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What Topic?

Machine Learning
Regression

Bayesian ML

Bayesian Regression
Bayesian Non-parametric

Gaussian Process (GP)

GP — Regression

GP — Regression with Squared Exponential Kernel



Regression

e Predict real value as output

* Learn underlying target function

 Some data samples of target function
(with noise)

* E.g. Predict Credit Score

* Estimate model parameters from data

points.

e Yy =Ww-"Xx, estimate w, to minimize loss
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Paper Titles

e Gaussian process classification for segmenting and annotating sequences

e Discovering hidden features with Gaussian processes regression

e Active learning with Gaussian processes for object categorization

* Semi-supervised learning via Gaussian processes

* Discriminative Gaussian process latent variable model for classification

* Computation with infinite neural networks

* Fast sparse Gaussian process methods: The informative vector machine

e Approximate Dynamic Programming with Gaussian Processes
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Paper Titles

* Learning to control an octopus arm with Gaussian process temporal
difference measure

e Gaussian Processes and Reinforcement Learning for Identification and
Control of an Autonomous Blimp

e Gaussian process latent variable models for visualization of high
dimensional data

* Bayesian unsupervised signal classification by Dirichlet process mixtures of
Gaussian processes
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Bayesian ML

e Probability Theory

 What makes function a Prob. Dist?

e Estimate distribution over model parameters, 0, that generated D

* AKA function or hypothesis

* Important distributions
* Prior: p(0)
* Data Likelihood: p(D|0)

* Posterior: p(@|D) = ﬁ * p(D|0) * p(O)

* Posterior Predictive: p(y|x) = [ p(y|x,0)p(0|D)d6

* Let all possible functions (one per 8) vote for the correct value
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Running Example

Predict weight given height

* Lbs & inches

Let’s use a linear model with Gaussian Noise
« 2 parameters: m, o2

e Let’sassumethato?=5

Weight ~ N(m * height,c?)

—(x — w)?

1
¢ p(x, #;02) — \/ﬁd‘e o?

Let’s use a prior for m
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Prior

GENERAL EXAMPLE

* p(0) * Let’s get 5 good guesses about

 Your own bias about what what m is

makes a good solution * Units are Ibs/inch

« p(m = guess;) = 0.2
* Score solutions without
seeing data * Other possible m get 0 prob.

under our prior
* Encoded as a distribution

* Normally use a prior which assigns
over parameters

everything a non-zero probability.
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Data Likelihood

GENERAL EXAMPLE
- p(D|® * Data: Height -> Weight (h; = w;)
e 70in -> 150Ilbs
e 0@ describes the process of «  80in -> 200Ibs
creating D  60in -> 130Ibs

2y — 171/PI e 2
* Assuming 0 reflects reality, out p(DIm, %) = ;23 N(wi; hi *x m, o)

of all the D’, how likely is the D e The m that maximizes ~ is the MLE

solution.
we got?
* Isit one of our 5 guesses?
 Maximum Likelihood Estimation + No. What s it?

e m=28°_2302
298
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Posterior

GENERAL EXAMPLE

. p(8|D) = RLLI8)p®) * Plug in each of our guesses

pD) for m into the numerator

* Bayes Theorem * Get denominator by

m = quess;|D) =1
e Combines Prior with Data Likelihood 2.p( Y (D)

« Often find @ that maximizes p(8|D) ° Guess V.V!th .hlghest
* Maximum a posteriori (MAP) probability is the MAP

estimate estimate

e Canignore p(D) in this case
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Posterior Predictive

GENERAL EXAMPLE

p(y|x) = [p(ylx,0)p(6|D)d6 * Given a test point height = 75in,
predict weight
Let all @ vote, weighted by posterior « Using MLE?
probability * Using MAP?
e Bayes Optimal Ensemble

e Posterior Predictive
Rarely tractable integral ¢ Guess a weight and score it

* MLE or MAP is easier * Score weight using each of 5 m

* Weight scores by p(m)

