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Motivation
• Part-Of-Speech Tagger
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Motivation

object
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Motivation

I object!
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Motivation

object
‘Do you see that object?’
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Motivation
• Part-Of-Speech Tagger - Java CRFTagger

Logan woke up this morning and ate 
a big bowl of Fruit Loops. On his way 
to school, a small dog chased after 
him. Fortunately, Logan's leg had 
healed and he outran the dog.

INPUT FILE - Logan.txt
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Motivation
• Part-Of-Speech Tagger - Java CRFTagger

Logan/NNP woke/VBD up/RP this/DT morning/NN 
and/CC ate/VB a/DT big/JJ bowl/NN of/IN Fruit/
NNP Loops/NNP ./. On/IN his/PRP$ way/NN to/
TO school/VB ,/, a/DT small/JJ dog/NN chased/
VBN after/IN him/PRP ./. Fortunately/RB ,/, Logan/
NNP 's/POS leg/NN had/VBD healed/VBN and/
CC he/PRP outran/VB the/DT dog/NN ./.

OUTPUT FILE - Logan.txt.pos
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Motivation
• Stanford Named Entity Recognition 

• Recognizes names, places, organizations 

• http://nlp.stanford.edu:8080/ner/process
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http://nlp.stanford.edu:8080/ner/process


• Image Applications

Segmentation

Labels: 
Hat, Shirt  

Cup, Stanley

Multi-Label Classification

Motivation
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• Bioinformatics Applications

RNA Structural Alignment Protein Structure Prediction

Motivation
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Cupcakes with Rainbow Filling

Motivation
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Background
Isn't it about time…
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Background
Isn't it about time… …for Graphical Models?

Represent distribution as a 
product of local functions 
that depend on  a smaller 

subset of variables13



Background
Generative vs Discriminative

P (x|y)P (y) = P (x, y) = P (y|x)P (x)

• Generative models describe how a label 
vector y can probabilistically “generate” a 
feature vector x.  

• Discriminative models describe how to take a 
feature vector x and assign it a label y. 

• Either type of model can be converted to the 
other type using Bayes’ rule
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Background
Joint Distributions

P (x, y)

Problems: 
? 
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Background
Joint Distributions

P (x, y)

Problems: 
- Modeling inputs => intractable models 
- Ignoring inputs => poor performance  
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Background
Joint Distributions

P (x, y)
Naive Bayes

Generative model 
Strong assumptions to simplify computation
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Background
Generative vs Discriminative

Naive Bayes Logistic Regression

Conditional
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Background
Generative vs Discriminative

Naive Bayes Logistic Regression

Conditional

If trained to maximize  
conditional likelihood
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Background
Generative vs Discriminative

Naive Bayes Logistic Regression

Conditional

If trained to maximize  
joint likelihood
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Background
Sequence Labeling

Hidden Markov Model (HMM)
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Background
Sequence Labeling

Hidden Markov Model (HMM)

ASSUMPTIONS:
yt ?? y1, . . . , yt�2|yt�1

xt ?? Y \ {yt}, X \ {xt} |yt�1



Background
Sequence Labeling

Hidden Markov Model (HMM)

PROBLEMS:
- Later labels cannot influence previous labels 
- Cannot represent overlapping features
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Background
Improvements to HMMs

Maximum Entropy Markov Model
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Background
Improvements to HMMs

Maximum Entropy Markov Model

25

P (S1, . . . , Sn|O1, . . . , On) =
nX

t=1

P (St|St�1, Ot)

St-1 St

Ot

MEMM



Background
Improvements to HMMs

Conditional Markov Model

More flexible form of  
context dependence

CONS:
Only models log-linear  

distribution over component 
transition distributions

PROS:

Independence  
assumptions among  

labels, not observations



Background
Improvements to HMMs

Label Bias Problem
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Solution
Conditional Random Fields

- Drop Local 
Normalization Constant 

- Normalize GLOBALLY 
Over Full Graph 

Avoids Label  
Bias Problem
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Solution
Conditional Random Fields

Calculate path probability by normalizing  
the path score by the sum of the  

scores of all possible paths

Poorly matching path -> low score (probability) 
Well-matching path -> high score
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Solution
Conditional Random Fields

Similar to CMM 

- Discriminative 
- Model Conditional Distribution p(y|x) 
- Allow arbitrary, overlapping features
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Solution
Conditional Random Fields

