
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 11, NOVEMBER 2011 1823

Adaptive Evolutionary Artificial Neural
Networks for Pattern Classification

Tatt Hee Oong and Nor Ashidi Mat Isa, Member, IEEE

Abstract— This paper presents a new evolutionary approach
called the hybrid evolutionary artificial neural network (HEANN)
for simultaneously evolving an artificial neural networks (ANNs)
topology and weights. Evolutionary algorithms (EAs) with strong
global search capabilities are likely to provide the most promising
region. However, they are less efficient in fine-tuning the search
space locally. HEANN emphasizes the balancing of the global
search and local search for the evolutionary process by adapting
the mutation probability and the step size of the weight pertur-
bation. This is distinguishable from most previous studies that
incorporate EA to search for network topology and gradient
learning for weight updating. Four benchmark functions were
used to test the evolutionary framework of HEANN. In addition,
HEANN was tested on seven classification benchmark problems
from the UCI machine learning repository. Experimental results
show the superior performance of HEANN in fine-tuning the
network complexity within a small number of generations while
preserving the generalization capability compared with other
algorithms.

Index Terms— Adaptive evolution, neural network design,
pattern classification.

I. INTRODUCTION

ARTIFICIAL neural networks (ANNs) have emerged as
a powerful tool for pattern classification [1], [2]. The

optimization of ANN topology and connection weights train-
ing are often treated separately. Such a divide-and-conquer
approach gives rise to an imprecise evaluation of the selected
topology of ANNs. In fact, these two tasks are interdependent
and should be addressed simultaneously to achieve optimum
results.

One of the key tasks of pattern classification is designing
a compact and well-generalized ANN topology. Choosing an
appropriate ANN topology for specific problems is critical
for ANN generalization because of the strong correlation
between the information processing capability and the ANN
topology. An excessively small network size suggests that the
problem cannot be learned well, whereas an excessively large
network size will lead to over-fitting and poor generalization

Manuscript received December 20, 2010; revised September 15, 2011;
accepted September 15, 2011. Date of publication October 3, 2011; date
of current version November 2, 2011. This work was supported in part by
Universiti Sains Malaysia under the Postgraduate Fellowship Scheme and the
Research University Grant, under the project Study on Capability of Fourier
Transform Infrared Spectral Characteristic for Development of Intelligent
Cervical Precancerous Diagnostic System.

The authors are with the Imaging and Intelligent Systems Research
Team, School of Electrical and Electronic Engineering, Universiti Sains
Malaysia, Nibong Tebal 14300, Malaysia (e-mail: othee@hotmail.com;
ashidi@eng.usm.my).

Digital Object Identifier 10.1109/TNN.2011.2169426

performance. Time-consuming trial-and-error approaches and
hill-climbing constructive or pruning algorithms [3]–[7] used
to design an ANN architecture for a given task only explore
small architectural subsets and tend to be stopped at structural
local optima. The cascaded-correlation neural network [8]
is a popular constructive algorithm used to construct ANN
topologies that have multiple layers. New hidden nodes are
added one by one and are connected with every existing
hidden node in the current network. Thus, the network can
be seen as having multiple one-unit layers that form a cas-
cade structure. However, the network is prone to structural
local optima because of its constructive behavior. Designing
an ANN topology using evolutionary algorithms (EAs) has
become a popular method to overcome the drawbacks of
the constructive or pruning approaches [9]–[13]. EAs, which
have a strong global search capability, can effectively search
through the near-complete class of ANN topologies.

Much work has been devoted to the evolution of ANN
topologies. Two major approaches to evolving ANN topologies
reported in the literature are the evolution of ANN topol-
ogy without weights and the simultaneous evolution of both
topology and weights. For the evolution of an ANN topology
without weights, the ANN topology has to be trained from
a random set of initial weights to evaluate its fitness. Yao
and Liu [11] noted that this fitness evaluation method is very
noisy because a phenotype’s fitness is used to represent the
genotype’s fitness. Although the fitness of the evolved ANN
topology can be estimated by using average results of multiple
runs from different sets of random initial weights, the compu-
tational time for fitness evaluation is increased dramatically.
Thus, only small ANN topologies are evolved in [14] and [15].