Really want: argmax, p(y|x)

. . . il argmax
 Can also do confidence intervals Iterate until argmax,, p(w|h)
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Other Regression Methods

e Simple Linear Regression (LR)

* y =w:-Xx orin Bayesian Land:y~N(W'X,02)

Ordinary Least Squares: find w to minimize SSE = Y. (w-x — y;)?
* Equivalent to maximizing p(D) = [[p(y¢lx,w) = [IN(y.|w - x; 7?)
e Closed form solution: w = (XTX)"1xTy
e Kernelized Linear Regression (KLR)

* InLR, replace x with @©(x), where @ is a non-linear feature
transform

» Kernel trick allows you to do implicit ¢@(x) for efficiency

* E.g. Learn coefficients of order N polynomial
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Other Regression Methods

* Ridge Regression (RR)

e Like LR, but with L2 weight penalty to encourage small weights
* More robust to outliers (less overfit)

e L2 weight penalty = Gaussian Prior on weights
2

« w; ~N(0,0%) => p(w)x[[es® => —log(p(w)) < Y wf
* Find w to minimize Obj(w) = Y(w-x — y;)? + 1Y w/

* Lasso Regression (Lasso)
* LR with L1 penalty

* Laplacian Distribution Prior: p(w;) o e~ Wil

* Fewer non-zero weights (sparse)
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Other Regression Methods

Probability density function

e Bayesian Regression (BR) 05 grempermprrmpepp—————
H k=20,06=20 3
* Like RR, but estimate A from data - -

’ —— k=90,8=05

0.3 — k=75.6=10

* Prior over the Prior k=01

02 |

« w; ~N(0,02%) buta?~T'(a, B) LA
* qa,[5 are user set . LN SO

0 2 4 6 8 10 12 14 16 18 20

e Automatic Relevance Determination (ARD)
e Like BR, but w; ~ N(0,0;) and g; ~T'(a, )
* Each weight comes from different prior distribution

e Good for feature selection
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Gaussian Process

e GP = Stochastic Process where Random Variables are Gaussian
Distributed

Distribution of f(1)

f‘\
/
e / \‘
H i / "I
| .

1 'Y} u 'C) Y s - o i 3 )

FIGURE 18.2 Left. 10 samples from the stochastic pngcess 1(.3] exp(ax) cos(bx) with a
b drawn from Gaussian distributions. Rig. e roh ility'distribution of f{1)
based on 10,000 samples of
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Gaussian Process - MVN

e Generalization of Multi-Variate Normal to oo dimensions

o m0) = S—exp (—5(x - W) (x- 1)),

NCOEPR
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Gaussian Process - Background

* First theorized in 1940s

e Used in geostatistic and meterology in 1970s for time series
prediction

e Under the name kriging
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Smooth Functions

e How would you measure the smoothness of a function?

* “Smooth” functions is a common prior or bias

 Smoothness: function values close in input space should be
similar
* How similaris f(1) to f(1.1)?
 Compared to f(1) to f(10)?

* For any finite # of points, {x;}, can fit a MVN based on training set
composed of smooth functions to learn (u, X)

* Smoothness(f) = pyyn (f (Xo), ... f (x:) |1, Z)
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Dist. Over Functions

Functions == infinite lookup table == infinite vector of values

e \Vector entries are value of function at some input

Problem with our MVN smoothness at finite # of points

* Functions score well if not smooth between those points

GP solves this by being non-parametric
» Xreplaced by k(x,x")
e ureplaced by m(x)

GP is oo dimensions, but any finite subset of dimension is MVN

f(x) ~ Q'P(m(:{)}k{x, }:’)).

