Introduction to Gaussian Process

CS 778

Chris Tensmeyer

CS 478 – INTRODUCTION

What Topic?

- Machine Learning
- Regression
- Bayesian ML
- Bayesian Regression
- Bayesian Non-parametric
- Gaussian Process (GP)
- GP Regression

• GP – Regression with Squared Exponential Kernel

Regression

- Predict real value as output
- Learn underlying target function
- Some data samples of target function (with noise)
- E.g. Predict Credit Score
- Estimate model parameters from data points.
 - $y = w \cdot x$, estimate w, to minimize loss

Paper Titles

- Gaussian process classification for <u>segmenting and annotating sequences</u>
- Discovering <u>hidden features</u> with Gaussian processes regression
- <u>Active learning with Gaussian processes for object categorization</u>
- <u>Semi-supervised learning</u> via Gaussian processes
- Discriminative Gaussian process <u>latent variable model</u> for classification
- Computation with <u>infinite neural networks</u>
- Fast <u>sparse</u> Gaussian process methods: The <u>informative vector machine</u>
- Approximate <u>Dynamic Programming</u> with Gaussian Processes

Paper Titles

- <u>Learning to control an octopus arm</u> with Gaussian process temporal difference measure
- Gaussian Processes and <u>Reinforcement Learning</u> for Identification and Control of an Autonomous Blimp
- Gaussian process latent variable models for <u>visualization of high</u> <u>dimensional data</u>
- Bayesian <u>unsupervised signal classification</u> by Dirichlet process mixtures of Gaussian processes

Bayesian ML

- Probability Theory
 - What makes function a Prob. Dist?
- Estimate <u>distribution</u> over model parameters, θ , that generated D
 - AKA function or hypothesis
- Important distributions
 - Prior: p(*θ*)
 - Data Likelihood: $p(\boldsymbol{D}|\boldsymbol{\theta})$
 - Posterior: $p(\theta|D) = \frac{1}{p(D)} * p(D|\theta) * p(\theta)$
 - Posterior Predictive: $p(y|\mathbf{x}) = \int p(y|\mathbf{x}, \theta) p(\theta|\mathbf{D}) d\theta$
 - Let all possible functions (one per $\boldsymbol{\theta}$) vote for the correct value

Running Example

- Predict weight given height
 - Lbs & inches
- Let's use a linear model with Gaussian Noise
 - 2 parameters: m, σ^2
 - Let's assume that $\sigma^2 = 5$

• Weight ~
$$N(m * height, \sigma^2)$$

•
$$p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{\sigma^2}}$$

• Let's use a prior for *m*

Prior

GENERAL

- p(**θ**)
- Your own bias about what makes a good solution
- Score solutions without seeing data
- Encoded as a distribution over parameters

- Let's get 5 good guesses about what *m* is
 - Units are lbs/inch
 - $p(m = guess_i) = 0.2$
- Other possible *m* get 0 prob. under our prior
 - Normally use a prior which assigns everything a non-zero probability.

Data Likelihood

GENERAL

- p(**D**|**θ**)
- θ describes the process of creating D
- Assuming θ reflects reality, out of all the D', how likely is the D we got?
- Maximum Likelihood Estimation

- Data: Height -> Weight $(h_i \rightarrow w_i)$
 - 70in -> 150lbs
 - 80in -> 200lbs
 - 60in -> 130lbs
- $p(\mathbf{D}|m,\sigma^2) = \prod_{i=1}^{|D|} N(w_i; h_i * m, \sigma^2)$
- The *m* that maximizes ^ is the MLE solution.
 - Is it one of our 5 guesses?
 - No. What is it?