Similar to CMM 

- Discriminative 
- Model Conditional Distribution p(y|x) 
- Allow arbitrary, overlapping features

TAKEAWAY: 
Retains advantages of CMM over HMM 

Overcomes label bias problem of CMM and MEMM
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Linear-Chain CRFs
Conditional Random Fields

Remember the HMM 
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Linear-Chain CRFs
Conditional Random Fields

Remember the HMM 



Linear-Chain CRFs
Conditional Random Fields

By expanding Z, we have the  
conditional distribution p(y|x)
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Feature Functions

students.cs.byu.edu/~mbrodie/778
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http://students.cs.byu.edu/~mbrodie/778
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Linear-Chain CRFs
Conditional Random Fields
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Feature Engineering
• Larger feature set benefits:  

• Greater prediction accuracy 

• More flexible decision boundary 

• However, may lead to overfitting
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Feature Engineering
Label-Observation Features

Where      is an observation function 
rather than a specific word value

For example: 
“word     is capitalized” 
“word     ends in ing”

xt

xt
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Feature Engineering
Unsupported Features

For example: 
word     is ‘with’ and label     is ‘NOUN’ xt yt

Greatly increases the number of parameters. 
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Feature Engineering
Unsupported Features

For example: 
word     is ‘with’ and label     is ‘NOUN’ xt yt

Can be useful -> 
Assign negative weights to  

prevent spurious labels from 
receiving high probability

Greatly increases the number of parameters. 
However, usually gives a slight boost in accuracy
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Feature Engineering
Boundary Labels

For example: 

Capitalization in the middle of the sentence 
generally indicates a proper noun (but not 

necessarily at the beginning of a sentence).

Boundary labels (start/end of sentence, edge of image) 
can have different characteristics from other labels.
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Feature Engineering
Other Methods

• Feature Induction  
• Begin with a number of base features.  
• Gradually add conjunctions to those features 

• Normalize Features 
• Convert categorical to binary features 

• Features from Different Time Steps
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Feature Engineering
Other Methods

• Features as Model Combination 

• Input Dependent Structure 
• e.g. Skip-Chain CRFs 

• Encourage identical words in a sentence                       
to have the same label 

• Do this by adding an edge in the graph
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Linear-Chain CRFs
Conditional Random Fields

HMM-like CRF

Previous observation affects transition
45



Feature Effects

Features Accuracy # Feature 
Functions

yt-1 and yt 0.0449 296

xt and yt 0.6282 486

xt and yt AND  
xt and yt-1and yt 0.6603 1176

xt and yt AND 
yt-1 and yt 0.0929 782

Pseudo Weighted Functions on the Brown Corpus: 
 38 Training, 12 Test Sentences
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Linear-Chain CRFs
Parameter Estimation

We want to find parameters 
for feature functions:
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Linear-Chain CRFs
Parameter Estimation

We want to find parameters 
for feature functions:

Maximize the conditional 
log likelihood: 
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Linear-Chain CRFs
Parameter Estimation

49



Linear-Chain CRFs
Parameter Estimation

Which becomes…
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Linear-Chain CRFs
Parameter Estimation

Which becomes…

Penalize large weight vectors



Linear-Chain CRFs
Parameter Estimation

`(✓)Cannot maximize in closed form

Instead use numerical optimization 
=> Find derivatives w.r.t. �k
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Linear-Chain CRFs
Parameter Estimation

`(✓)Cannot maximize in closed form

Instead use numerical optimization 
=> Find derivatives w.r.t. �k
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Linear-Chain CRFs
Parameter Estimation

`(✓)Cannot maximize in closed form

Instead use numerical optimization 
=> Find derivatives w.r.t. �k
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Linear-Chain CRFs
Parameter Estimation

`(✓)Cannot maximize in closed form

Instead use numerical optimization 
=> Find derivatives w.r.t. �k
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Linear-Chain CRFs
Parameter Estimation

How to optimize `(✓) ?

Steepest ascent 
along Gradient Newton’s Method (L-) BFGS
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Linear-Chain CRFs
Parameter Estimation

How to optimize `(✓) ?

Steepest ascent 
along Gradient Newton’s Method (L-) BFGS
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Linear-Chain CRFs
Parameter Estimation

How to optimize `(✓) ?

Steepest ascent 
along Gradient Newton’s Method (L-) BFGS
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Linear-Chain CRFs
Parameter Estimation

How to optimize `(✓) ?