For the simultaneous evolution of both ANN topology and
weights, the information about ANN topology and weight is
encoded in each individual. Thus, the noisy fitness evalua-
tion problem can be alleviated. One prominent work called
EPNet and introduced by Yao and Liu [11] is an example
of the simultaneous evolution of both ANN topology and
weights. Yao and Liu used hybrid training to evolve the
ANN weights. Gradient learning and simulated annealing are
both incorporated into the evolutionary process to evolve the
ANN weights. Similarly, Martínez-Estudillo et al. [16] used
a gradient learning method to evolve the weights of the
best individual ANN in each cluster of the population. They
used a clustering algorithm to partition the individuals in the
population into several clusters that belong to the same region
of attraction. However, the use of a gradient learning method
such as a backpropagation algorithm to evolve ANN weights

1045–9227/$26.00 © 2011 IEEE

1824 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 11, NOVEMBER 2011

causes noisy fitness evaluation because of the high sensitivity
of the backpropagation algorithm to the initial weights. Palmes
et al. [12] used mutation-based EA to address this issue in
an evolutionary ANN. Other works have also focused on the
simultaneous evolution of ANN topology and weights. Ang
et al. [13] introduced growth probability to allow the network
to evolve to a suitable size. Angeline et al. [9] used parametric
mutations and structural mutations to evolve ANN weights,
hidden nodes and networks links. Jian and Yugeng [10] used
evolutionary programming (EP) to evolve the architecture and
weights of feedforward neural networks and recurrent neural
network. Leung et al. [17] proposed an improved genetic
algorithm to evolve the structure and parameters of neural
networks. Gutiérrez et al. [18] used simulated annealing to
control the parametric mutation and five structural mutations
to evolve the radial basis function (RBF) neural networks. All
of these previous works were intended to produce a compact
and well generalized ANN.

Typically, the topology of an ANN can be encoded into a
chromosome using a direct encoding scheme or an indirect
encoding scheme. In the direct encoding scheme, all of the
ANN topology is encoded directly into a chromosome by
using a binary representation that indicates the existence of
network connections and hidden nodes. The indirect encoding
scheme only encodes some important parameters of an ANN
topology, such as the number of hidden layers and hidden
nodes. Other details about the ANN topology are predefined
or specified by a set of deterministic developmental rules [19].
The direct encoding scheme is easy to implement and suitable
for the precise and fine-tuned search. Although the indirect
encoding scheme can reduce the length of chromosome, it
may not be appropriate for finding a compact ANN with good
generalization ability [19]. In this paper, a direct encoding
scheme is used to represent the ANN topology.

Evolution of the ANN topology and weights can help to
alleviate the problem of noisy evaluation. However, relying
solely on the EA to evolve the ANNs is rather inefficient in
performing a local search. Further training using conventional
gradient descent methods after the evolution can be a simple
approach to fine-tune a network. Considered the situation
of premature convergence in the evolutionary process, the
ANN found after further training may not be optimum. Other
attempts such as the use of the annealing temperature to guide
the weight perturbation step size [9] and scheduling of the
mutation probability [12] of an individual network in the
population can be considered preliminary guides toward a local
search, but no distinct direction has been provided. Hence, the
EA should be guided properly to maintain the balance between
the exploration of the entire search space and the exploitation
of important regions.

Motivated by the importance of balancing the global and
local search in the evolutionary process and concurrent evo-
lution of the ANN topology and weights, this paper presents
a new evolutionary approach called the hybrid evolutionary
artificial neural network (HEANN) that simultaneously evolves
ANN topology and weights. Moreover, HEANN demonstrates
a balance between global search and local search by introduc-
ing a novel adaptive mutation technique in the evolutionary

H

H

O

O

I

Y
No

III
N

i
 1 2 3

Y
1

O = Output nodes
H = Hidden nodes
I = Input nodes

N
i
 +1

N
i
 +N

h

N
i
 +N

h
+1

N
i
 + N

h
+ N

o

…

…

…

…

Fig. 1. Arbitrarily connected feedforward neural network.

process. Instead of using the conventional schedule method
to reduce the mutation probability or step size over time,
HEANN uses the information from the population to guide the
evolutionary process to shift gradually from a global search
to local search. First, the generalization loss (GL) in the
population is used to adapt the mutation probability and step
size of the entire population. Second, the fitness value of each
individual in the population is used to determine the severity
of the mutation in a given individual in the population.