•
$$m = \frac{686}{298} = 2.302$$

Posterior

GENERAL

- $p(\boldsymbol{\theta}|\mathbf{D}) = \frac{p(\boldsymbol{D}|\boldsymbol{\theta})*p(\boldsymbol{\theta})}{p(\boldsymbol{D})}$
- Bayes Theorem
- Combines Prior with Data Likelihood
- Often find $\boldsymbol{\theta}$ that maximizes $p(\boldsymbol{\theta}|\mathbf{D})$
 - Maximum a posteriori (MAP) estimate
 - Can ignore p(D) in this case

- Plug in each of our guesses for *m* into the numerator
 - Get denominator by $\sum p(m = guess_i | \mathbf{D}) = 1$
- Guess with highest probability is the MAP estimate

Posterior Predictive

GENERAL

- $p(y|\mathbf{x}) = \int p(y|\mathbf{x}, \boldsymbol{\theta}) p(\boldsymbol{\theta}|\mathbf{D}) d\boldsymbol{\theta}$
- Let all θ vote, weighted by posterior probability
 - Bayes Optimal Ensemble
- Rarely tractable integral
 - MLE or MAP is easier
- Really want: $\operatorname{argmax}_{y} p(y|\boldsymbol{x})$
 - Can also do confidence intervals

- Given a test point height = 75in, predict weight
 - Using MLE?
 - Using MAP?
- Posterior Predictive
 - Guess a weight and score it
 - Score weight using each of 5 *m*
 - Weight scores by *p(m)*
 - Iterate until $\operatorname{argmax}_w p(w|h)$

Other Regression Methods

- Simple Linear Regression (LR)
 - $y = \mathbf{w} \cdot \mathbf{x}$ or in Bayesian Land: $y \sim N(\mathbf{w} \cdot \mathbf{x}, \sigma^2)$
 - Ordinary Least Squares: find w to minimize $SSE = \sum (w \cdot x y_t)^2$
 - Equivalent to maximizing $p(\mathbf{D}) = \prod p(y_t | \mathbf{x}, \mathbf{w}) = \prod N(y_t | \mathbf{w} \cdot \mathbf{x}; \sigma^2)$
 - Closed form solution: $w = (X^T X)^{-1} X^T y$
 - Kernelized Linear Regression (KLR)
 - In LR, replace x with $\varphi(x)$, where φ is a non-linear feature transform
 - Kernel trick allows you to do implicit $\varphi(x)$ for efficiency
 - E.g. Learn coefficients of order N polynomial

Other Regression Methods

- Ridge Regression (RR)
 - Like LR, but with L2 weight penalty to encourage small weights
 - More robust to outliers (less overfit)
 - L2 weight penalty = Gaussian Prior on weights
 - $w_i \sim N(0, \sigma^2) \implies p(\mathbf{w}) \propto \prod e^{\frac{-w_i^2}{\sigma^2}} \implies -\log(p(\mathbf{w})) \propto \sum w_i^2$
 - Find **w** to minimize $Obj(\mathbf{w}) = \sum (\mathbf{w} \cdot \mathbf{x} y_t)^2 + \lambda \sum w_i^2$
- Lasso Regression (Lasso)
 - LR with L1 penalty
 - Laplacian Distribution Prior: $p(w_i) \propto e^{-|w_i|}$
 - Fewer non-zero weights (sparse)

Other Regression Methods

- Bayesian Regression (BR)
 - Like RR, but estimate λ from data
 - Prior over the Prior
 - $w_i \sim N(0, \sigma^2)$ but $\sigma^2 \sim \Gamma(\alpha, \beta)$
 - α , β are user set

- Automatic Relevance Determination (ARD)
 - Like BR, but $w_i \sim N(0, \sigma_i)$ and $\sigma_i \sim \Gamma(\alpha, \beta)$
 - Each weight comes from different prior distribution
 - Good for feature selection

Gaussian Process

• GP = Stochastic Process where Random Variables are Gaussian Distributed

FIGURE 18.2 Left: 10 samples from the stochastic process $f(x) = \exp(ax) \cos(bx)$ with a and b drawn from Gaussian distributions. Right: The probability distribution of f(1) based on 10,000 samples of f(x).