Steepest ascent 
along Gradient Newton’s Method (L-) BFGS
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Feature Effects

Features Accuracy # Feature 
Functions

Trained 
Accuracy 
10 Epochs

yt-1 and yt 0.0449 296 0.1185

xt and yt 0.6282 486 0.6538

xt and yt AND  
xt and yt-1and 

yt
0.6603 1176 0.6731

xt and yt AND 
yt-1 and yt 0.0929 782 0.2724

Pseudo Weighted Functions on the Brown Corpus: 
 38 Training, 12 Test Sentences



Linear-Chain CRFs
Inference

During Training During Testing

Viterbi Algorithm  to compute  
the most likely labeling

Marginal Distributions 
for each edge

Compute Z(x)
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Linear-Chain CRFs
Inference

Use Forward-Backward Approach in HMM:
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Linear-Chain CRFs
Inference

Use Forward-Backward Approach in HMM:

Factor Definition:
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Linear-Chain CRFs
Inference

Use Forward-Backward Approach in HMM:

Factor Definition:

Rewrite Using Distributive Law:



Linear-Chain CRFs
Inference

Use Forward-Backward Approach in HMM:
This leads to a set of forward variables
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Linear-Chain CRFs
Inference

Use Forward-Backward Approach in HMM:
This leads to a set of forward variables

 Compute       by recursion↵t



Linear-Chain CRFs
Inference

Use Forward-Backward Approach in HMM:
Similarly, we computer a set of backward variables

 Compute       by recursion�t
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Linear-Chain CRFs
Inference

Compute Marginals Needed for Gradient 
Using Forward and Backward Results
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Linear-Chain CRFs
Inference

Compute Marginals Needed for Gradient 
Using Forward and Backward Results

69
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Linear-Chain CRFs
Inference

How does this compare to CRF training/inference?
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Linear-Chain CRFs
Inference

How does this compare to CRF training/inference?
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Linear-Chain CRFs
Inference

How does this compare to CRF training/inference?
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Breakthrough
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My Implementation
• 3 Different Implementations 

1. Tensorflow 
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Tensorflow Tips
Do NOT start  with CRFs



Tensorflow Tips
Be prepared for awkward, sometimes unintuitive formats
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Tensorflow
• Gaaaaah!! 

• len(X) => X.get_shape().dims[0].value 

• Start out with Theano  

• More widely used 

• More intuitive
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My Implementation
• 3 Different Implementations 

1. Tensorflow  

2. Scipy Optimization (fmin_l_bfgs_b)

78



My Implementation
• 3 Different Implementations 

1. Tensorflow  

2. Scipy Optimization (fmin_l_bfgs_b) 

3. Gradient Descent 

A. Trainable Version 

B. Simplified, Web-based Version
79



Experiments

Brown Corpus  
News Articles

• 5,000 POS Sentences 
• 27,596 Tags 
• 75/25 Train-Test Split

Data Sets
Penn Treebank Corpus

WSJ 

• 3,914 sentence SAMPLE 
• $1,700 (or free BYU version) 
• 75/25 Train-Test Split
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Experiments
Comparison Models

• Hidden Markov Model 
• Conditional Random Field 
• Averaged-Multilayer Perceptron 

• Average the weight updates -> prevent 
radical changes due to different training 
batches 

Python Natural Language Toolkit (NLTK)
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Experiments
Brown Corpus Results

Ac
cu
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cy

30
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HMM Avg-MLP NLTK-CRF Brodie-CRF
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Experiments
Penn Corpus Results

Ac
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cy
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81.25
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93.75
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HMM Avg-MLP NLTK-CRF Brodie-CRF
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Pros/Cons of Implementation

Pros

• Can use forward/
backward and 
Viterbi Algorithm 

• Learn weights for 
features

Cons

• Slow 

• Limited to 
gradient 
descent training
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Extensions

• General CRFs 

• Skip-chain CRFs 

• Hidden Node CRFs
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CRF-RNN + CNN
• Problem: Traditional CNNs produce coarse 

outputs for pixel-level labels. 

• Solution: Apply CRF as a post-processing 
refinement 



BI-LSTM-CRF



Future Directions
• New model combinations of CRFs 

• Better training approximations (i.e. besides 
MCMC sampling methods) 

• Additional ‘hidden’ architectures
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Bibliography
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Other Resources
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Thank You
Questions?
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