In this paper, there are two main factors to be optimized: the
network topology and the generalization capability. A popular
method for optimizing two or more objectives is based on
Pareto dominance [20]–[22]. However, the computational cost
for finding and estimating the fitness of each Pareto front is
increased when there is an increase in the number of objectives
to be optimized [21]. Another popular approach is based
on scalarized multiobjective learning [10], [12], [20], which
aggregates several objectives into a scalar cost function. In
this case, the approach assumes the convexity of the Pareto
frontier. This approach is used in current implementation.

The rest of this paper is organized as follows. Section II
describes HEANN and each component in detail. Section III
analyzes the effects of the proposed adaptive mutation tech-
nique on the ANN topology (adding or deleting nodes, con-
nections) and how this technique balances the global and
local search of the evolutionary process. Section IV shows
the results of this new adaptive evolutionary framework for
four benchmark functions. Section V contains the experimental
results of HEANN. Section VI presents the discussion of
results. Finally, Section VII concludes the work of this paper.

II. HEANN

It is crucial to choose appropriate search operators when
evolving ANNs. Crossover- and mutation-based EAs are two

OONG AND ISA: ADAPTIVE EVOLUTIONARY ANNs FOR PATTERN CLASSIFICATION 1825

TABLE I

DESCRIPTION OF HEANN ADAPTIVE MUTATION PARAMETERS

Notation(s) Description

Ps
Structural mutation probability
This parameter determines the addition and deletion of hidden nodes and network
connections

Pw
Weight mutation probability
This parameter determines whether the connection weights should be mutated, i.e., adding
random Gaussian noise with zero mean and step size of SS

SS Step size of weight perturbation

Pgs , Pgw , and SSg
Global structural mutation probability, global weight mutation probability, and global step
size of weight perturbation

These parameters determine the mutability of the entire population

Pls , Plw , and SSl
Local structural mutation probability, local weight mutation probability, and local step size
of weight perturbation

These parameters determine the mutability of an individual in the population

tmpPgs , tmpPgw , and tmpSSg
Temporary global structural mutation probability, temporary global weight mutation
probability, and temporary global step size of weight perturbation

These parameters determine the decay rate of Pgs , Pgw , and SSg

basePls , basePlw , and baseSSl
Base local structural mutation probability, base local weight mutation probability, and base
local step size of weight perturbation

These parameters determine the maximum achievable value of Pls , Plw , and SSl

popular approaches used to evolve ANNs. ANNs utilize
distributed representations in which the knowledge is distrib-
uted among all of the weights in an ANN. The use of crossover
to recombine one part of an ANN with another part of an ANN
is likely to destroy both ANNs [19]. However, crossover is
useful for an ANN that utilizes a local representation such
as the RBF. In addition, Spears and Anand [23] claim that
crossover is effective in the evolution of ANNs when the
population size is sufficiently large, but no general guideline is
provided for how large a population size should be to improve
the result. Nevertheless, the permutation problem stands as
a major issue in crossover-based evolutionary ANNs [19].
Thus, EP [24], [25] is adopted in HEANN and emphasizes the
preservation of the behavioral links between parent and child.
Hence, no recombination operator is used in HEANN. More-
over, HEANN introduces a novel adaptive mutation strategy to
enhance the balance between the global and local search capa-
bilities of the evolutionary process. Although HEANN is used
to evolve feedforward ANNs with sigmoid activation functions
(Fig. 1) in this paper, it is not restricted to the use of a specific
classifier. Rather, the evolutionary technique used in HEANN
can be applied to any type of ANN with minimal constraint.

A. Overview

In this sub-section, an overview of the HEANN algorithm
will be presented through a description of adaptive mutation
strategy and a step-by-step illustration. Detailed descriptions
about each component of HEANN including the encoding
scheme, fitness function, stopping criteria, and selection mech-
anism are given in the subsequent sub-sections.