CS 478 — INTRODUCTION 19




Covariance Function

m(x) = E[f(x)],
k(x,x') = E[(f(x) — m(x))(f(x') = m(x'))],

k(x;, x;) yields X for MVN over any finite subset {f (x;)}
© Xy = k(xxj)
« V{x;}, k(x;, xj) must make X Positive Definite
Otherwise MVN is not defined

Common to subtract out the mean function from train/test points
Less common to learn mean function from data
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Covariance Functions

+ Constant: KC(I: If) =
s Linear: KL(I-; If) = Ty

« Gaussian Noise: KGN(I ;r_:’) = 5'2,-51 -

g

» Ornstein-Uhlenbeck: oy (x, I’} = exp ( _ liil)

1—v v
2 (\/ﬁldl Kﬁ(mldl)
I'(v) ! [
2
« Periodic: KP{I I") = exp ( _ sin ( )
+ Rational Quadratic: KRQ(I 5-:) = (l -|- |d|2)_ﬁ! a >0

« Squared Exponential: KSE(I x ) exp (

« Matérn: KMntem(I:I,) —

b B
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Covariance Functions

 Learning in GP is finding hyperparameters that fit data well!
 Many design choices: kernel, fixed, global, local, per-dimension

e Math is messy

Do SGD on hyperparameters to maximize log probability of training data

* Observation Noise
* Universal hyperparameter g,, is our estimate of how bad we

measured the training targets

* Similar to Bayesian LR

* Helps prevent overfit
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Hyperparameters
Length-Scale

5 0 5
Input, x
(a), £ =
3 3
2_
Lt
“I_
=N
= 0 +
2
g -1 +_H_ _-|j:
_Q'II" -|—
_3- —I_
5 0 5 5 0 5



Inference/Prediction

The joint distribution of training targets and test target is MVN

P(t”tN) = P(t** tp.r)fp(t,\-').

Ky k*
Kysy =

-

k-T ' ik.'

We condition the MVN on the observed training targets
Resulting conditional distribution is Gaussian

Use distribution mean/covariance for prediction

P(t*[t,x,x*) « N (k*TK™'t,k** - k*TK™'k") ,



Magic Math From Wikipedia

Conditional distributions |eadit]

If N-dimensional x is pariitioned as follows

b <1 B g x 1
X = [xJ with sizes [( N —g) x 1]

and accordingly p and £ are partitioned as follows

= |#1] with siz [ gx1 ]
- _pJ SN =—¢) x 1

X X : . qxXq qgx(N-q) ]
)= 1th siz

24 EE:JW o LN—Q)K@ (N —q) x (N -q)

then, the distribution of x4 conditional on x5 = a I1s multivanate normal (x4|x; = a) ~ N(p, E) where

fo=p+ B2y (a— py)

and covariance mafrix

E —_— 211 — 2122521221.[12]
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Discussion

PROS CONS

e Learned function is smooth ¢ Math/Optimization is messy
but not constrained by form  Use lots of approximations

e Confidence intervals e NxN Matrix inversion

_ * Numerical Stability issues
* Good prior for other models

 E.g. Bias N-degree polynomials * Scalability in # instances
to be smooth issues like SVMs

* Candomultiple test points  «  High dimensional data is
that co-vary appropriately challenging
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Implementation

 For given training data (X, t), test data x*, covariance function k(), and hyperparameters
0 = (a?,laﬁ):

— compute the covariance matrix K = k(X, X) + oI for hyperparameters 0

— compute the covariance matrix k* = k(X, x*)
— compute the covariance matrix k** = k(x*, X*)

— the mean of the process is k*T K1t

—  the covariance is k** — k*TK1k*
« Only compute K~ once using numerical stable methods
* Cholesky decomposition: K = LLT, where L is lower triangular

* For each test instance, compute covariance vector k*

* 0g,I is our observation noise added to raw k(X,X)
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Example

* Using a squared exponential kernel

* k(x,x") = exp(—0.5 * [|x — x'|*)

X _f(X)