Gaussian Process - MVN

• Generalization of Multi-Variate Normal to ∞ dimensions

$$f_{\mathbf{x}}(x_1,\ldots,x_k) = \frac{1}{\sqrt{(2\pi)^k |\mathbf{\Sigma}|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right),$$

CS 478 – INTRODUCTION

Gaussian Process - Background

- First theorized in 1940s
- Used in geostatistic and meterology in 1970s for time series prediction
 - Under the name *kriging*

Smooth Functions

- How would you measure the smoothness of a function?
 - "Smooth" functions is a common prior or bias
- Smoothness: function values close in input space should be similar
 - How similar is f(1) to f(1.1)?
 - Compared to f(1) to f(10)?
- For any finite # of points, $\{x_i\}$, can fit a MVN based on training set composed of smooth functions to learn (μ, Σ)
 - Smoothness(f) := $p_{MVN}(f(\mathbf{x_0}), ... f(\mathbf{x_i}) | \boldsymbol{\mu}, \boldsymbol{\Sigma})$

Dist. Over Functions

- Functions == infinite lookup table == infinite vector of values
 - Vector entries are value of function at some input
- Problem with our *MVN smoothness* at finite # of points
 - Functions score well if not smooth between those points
- GP solves this by being non-parametric
 - $\boldsymbol{\Sigma}$ replaced by $k(\boldsymbol{x}, \boldsymbol{x}')$
 - $\boldsymbol{\mu}$ replaced by $m(\boldsymbol{x})$
- GP is ∞ dimensions, but any finite subset of dimension is MVN

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}')).$$

Covariance Function

 $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})],$ $k(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x}) - m(\mathbf{x}))(f(\mathbf{x}') - m(\mathbf{x}'))],$

- $k(x_i, x_j)$ yields Σ for MVN over any finite subset $\{f(x_i)\}$
- $\Sigma_{ij} = k(x_i, x_j)$
- $\forall \{x_i\}, k(x_i, x_j)$ must make Σ Positive Definite
 - Otherwise MVN is not defined
- Common to subtract out the mean function from train/test points
 - Less common to learn mean function from data

Covariance Functions

- Constant : $K_{\mathbf{C}}(x, x') = C$
- Linear: $K_{\mathrm{L}}(x,x') = x^T x'$
- Gaussian Noise: $K_{
 m GN}(x,x')=\sigma^2\delta_{x,x'}$
- Squared Exponential: $K_{\rm SE}(x, x') = \exp\left(-\frac{||d||^2}{2l^2}\right)$
- Ornstein–Uhlenbeck: $K_{OU}(x, x') = \exp\left(-\frac{|d|}{l}\right)$
- Matérn: $K_{\text{Matern}}(x, x') = \frac{2^{1-\nu}}{\Gamma(\nu)} \Big(\frac{\sqrt{2\nu}|\vec{d}|}{l}\Big)^{\nu} K_{\nu}\Big(\frac{\sqrt{2\nu}|d|}{l}\Big)$
- Periodic: $K_{\mathrm{P}}(x, x') = \exp\left(-\frac{2\sin^2\left(\frac{d}{2}\right)}{l^2}\right)$
- Rational Quadratic: $K_{\mathrm{RQ}}(x,x') = (1+|d|^2)^{-lpha}, \quad lpha \geq 0$

Covariance Functions

- Learning in GP is finding hyperparameters that fit data well!
 - Many design choices: kernel, fixed, global, local, per-dimension
 - Math is messy
 - Do SGD on hyperparameters to maximize log probability of training data
- Observation Noise
 - Universal hyperparameter σ_n is our estimate of how bad we measured the training targets
 - Similar to Bayesian LR
 - Helps prevent overfit

Inference/Prediction

• The joint distribution of training targets and test target is MVN

$$P(t^*|\mathbf{t}_N) = P(t^*,\mathbf{t}_N)/P(\mathbf{t}_N).$$

$$\mathbf{K}_{N+1} = \left(\left[egin{array}{c} \mathbf{K}_N \ & \mathbf{k}^{*T} \end{array}
ight] \quad \left[egin{array}{c} \mathbf{k}^* \ & \mathbf{k}^{*T} \end{array}
ight] \quad \left[egin{array}{c} \mathbf{k}^* \ & \mathbf{k}^{*T} \end{array}
ight]
ight)$$