The balance between global search and local search of
the EA is dictated by the values of mutation probability and

perturbation step size. Large values of mutation probability
and perturbation step size boost the exploration at the expense
of exploitation. Although a conventional scheduling method
can reduce the mutation probability or step size over time,
it is difficult to determine the decay rate. Rather, HEANN
uses two main guidelines to adapt the mutation probability
and step size of the evolutionary process. First, the GL in the
population is used to adapt the mutation probability and step
size of the entire population. Second, the fitness value of each
individual in the population is used to determine the severity
of the mutation in a given individual in the population. The
GL is described in detail in Section II-C. Table I shows the
general descriptions of HEANN adaptive mutation parameters.
Guided by the GL in the population, the global structural
mutation probability (Pgs), global weight mutation probability
(Pgw) and global step size of the weight perturbation (SSg) at
generation t are defined as follows:

Pgs(t) = tmpPgs ∗
(

s(t)

S

)
(1)

Pgw(t) = tmpPgw ∗
(

s(t)

S

)
(2)

SSg(t) = tmpSSg ∗
(

s(t)

S

)
(3)

where tmpPgs , tmpPgw, and tmpSSg are updated with Pgs(t),
Pgw(t), and SSg(t), respectively, when GL(t) < 0. S is the
maximum consecutive generation allowable for GL ≥ 0,
s(t) is the current value of the stopping counter. The values
of tmpPgs , tmpPgw, and tmpSSg are initialized with the
user-specified value. Typically, the initial value of tmpPgs and
tmpPgw can be set to slightly higher than the conventional
mutation probability (0.01) because Pgs and Pgw can be

1826 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 11, NOVEMBER 2011

adapted during evolutionary process. The value of tmpSSg

is initialized to a small value (≤5) such that the sigmoid
function of the ANN will not enter the saturation region easily.
An analysis of the effect of mutation parameters is presented
in Section III.

From (1)–(3), it is clear that tmpPgs , tmpPgw, and tmpSSg

determine the decay rates of Pgs , Pgw, and SSg . As the stop-
ping counter decreases throughout the evolutionary process,
Pgs , Pgw, and SSg also decrease slowly. Consequently,
HEANN shifts gradually from a global search to a local
search. Every time a better solution is found (GL(t) < 0), it
is assumed that the evolutionary process has yet to converge
to global minimum (or even a local minimum). Thus, tmpPgs ,
tmpPgw, and tmpSSg are updated so that the decay rates of
Pgs , Pgw, and SSg are reduced to account for more time in
local search.

In addition to adapting the mutability of the entire popu-
lation, HEANN adapts the mutation probability for a given
individual in the population. Individual mutation operations
are guided by fitness values. The local structural mutation
probability (Pls), local weight mutation probability (Plw)
and local step size of weight perturbation (SSl) of the n-th
individual in the population are defined as follows:

Pls(n) = basePls ∗
(

1 − Fbest

F(n)

)
(4)

Plw(n) = basePlw ∗
(

1 − Fbest

F(n)

)
(5)

SSl(n) = baseSSl ∗
(

1 − Fbest

F(n)

)
(6)

where Fbest is the lowest (best) fitness value of a network in the
population in the current generation, F(n) is the fitness value
of n-th individual in the population; and basePls , basePlw,
and baseSSl are the user-specified base local structural muta-
tion probability, base local weight mutation probability, and
base local step size of weight perturbation, respectively, for
an individual. Typically, the value of basePls and basePlw

can be set to slightly higher than the conventional mutation
probability (0.01), and the value of baseSSl is set to a small
value (≤5) such that the sigmoid function of the ANN does
not enter saturation region easily.

It is observed that in (4)–(6), the values of Pls , Plw , and
SSl are not greater than basePls , basePlw, and baseSSl . A
low-fitness (better) individual will have lower values of Pls ,
Plw , and SSl , whereas high-fitness individuals will have higher
Pls , Plw , and SSl to preserve the good individuals within the
population. Note that the values of Pls , Plw , and SSl are
zero for the solution with best fitness, which is acceptable
because the mutation operation depends on both global and
local mutation strategies as described below.

