• 𝝁 replaced by 𝑚(𝒙) 

• GP is ∞ dimensions, but any finite subset of dimension is MVN 
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Covariance Function 
 

 

 

• 𝑘 𝒙𝒊, 𝒙𝒋  yields 𝜮 for MVN over any finite subset 𝑓(𝒙𝒊)   

• 𝜮𝒊𝒋 =  𝑘(𝒙𝒊, 𝒙𝒋) 

• ∀ 𝒙𝒊 , 𝑘(𝒙𝒊, 𝒙𝒋) must make 𝜮 Positive Definite  

• Otherwise MVN is not defined 

• Common to subtract out the mean function from train/test points 

• Less common to learn mean function from data 
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Covariance Functions 
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Covariance Functions 
• Learning in GP is finding hyperparameters that fit data well! 

• Many design choices: kernel, fixed, global, local, per-dimension 

• Math is messy 

• Do SGD on hyperparameters to maximize log probability of training data 

• Observation Noise 

• Universal hyperparameter 𝜎𝑛 is our estimate of how bad we 

measured the training targets 

• Similar to Bayesian LR 

• Helps prevent overfit 
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Hyperparameters 
Length-Scale 



Inference/Prediction 
• The joint distribution of training targets and test target is MVN 

 

 

 

 

• We condition the MVN on the observed training targets 

• Resulting conditional distribution is Gaussian 

• Use distribution mean/covariance for prediction 
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Magic Math From Wikipedia 

 

CS 478 – INTRODUCTION 25 



Discussion 

PROS 

• Learned function is smooth 

but not constrained by form 

• Confidence intervals 

• Good prior for other models 

• E.g. Bias N-degree polynomials 
to be smooth 

• Can do multiple test points 

that co-vary appropriately 

CONS 

• Math/Optimization is messy 

• Use lots of approximations 

• NxN Matrix inversion 

• Numerical Stability issues 

• Scalability in # instances 

issues like SVMs 

• High dimensional data is 

challenging 
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Implementation 

• Only compute 𝑲−𝟏 once using numerical stable methods 

• Cholesky decomposition: 𝑲 = 𝑳𝑳𝑻, where 𝑳 is lower triangular 

• For each test instance, compute covariance vector k* 

• 𝜎𝑛𝑰 is our observation noise added to raw k(X,X) 
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Example 
• Using a squared exponential kernel 

• 𝑘 𝒙, 𝒙′ = exp −0.5 ∗ 𝒙 − 𝒙′ 2  

• Data to the right 

• Task is to predict f(2) and f(4) 

• 𝜎𝑛 = 0.25 
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X  f(X) 

0    -5 

1    0 

2    ? 

3  5 

4  ? 



Example – Covariance Matrix 
• Begin by calculating covariance matrix 

• Use f(0), f(1), f(3) as dimensions of the MVN 

• 𝑘 0,1 = exp −0.5 1 − 0 2 = 𝑒−.5 

• 𝑘 0,3 = exp −0.5 3 − 0 2 = 𝑒−4.5 

• 𝑘 1,3 = exp −0.5 3 − 1 2 = 𝑒−2 

• 𝑘 𝑥, 𝑥 = exp −0.5 𝑥 − 𝑥 2 = 1 
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X  f(X) 

0    -5 

1    0 

2    ? 

3  5 

4  ? 𝑲 = 
1 𝑒−0.5 𝑒−4.5

𝑒−0.5 1 𝑒−2

𝑒−4.5 𝑒−2 1

  +  𝜎𝑛𝑰 



Example – Matrix Inversion 

or 
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X  f(X) 

0    -5 

1    0 

2    ? 

3  5 

4  ? 

𝑲 = 
1.25 0.607 0.011
0.607 1.25 0.135
0.011 0.135 1.25

 

Next step, invert K 

𝑲−𝟏 = 
1.049 −0.514 0.046
−0.514 1.061 −0.11
0.046 −0.11 0.812

 

𝑲 = 
1 𝑒−0.5 𝑒−4.5

𝑒−0.5 1 𝑒−2

𝑒−4.5 𝑒−2 1

+ 𝜎𝑛𝑰 



Example – Multiply by Targets 
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X  f(X) 

0    -5 

1    0 

2    ? 

3  5 

4  ? 

Need 𝑲−𝟏𝒕 

𝒕 =  
−𝟓
𝟎
𝟓
  

𝑲−𝟏𝒕 =  
−5.013
2.018
3.826

 

𝑲−𝟏 = 
1.049 −0.514 0.046
−0.514 1.061 −0.11
0.046 −0.11 0.812

 



Example – Predicting f(2) 
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X  f(X) 

0    -5 

1    0 

2    ? 

3  5 

4  ? 