 Data to theright

e Task is to predict f(2) and f(4)
o0, =0.25

W dNNEFE O
N O1 VY O
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Example — Covariance Matrix

* Begin by calculating covariance matrix
* Use f(0), f(1), f(3) as dimensions of the MVN

+ k(0,1) = exp(=0.5 (1 — 0)?) = ¢~ X _1(X)
¢ k(0,3) = exp(=0.5 (3 — 0)2) = e~*5 0 -5
e k(1,3) = exp(=0.5 (3 —1)2) = ¢™2 1 O
e k(x,x) =exp(—=05(x —x)?) =1 2 7
3 5
1 6_0'5 e—4.5 4 "
K= 705 1 e 2 + oyl '
e—4.5 e—2 1
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Example — Matrix Inversion

1 p—05 =45 1.25 0.607 0.011
K= 705 1 e 2 + o, O K= 0.607 125 0.135
i 1 0.011 0.135 1.25
Next step, invert K X f(X)
0 -5
1.049 —0.514 0.046
K'= —0514 1061 —0.11 1 0
0.046 —0.11 0.812 2 9
3 5
4 7



Example — Multiply by Targets

P(t*|t,x,x*) x NV (k*TK ¢, k™ — k*TK'k*),

Need K1t

1.049 —0.514 0.046
K1= —0514 1.061 -0.11
0.046 —0.11 0.812

f(X)

-5
. _ _05 5,013
B c K1lt= 2018
3.826

BWN R O|X
o

D O1



Example — Predicting (2)
P(t*|t,x,x") x N (k*TK™'¢,k** — k*TK'k"),
Now need k* for f(2) —5.013

K1lt= 2018
3.826

e k(2,0) = exp(—0.5(2 —0)?%) =e?

f(X
¢ k(21) = k(23) = 03 (X)

X
0 -5
1 O
k* = 82(3); k** =1 (no obs noise) 2 7
0.607 3 5
4 7



Example — Predicting f(2)

P(t*|t,x,x") x N (k*TK™'¢,k** — k*TK'k"),

0.135 1.049 —0.514 0.046
k* = 0.607 K1= —0514 1.061 -0.11
0.607 0.046 —0.11 0.812
—5.013
K1lt= 2018 u=kTK 1t =|2.866
3.826
—0.142
k'K 1k* = 0507 k* = 0.550
0.432

o=k —KkK'TK1k* =1 — 0.55 =

0.45




Example — Predicting f(4)

P(t*|t,x,x") x N (k*TK™'¢,k** — k*TK'k"),

0.00033 1.049 —0.514 0.046
k*= 0.011 K1'= —-0514 1.061 -0.11
607 0.046 —0.11 0.812
—5.013
K1lt= 2018 u=kKkTK 1t =2.341
3.826
0.023
k'TK-1k* = —0.055 k* = 0.297
0.491

o=k —KkTK1k* =1 — 0.297 =0.703




Example - Plot




My Experiments

1-D synthetic datasets generated with Gaussian noise

Linear Cubic

Periodic Sigmoid Complex

40 instances for training on the interval [-5,5]

Additive Gaussian noise with ¢ = 0.5
Test with 1000 evenly spaced instances without noise (MSE)
Use 3-fold CV on training data to set hyperparameters with grid-search

Compare with Kernelized Lasso regression and 7-NN with inverse
distance weighting

Polynomial and Sine function basis
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Results - Linear y =05x — 1

Model | MSE

1 GP 0.009
Lasso |0.019
KNN 0.058

i — ground truth
+ + training data
-- GP

- - Lasso

-~ KNN

|
I
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Results - Cubic y =0.02x3 = 0.1x% + 0.5x + 2

6
y Model | MSE
;,
T w1 A - GP 0.046
) T | Lasso |0.037
g‘;’_f

// KNN 0.101
oL 7 +T i

—2r . / 1 — ground truth
/ + + training data
_al | -- GP
_. - - Lasso
j KNN
_6 | | 1 1