- We condition the MVN on the observed training targets
- Resulting conditional distribution is Gaussian
- Use distribution mean/covariance for prediction

$$P(t^*|\mathbf{t}, \mathbf{x}, \mathbf{x}^*) \propto \mathcal{N}\left(\mathbf{k}^{*T}\mathbf{K}^{-1}\mathbf{t}, k^{**} - \mathbf{k}^{*T}\mathbf{K}^{-1}\mathbf{k}^*\right),$$

Magic Math From Wikipedia

Conditional distributions [edit]

If N-dimensional x is partitioned as follows

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \text{ with sizes } \begin{bmatrix} q \times 1 \\ (N-q) \times 1 \end{bmatrix}$$

and accordingly μ and Σ are partitioned as follows

$$\boldsymbol{\mu} = \begin{bmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{bmatrix} \text{ with sizes } \begin{bmatrix} q \times 1 \\ (N-q) \times 1 \end{bmatrix}$$

$$\boldsymbol{\Sigma} = \begin{bmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{bmatrix} \text{ with sizes } \begin{bmatrix} q \times q & q \times (N-q) \\ (N-q) \times q & (N-q) \times (N-q) \end{bmatrix}$$

then, the distribution of \mathbf{x}_1 conditional on $\mathbf{x}_2 = a$ is multivariate normal $(\mathbf{x}_1 | \mathbf{x}_2 = \mathbf{a}) \sim N(\overline{\mathbf{\mu}}, \overline{\mathbf{\Sigma}})$ where

$$ar{oldsymbol{\mu}} = oldsymbol{\mu}_1 + oldsymbol{\Sigma}_{12} oldsymbol{\Sigma}_{22}^{-1} \left(\mathbf{a} - oldsymbol{\mu}_2
ight)$$

and covariance matrix

$$\overline{\boldsymbol{\Sigma}} = \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}.^{[12]}$$

Discussion

PROS

- Learned function is smooth but not constrained by form
- Confidence intervals
- Good prior for other models
 - E.g. Bias N-degree polynomials to be smooth
- Can do multiple test points that co-vary appropriately

CONS

- Math/Optimization is messy
 - Use lots of approximations
- NxN Matrix inversion
 - Numerical Stability issues
- Scalability in # instances issues like SVMs
- High dimensional data is challenging

Implementation

- For given training data (**X**, **t**), test data **x***, covariance function *k*(), and hyperparameters $\theta = (\sigma_f^2, l\sigma_n^2)$:
 - compute the covariance matrix $\mathbf{K} = k(\mathbf{X}, \mathbf{X}) + \sigma_n \mathbf{I}$ for hyperparameters $\mathbf{\Theta}$
 - compute the covariance matrix $\mathbf{k}^* = k(\mathbf{X}, \mathbf{x}^*)$
 - compute the covariance matrix $k^{**} = k(\mathbf{x}^*, \mathbf{x}^*)$
 - the mean of the process is $\mathbf{k}^{*T}\mathbf{K}^{-1}\mathbf{t}$
 - the covariance is $k^{**} \mathbf{k}^{*T}\mathbf{K}^{-1}\mathbf{k}^{*}$
 - Only compute K^{-1} once using numerical stable methods
 - Cholesky decomposition: $K = LL^T$, where L is lower triangular
 - For each test instance, compute covariance vector **k***
 - $\sigma_n I$ is our observation noise added to raw k(X,X)

Example

- Using a squared exponential kernel
- $k(\mathbf{x}, \mathbf{x}') = \exp(-0.5 * \|\mathbf{x} \mathbf{x}'\|^2)$
- Data to the right
- Task is to predict f(2) and f(4)
 - $\sigma_n = 0.25$

X	f(X)
0	-5
1	0
2	?
3	5
4	?