The structural mutation probability (Ps), weight mutation
probability (Pw), and step size of the weight perturbation (SS)
of the n-th individual at generation t are the sum of their global
and local components defined as follows:

Ps(n, t) = Pgs(t) + Pls(n) (7)

Pw(n, t) = Pgw(t) + Plw(n) (8)

SS(n, t) = SSg(t) + SSl (n). (9)

O � Output nodes
H � Hidden nodes
I � Input nodes
× � Connection weights (real value)
b � Bias (real value)

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

1 1 10

©

©

I

H

O

× ×
× ×

×
×
× ×

×
×

×
×

×

×
×
×

×
×
×
×

0 0 0 0 0
0
0
0

b
b

b
b

b

Connection
matrix

Node vector

Fig. 2. Node vector and connection matrix of ANN. A zero entry in the node
vector indicates that this particular node does not exist, and all connections
from and to this node are discarded (highlighted row and column).

A detailed analysis about global mutation strategy and local
mutation strategy is presented in Section III.

The major steps of HEANN are explained as follows.
Step 1: Generate an initial population of μ ANNs with

random hidden nodes and random connections. Assign the
initial weights including the network bias with uniform ran-
dom values between −1 and 1. Initialize S, basePls , basePlw,

baseSSl , tmpPgs , tmpPgw, and tmpSSg .
Step 2: Calculate the local structural mutation probability

(Pls), local weight mutation probability (Plw), and local step
size of weight perturbation (SSl) of each individual network
in the population according to (4)–(6), respectively. Pls , Plw ,
and SSl are used to determine the severity of the mutation in
a given individual in the population.

Step 3: Calculate Pgs(t), Pgw(t), and SSg(t) at generation t
according to (1)–(3), respectively. Pgs(t), Pgw(t), and SSg(t)
are used to guide the entire population’s exploration and
exploitation of the search space. Note that this step is executed
at intervals of generations (10 generations are used in the
current implementation) instead of every generation.

Step 4: Perform the structural mutation (adding or deleting
hidden nodes and network connections) and weight mutation
(Gaussian perturbation of weights) on the node vector and
connection weight matrix (Fig. 2) for each individual in the
parent population. Hidden nodes of an ANN are mutated
by bit flipping in the node vector. Connection deletion is
performed by defining the non-zero value in the connection
matrix as zero. Conversely, connection addition is achieved
by initiating a zero value in the connection matrix with
uniform random values between −1 and 1. The probability of
structural mutation is based on (7). Next, the probability that
a non-zero connection weight of a network will be mutated is
based on (8). If successful, this particular connection weight
is mutated by adding a Gaussian perturbation with mean 0
and a step size as described in (9), which is defined as
follows:

wi j = w′
i j + N

(
0,

(
SSl + SSg

))
(10)

where wi j and w′
i j denote the parent and offspring connec-

tion weight values in the connection matrix. N(0, σ) is the

OONG AND ISA: ADAPTIVE EVOLUTIONARY ANNs FOR PATTERN CLASSIFICATION 1827

Gaussian perturbation with mean 0 and standard deviation σ .
In this case, σ = SSl + SSg.

Step 5: Evaluate each offspring created after the mutation
according to the classification error in the validation set. If
the best network found in the current generation is better than
the reserved best network (ANNbest) up to this generation,
replace ANNbest with this network and reset the stopping
counter to its initial value, S. Under the same condition, update
the temporary global structural mutation probability (tmpPgs),
temporary global weight mutation probability (tmpPgw), and
temporary global step size of weight perturbation (tmpSSg) to
Pgs(t), Pg(t)w, and SSg(t), respectively. If there is a tie in the
classification error at the validation set when finding ANNbest,
the individual with the lowest classification error at the training
set will be the new ANNbest. If a tie still exists, the individual
with the fewest connections and input nodes will be the new
ANNbest. Decrease the stopping counter by one and do not
update tmpPgs , tmpPgw, and tmpSSg if the classification error
at the validation set of the best network found in the current
generation is equal to or greater than ANNbest.

Step 6: Stop the evolutionary process and go to Step 8 if
the stopping counter is decreased to zero or the maximum
number of generations has been reached. Otherwise, proceed
to the next step.

Step 7: Sort the offspring according to their fitness values
and use the rank-based selection to choose μ–2 offspring to
become parents for the next generation. Elitism is also used
in HEANN, where one fittest parent and one fittest offspring
from the current generation will be retained for the next
generation. Hence, μ ANNs are selected as parents for the
next generation. Steps 2–7 are repeated until the termination
criterion for stopping the evolutionary process is satisfied.