Now need k* for f(2) 

• 𝑘 2,0 = exp −0.5 2 − 0 2 = 𝑒−2 

• 𝑘 2,1 = 𝑘 2,3 = 𝑒−0.5 

𝒌∗ = 
0.135
0.607
0.607

 k** = 1 (no obs noise) 

𝑲−𝟏𝒕 =  
−5.013
2.018
3.826
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Example – Predicting f(2) 

𝒌∗ = 
0.135
0.607
0.607

 

𝜇 = 𝒌∗𝑻𝑲−𝟏𝒕 = 2.866 

𝜎 = 𝑘∗∗ − 𝒌∗𝑻𝑲−𝟏𝒌∗ = 1 − 0.55 = 0.45 

𝒌∗𝑻𝑲−𝟏𝒌∗ =
−0.142
0.507
0.432

𝒌∗  

𝑲−𝟏 = 
1.049 −0.514 0.046
−0.514 1.061 −0.11
0.046 −0.11 0.812

 

𝑲−𝟏𝒕 =  
−5.013
2.018
3.826

 

= 0.550 
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Example – Predicting f(4) 

𝒌∗ = 
0.00033
0.011
.607

 

𝜇 = 𝒌∗𝑻𝑲−𝟏𝒕 = 2.341 

𝜎 = 𝑘∗∗ − 𝒌∗𝑻𝑲−𝟏𝒌∗ = 1 − 0.297 = 0.703 

𝒌∗𝑻𝑲−𝟏𝒌∗ =
0.023
−0.055
0.491

 𝒌∗= 0.297 

𝑲−𝟏 = 
1.049 −0.514 0.046
−0.514 1.061 −0.11
0.046 −0.11 0.812

 

𝑲−𝟏𝒕 =  
−5.013
2.018
3.826
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Example - Plot 

X  f(X) 

0    -5 

1    0 

2    2.8 

3  5 

4  2.3 



My Experiments 
• 1-D synthetic datasets generated with Gaussian noise 

• Linear Cubic 

• Periodic Sigmoid     Complex 

• 40 instances for training on the interval [-5,5] 

• Additive Gaussian noise with 𝜎 = 0.5 

• Test with 1000 evenly spaced instances without noise (MSE) 

• Use 3-fold CV on training data to set hyperparameters with grid-search 

• Compare with Kernelized Lasso regression and 7-NN with inverse 

distance weighting 

• Polynomial and Sine function basis 
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Results - Linear 𝑦 = 0.5𝑥 − 1 

Model MSE 

GP 0.009 

Lasso 0.019 

KNN 0.058 
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Results - Cubic 𝑦 = 0.02𝑥3 − 0.1𝑥2 + 0.5𝑥 + 2 

Model MSE 

GP 0.046 

Lasso 0.037 

KNN 0.101 



CS 778 – GAUSSIAN PROCESS 39 

Results - Periodic 𝑦 = 2 sin 1.75𝑥 − 1 + 1 

Model MSE 

GP 0.087 

Lasso 1.444 

KNN 0.350 
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Results - Sigmoid 𝑦 =
4

1.5 + 𝑒− .75𝑥−1
+ 1  

Model MSE 

GP 0.034 

Lasso 0.045 

KNN 0.060 
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Results - Complex 𝑦 = linear combination of 

previous functions 

Model MSE 

GP 0.194 

Lasso 0.574 

KNN 0.327 



Real Dataset 
• Concrete Slump Test 

• How fast does concrete flow given its materials? 

• 103 instances; 7 input features; 3 outputs; all real values 

• Input Features are kg per cubic meter of concrete 

• Cement, Slag, Fly Ash, Water, SP, Coarse Agg, Fine Agg 

• Output Variables are 

• Slump, Flow, 28-day Compressive Strength 

• Ran 10-fold CV with our three models on each output variable 
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Concrete Results 
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Slump 

Model Avg MSE +- Std 

GP 0.103 +- 0.037 

Lasso 0.072 +- 0.024 

KNN 0.067 +- 0.040 

Flow 

Model Avg MSE +- Std 

GP 0.091 +- 0.026 

Lasso 0.051 +- 0.020 

KNN 0.063 +- 0.036 

Strength 

Model Avg MSE +- Std 

GP 0.030 +- 0.015 

Lasso 0.004 +- 0.002 

KNN 0.008 +- 0.005 



Learning Hyperparameters 
• Find hyperparameters to maximize (log) probability of data 

 

• Can use Gradient Descent by computing for 

 

 

•         is just the elementwise derivative of the covariance matrix 

 which is the derivative of the covariance function 
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Learning Hyperparameters 
• For squared exponential covariance function in this form 

 

 

• We get the following derivatives 
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Covariance Function Tradeoffs 
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Classification 
• Many regression methods become binary classification by 

passing output through a sigmoid, Softmax, or other threshold 

• MLP, SVM, Logistic Regression  

• Same with GP, but scarier math 
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Classification Math 

Vote for  

class 1 

Weight 

for vote 

where 

GP prior 

𝑝 𝑦𝑖 𝑓𝑖 =  𝜎(𝑓𝑖) 

ignored 

Intractable! 
GP Regression 



Bells and Whistles 
• Multiple Regression – Assume correlation between multiple outputs 

• Correlated noise – especially useful for time 

• Training set values + derivatives (max or min occurs at…) 

• Noise in the x-direction 

• Mixture (ensemble) of local GP experts 

• Integral approximation with GP 

• Covariance over structured inputs (strings, trees, etc) 
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