Results - Periodic y = 2sin(1.75x — 1) + 1

Model | MSE
3 GP 0.087
| Lasso |1.444

KNN 0.350

— ground truth
+ + training data
-- GP
- - Lasso

KNN




Results - Sigmoid

4

= +1
Y~ 1s + ¢~ (75x-1)
4.5
Model | MSE
4.0}l l
i GP  |0.034
350 l
Lasso |[0.045
> KNN |0.060
250
2.0} Y .
. 7 — ground truth
15] J‘;% ﬁj + + training data
oy A -~ GP
10 —— ~=r~ - - Lasso
) KNN
0.5




Results - Complex y = linear combination of
previous functions

il Model | MSE

Ll GP 0.194
5l Lasso |0.574
_al KNN 0.327

— ground truth
+ + training data
-- GP
- - Lasso

KNN




Real Dataset

Concrete Slump Test
* How fast does concrete flow given its materials?

* 103 instances; 7 input features; 3 outputs; all real values

Input Features are kg per cubic meter of concrete

 Cement, Slag, Fly Ash, Water, SP, Coarse Agg, Fine Agg

Output Variables are

* Slump, Flow, 28-day Compressive Strength

Ran 10-fold CV with our three models on each output variable
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Concrete Results

Slump Flow
Model | Avg MSE +- Std Model | Avg MSE +- Std
GP 0.103 +- 0.037 GP 0.091 +- 0.026
Lasso |0.072 +- 0.024 Lasso |0.051 +- 0.020
KNN |0.067 +- 0.040 KNN |0.063 +- 0.036
Strength

Model | Avg MISE +- Std

GP 0.030 +- 0.015

Lasso |0.004 +- 0.002

KNN |0.008 +- 0.005




Learning Hyperparameters

* Find hyperparameters to maximize (log) probability of data
| 1 N
log P(t|x, 0) = —EtT{K + a2~ 1t - 5 log [K + a2]| - - log 2m
* Can use Gradient Descent by computing for Q = (K + r;f;l]

0
90

== log P(t|x, 0) = 5t7Q"" ";3 Q¢ — Strace (Q-1 %)

. 90 is just the elementwise derivative of the covariance matrix
which is the derivative of the covariance function
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Learning Hyperparameters

* For squared exponential covariance function in this form

k(x,x') = exp(oys)exp (—l exp(oy)|x — x'lz) + exp(on)l

2
= k' + exp(on)l
 We get the following derivatives
ok, ok ., [ 1 o
9o, k m—kx(—iexpimllx—xl)
ok

= exp(oy)1

doy
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Covariance Function Tradeoffs

k(r) = exp(—(r/€)7) for 0<~y <2

r=|x— x|

<
oo

covariance
=
'y

<
I

=
)

=

0 1 2 3
input distance
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Classification

 Many regression methods become binary classification by
passing output through a sigmoid, Softmax, or other threshold

* MLP, SVM, Logistic Regression

* Same with GP, but scarier math

4_

latent function, f(x)
=
class probability, m(x)

input, x
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Classification Math

Inference 1s naturally divided into two steps: first computing the distribution
of the latent variable corresponding to a test case

p(f X, y.x,) = /p(fJX:K*?f)p(f X, y)|df
GP Regression

Intractable!

GP prior ignored
where  p(f|X,y) = p(y/f)p(f|X)/p(y|X)
p(ilfi) = o(fi) \ote for  Weight

class 1 for vote

Pl =+11Xy.x) = [a(plhlXoy.x) d.



Bells and Whistles

Multiple Regression — Assume correlation between multiple outputs

Correlated noise — especially useful for time

e Training set values + derivatives (max or min occurs at...)
* Noise in the x-direction

* Mixture (ensemble) of local GP experts

* Integral approximation with GP

* Covariance over structured inputs (strings, trees, etc)
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