Example – Covariance Matrix

- Begin by calculating covariance matrix
 - Use f(0), f(1), f(3) as dimensions of the MVN

•
$$k(0,1) = \exp(-0.5(1-0)^2) = e^{-.5}$$

• $k(0,3) = \exp(-0.5 (3 - 0)^2) = e^{-4.5}$

•
$$k(1,3) = \exp(-0.5 (3 - 1)^2) = e^{-2}$$

•
$$k(x, x) = \exp(-0.5 (x - x)^2) = 1$$

$$\begin{split} & 1 & e^{-0.5} & e^{-4.5} \\ & K = e^{-0.5} & 1 & e^{-2} & + \sigma_n I \\ & e^{-4.5} & e^{-2} & 1 \end{split}$$

X	f(X)
0	-5
1	0
2	?
3	5
Δ	?

Example – Matrix Inversion

$$\begin{split} & \begin{matrix} 1 & e^{-0.5} & e^{-4.5} & & 1.25 & 0.607 & 0.011 \\ & K &= e^{-0.5} & 1 & e^{-2} + \sigma_n I & \text{or} & K &= 0.607 & 1.25 & 0.135 \\ & e^{-4.5} & e^{-2} & 1 & & 0.011 & 0.135 & 1.25 \end{split}$$

9

Example – Multiply by Targets $P(t^*|\mathbf{t}, \mathbf{x}, \mathbf{x}^*) \propto \mathcal{N}(\mathbf{k}^{*T}\mathbf{K}^{-1}\mathbf{t}, k^{**} - \mathbf{k}^{*T}\mathbf{K}^{-1}\mathbf{k}^*),$ Need $K^{-1}t$

$$K^{-1} = \begin{array}{c} 1.049 & -0.514 & 0.046 \\ K^{-1} = \begin{array}{c} -0.514 & 1.061 & -0.11 \\ 0.046 & -0.11 & 0.812 \end{array} \qquad \qquad \begin{array}{c} X & f(X) \\ 0 & -5 \end{array} \\ t = \begin{array}{c} -5 \\ 5 \end{array} \qquad \begin{array}{c} K^{-1}t = \begin{array}{c} -5.013 \\ 2.018 \\ 3.826 \end{array} \qquad \qquad \begin{array}{c} 1 & 0 \\ 2 & ? \\ 3 & 5 \end{array} \end{array}$$

?

Example – Predicting f(2) $P(t^*|\mathbf{t}, \mathbf{x}, \mathbf{x}^*) \propto \mathcal{N}\left(\mathbf{k}^{*T}\mathbf{K}^{-1}\mathbf{t}, k^{**} - \mathbf{k}^{*T}\mathbf{K}^{-1}\mathbf{k}^*\right),$ -5.013Now need \mathbf{k}^* for f(2) $K^{-1}t = 2.018$ 3.826 • $k(2,0) = \exp(-0.5(2-0)^2) = e^{-2}$ • $k(2,1) = k(2,3) = e^{-0.5}$ -5 () 0.135 ? 2 $k^{**} = 1$ (no obs noise) $k^* = 0.607$ 3 5 0.607 ?