Step 8: The best network in terms of the classification error
in the validation set (ANNbest) is the final ANN for the given
problem.

B. Encoding Scheme

In this paper, a HEANN is used to evolve arbitrarily
connected feedforward neural networks (ACN) (Fig. 1), where
there is a minimum constraint for the connections between
neurons. A direct connection from input nodes to output
nodes and a connection across layers are allowed. ACN has
been proven to be more robust than the standard multilayer
perceptron (MLP) and requires fewer neurons to fulfill the
same task [26], [27]. It is also clear that the standard MLP is a
subset of ACN. At one extreme, a fully connected feedforward
neural network can be formed when all possible feedforward
connections are connected in the ACN.

In total, Ni + Nh + No nodes are present in the network,
where Ni , Nh , and No are the numbers of input, hidden, and
output nodes, respectively. The maximum number of hidden
nodes allowable in the ANN is a user-specified parameter,
whereas the number of input nodes and output nodes is
problem-dependent. The direct encoding scheme is used to
represent the network topology and the connection weights,
including biases (Fig. 2). A Nh dimensional vector represents
the hidden nodes of a particular ANN with binary entries

(i.e., hidden nodes for this given example), which indicates
the existence of these nodes (1 = exist; 0 = does not exist).
For the network connections and weights, a (Ni + Nh + No)×
(Ni + Nh + No) matrix is sufficient to represent all possible
connections and weights in the ACN (Fig. 2) (i.e., two output
nodes for this given example). The entries of the connection
matrix are real numbers representing weights (× in Fig. 2)
and biases (b in Fig. 2) of a network. A zero entry indicates
that no connection exists between two nodes indexed by the
row and column numbers of the matrix.

Note that the connection matrix representing the ANN
structure will be triangular below the diagonal because no
feedback connection from a neuron with high indices to one
with a lower index is allowed. In addition, a zero entry in the
node vector indicates that this particular node does not exist,
and all connections to and from this node are discarded from
the connection matrix (highlighted row and column in Fig. 2),
which shows that the hidden nodes of an ANN are evolvable
by simply flipping a bit in the node vector. The connection
direction is defined from the node with column number i to
the node with row number j in the connection matrix. The
connection weights are updated by Gaussian perturbation in
the mutation operation as described in Section II-A, Step 4.

C. Fitness Function and Stopping Criteria

The fitness function (F) used in HEANN is given by a
weighted sum of two important factors: training error (ϕt) and
network complexity (ϕc)

F = α1ϕt + α2ϕc (11)

where α1 and α2 are user-defined small-value parameters
between 0 and 1. The training error (ϕt) and network com-
plexity (ϕc) are defined as

ϕt = 100

np

p∑
t=1

n∑
i=1

(Ti (t) − Yi (t))
2 (12)

ϕc = ln C (13)

where n and p are the number of output nodes and number
of training patterns, respectively; Ti (t) and Yi (t) represent the
target and actual outputs of the i th output nodes for a training
pattern t ; C denotes the number of connections in the network;
logarithm scaling is used in (13) to avoid large values as C
increases. Note that the lower fitness value implies a fitter
individual.

The network topology and weights can grow indefinitely
when direct encoding is used to represent an ANN. Although
the maximum number of hidden nodes allowable in the ANN
is specified by the user, the network size can grow to its
maximum bound. Thus, the use of a fitness function to penalize
the large network is another positive feature to obtain compact
network topology.

The values of α1 and α2 are used to control the contribution
of their respective factors in the overall fitness value. Typically,
a high contribution of network training error in the overall
fitness value and a small penalty toward network complexity

1828 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 11, NOVEMBER 2011

Pr
ob

ab
ili

ty
P(0)

0
Generation

New ANN
best

found

Fig. 3. Illustration of global adaptive mutation strategy.

are preferable for evolving compact ANNs with a good gen-
eralization capability. The values of α1 = 1 and α2 = 0.1 are
used based on the results of preliminary experiments.