Ex	ample	— P	redic	ting f	(2)
$P(t^* \mathbf{t}, \mathbf{x}, \mathbf{y})$	$\mathbf{c}^{*})\propto\mathcal{N}\left(\mathbf{k}\right)$	$*^T \mathbf{K}^-$	$t, k^{**} -$	$\mathbf{k}^{*T}\mathbf{K}^{-1}\mathbf{I}$	\mathbf{k}^{*}),
0.135			1.049	-0.514	0.046
0.607		$K^{-1} =$	-0.514	1.061	-0.11
0.607			0.046	-0.11	0.812
	Ex P(t* t, x, x 0.135 0.607 0.607	Example $P(t^* t, x, x^*) \propto \mathcal{N}(k)$ 0.135 0.607 0.607	Example – P $P(t^* \mathbf{t}, \mathbf{x}, \mathbf{x}^*) \propto \mathcal{N}(\mathbf{k}^{*T}\mathbf{K}^{-1})$ 0.135 0.607 $K^{-1} =$ 0.607	Example – Predic $P(t^* \mathbf{t}, \mathbf{x}, \mathbf{x}^*) \propto \mathcal{N}(\mathbf{k}^{*T}\mathbf{K}^{-1}\mathbf{t}, k^{**} - 0.135)$ 0.135 1.049 0.607 $K^{-1} = -0.514$ 0.046	Example – Predicting f $P(t^* \mathbf{t}, \mathbf{x}, \mathbf{x}^*) \propto \mathcal{N} \left(\mathbf{k}^{*T} \mathbf{K}^{-1} \mathbf{t}, \mathbf{k}^{**} - \mathbf{k}^{*T} \mathbf{K}^{-1} \right)$ 0.135 0.607 $K^{-1} = \begin{array}{c} 1.049 & -0.514 \\ -0.514 & 1.061 \\ 0.046 & -0.11 \end{array}$

$$k^{*T}K^{-1}k^{*} = \begin{array}{c} -0.142\\ 0.507 \ k^{*} \end{array} = 0.550\\ 0.432 \end{array}$$

$$\sigma = k^{**} - k^{*T}K^{-1}k^{*} = 1 - 0.55 = 0.45$$

	Exar	nple – P	redic	ting f	(4)
P	$(t^* \mathbf{t}, \mathbf{x}, \mathbf{x}^*)$	$\propto \mathcal{N} \left(\mathbf{k}^{*T} \mathbf{K}^{-} \right)$	${}^{1}\mathbf{t}, k^{**} -$	$\mathbf{k}^{*T}\mathbf{K}^{-1}\mathbf{I}$	\mathbf{k}^{*}),
	0.00033	1	1.049	-0.514	0.046
$k^* =$	0.011	$K^{-1} =$	-0.514	1.061	-0.11
	.607		0.046	-0.11	0.812

$$k^{*T}K^{-1}k^* = -0.055 \ k^* = 0.297$$
0.491

Example - Plot

My Experiments

- 1-D synthetic datasets generated with Gaussian noise
 - Linear Cubic
 - Periodic Sigmoid Complex
- 40 instances for training on the interval [-5,5]
 - Additive Gaussian noise with $\sigma = 0.5$
- Test with 1000 evenly spaced instances without noise (MSE)
- Use 3-fold CV on training data to set hyperparameters with grid-search
- Compare with Kernelized Lasso regression and 7-NN with inverse distance weighting
 - Polynomial and Sine function basis

$$y = 0.5x - 1$$

Results - Cubic $y = 0.02x^3 - 0.1x^2 + 0.5x + 2$

Results - Periodic $y = 2\sin(1.75x - 1) + 1$

Results - Sigmoid $y = \frac{4}{1.5 + e^{-(.75x-1)}} + 1$

Results - Complexy = linear combination of
previous functions

Real Dataset

- Concrete Slump Test
 - How fast does concrete flow given its materials?
 - 103 instances; 7 input features; 3 outputs; all real values
- Input Features are kg per cubic meter of concrete
 - Cement, Slag, Fly Ash, Water, SP, Coarse Agg, Fine Agg
- Output Variables are
 - Slump, Flow, 28-day Compressive Strength
- Ran 10-fold CV with our three models on each output variable

Concrete Results

Slump		Flow	
Model	Avg MSE +- Std	Model	Avg MSE +- Std
GP	0.103 +- 0.037	GP	0.091 +- 0.026
Lasso	0.072 +- 0.024	Lasso	0.051 +- 0.020
KNN	0.067 +- 0.040	KNN	0.063 +- 0.036

Strength		
Model	Avg MSE +- Std	
GP	0.030 +- 0.015	
Lasso	0.004 +- 0.002	
KNN	0.008 +- 0.005	

Learning Hyperparameters

• Find hyperparameters to maximize (log) probability of data

$$\log P(\mathbf{t}|\mathbf{x}, \boldsymbol{\theta}) = -\frac{1}{2} \mathbf{t}^T (\mathbf{K} + \sigma_n^2 \mathbf{I})^{-1} \mathbf{t} - \frac{1}{2} \log |\mathbf{K} + \sigma_n^2 \mathbf{I}| - \frac{N}{2} \log 2\pi$$

• Can use Gradient Descent by computing for $\mathbf{Q} = (\mathbf{K} + \sigma_n^2 \mathbf{I})$

$$\frac{\partial}{\partial \theta} \log P(\mathbf{t} | \mathbf{x}, \theta) = \frac{1}{2} \mathbf{t}^T \mathbf{Q}^{-1} \frac{\partial Q}{\partial \theta} \mathbf{Q}^{-1} \mathbf{t} - \frac{1}{2} \operatorname{trace} \left(\mathbf{Q}^{-1} \frac{\partial \mathbf{Q}}{\partial \theta} \right)$$

• $\frac{\partial \mathbf{Q}}{\partial \theta}$ is just the elementwise derivative of the covariance matrix which is the derivative of the covariance function

Learning Hyperparameters

• For squared exponential covariance function in this form

$$k(\mathbf{x}, \mathbf{x}') = \exp(\sigma_f) \exp\left(-\frac{1}{2} \exp(\sigma_l) |\mathbf{x} - \mathbf{x}'|^2\right) + \exp(\sigma_n) \mathbf{I}$$
$$= k' + \exp(\sigma_n) \mathbf{I}$$

• We get the following derivatives

$$\begin{aligned} \frac{\partial k}{\partial \sigma_f} &= k' & \frac{\partial k}{\partial \sigma l} = k' \times \left(-\frac{1}{2} \exp(\sigma_l) |\mathbf{x} - \mathbf{x}'|^2 \right) \\ \frac{\partial k}{\partial \sigma_n} &= \exp(\sigma_n) \mathbf{I} \end{aligned}$$

Classification

- Many regression methods become binary classification by passing output through a sigmoid, Softmax, or other threshold
 - MLP, SVM, Logistic Regression
 - Same with GP, but scarier math

Classification Math

Inference is naturally divided into two steps: first computing the distribution of the latent variable corresponding to a test case

$$p(f_*|X, \mathbf{y}, \mathbf{x}_*) = \int p(f_*|X, \mathbf{x}_*, \mathbf{f}) p(\mathbf{f}|X, \mathbf{y}) d\mathbf{f}$$

GP Regression Intractable!
where $p(\mathbf{f}|X, \mathbf{y}) = p(\mathbf{y}|\mathbf{f}) p(\mathbf{f}|X) / p(\mathbf{y}|X)$
 $p(y_i|f_i) = \sigma(f_i)$ Vote for Weight
 $p(y_* = +1|X, \mathbf{y}, \mathbf{x}_*) = \int \sigma(f_*) p(f_*|X, \mathbf{y}, \mathbf{x}_*) df_*$

Bells and Whistles

- Multiple Regression Assume correlation between multiple outputs
- Correlated noise especially useful for time
- Training set values + derivatives (max or min occurs at...)
- Noise in the x-direction
- Mixture (ensemble) of local GP experts
- Integral approximation with GP
- Covariance over structured inputs (strings, trees, etc)

Bibliography

- Wikipedia: Gaussian Process, Multi-variate Normal
- Scikit-Learn Documentation
- www.gaussianprocess.org
- C. E. Rasmussen & C. K. I. Williams, <u>Gaussian Processes for Machine Learning</u>, the MIT Press, 2006, ISBN 026218253X. c 2006 Massachusetts Institute of Technology. <u>www.GaussianProcess.org/gpml</u>
- S. Marsland, <u>Machine Learning An Algorithmic Perspective</u> 2nd Edition, CRC Press, 2015