Stopping the evolutionary process after an appropriate num-
ber of generations is a crucial step to ensure that the evolved
ANN does not lose its generalization capability or suffer from
premature convergence. In HEANN, classification error at the
validation set is used to monitor the GL in the population.
According to Prechelt [28], the GL at generation t can be
defined as follows:

GL(t) =
(

Ebest(t) + 1

Eopt(t) + 1
− 1

)
(14)

where Ebest(t) is the lowest classification error for the valida-
tion set found in the population of offspring at generation t ;
Eopt(t) is the lowest classification error for the validation
set found up to generation t . A high GL can be an obvious
reason for stopping the training. However, in early generations,
the training performance and validation performance are both
inconsistent, and deciding to stop the evolutionary process
based solely on the GL is unreliable and may lead to premature
convergence. Hence, HEANN allows the evolutionary process
to continue for an extra S generations before stopping when
there is a consecutive GL or no change in the best accuracy,
i.e., GL ≥ 0 consecutively for S generation.

There are two conclusions that can be drawn from GL ≥ 0 in
the population. First, over-fitness is apparent in the population.
Second, the population has located a good region in the search
space but faces difficulty in local search. A stopping counter
with the initial value of S is used to flag a stopping signal when
it decreases to zero. The stopping counter will be decreased by
one in the particular generation if GL ≥ 0 and will be reset
to its initial value S if an ANN with a better classification
accuracy at the validation set than ANNbest is found, i.e.,
GL < 0. These extra generations are necessary to avoid over-
fitness or premature convergence. The best ANN with the
lowest classification error at the validation set (ANNbest) found
up to the current generation is the final ANN for the given
problem. If there is a tie in the classification error for the
validation set when finding ANNbest, the individual with the
lower classification error for the training set will be selected
as the final result. If a tie still exists, the individual with fewer

connections and input nodes will be selected as the final result.
The final ANN will then be tested on an unseen testing set to
evaluate its performance. The stopping criteria are similar to
the sliding window of Palmes et al. [12] except that the GL
is observed in every generation to prevent good ANN results
among the internal windows from being eliminated.

D. Selection Mechanism

To maintain the population diversity at each generation
and prevent super individuals from dominating the whole
population [29], HEANN uses rank-based selection [30] to
choose μ–2 offspring to become parents for the next genera-
tion. Moreover, elitism [29] is used in HEANN where one
fittest parent and another fittest offspring from the current
generation is also retained for the next generation. Thus, μ
ANNs are selected as parents for the next generation. Each
individual in the parent population undergoes a structural
mutation (adding or deleting nodes and connections) and
weight mutation (Gaussian perturbation of weights).

III. ANALYSIS OF ADAPTIVE MUTATION STRATEGY

The values of Ps , Pw , and SS are often fixed in the con-
ventional evolutionary ANNs. However, biological evolution
shows that these values are dependent on the evolution state
and should be adapted [31]. This section analyzes and further
explains the relationship between the global adaptive strategy
and local adaptive strategy of HEANN.

A. Global Adaptive Mutation Strategy

Fig. 3 shows the strategy for adapting the global mutation
probability (Pg) of HEANN. Rather than scheduling the
Pg over time until the maximum generation is reached or
the evolutionary process satisfies the termination criterion,
HEANN uses the GL from the entire population to determine
the decay rate of Pg . In the initial stages of the evolutionary
process where ANN candidates are scattered around the search
space, the Pg of the entire population is high, and there is a
high probability of finding a new ANNbest. Thus, Pg hardly
decreases to allow the exploration of better search regions.

In the intermediate stage (or pre-maturing stage) of the
evolutionary process, the use of a large Pg is no longer feasible
to find a better ANNbest, which also contributes to the long
execution and poor convergence of the evolutionary process.
Hence, Pg decays when there is no new ANNbest found in the
population indicated by GL ≥ 0 consecutively. As Pg decays,
HEANN gains a better local search capability. A new ANNbest
found in the intermediate stage of the evolutionary stage will
reduce the decay rate of Pg with the aim of extending the
local search period and avoiding over-fitness or premature
convergence.

Finally, when the low Pg can no longer provide a high
probability of finding a better ANNbest, i.e., no ANNbest is
found for S consecutive generations, HEANN is converged and
the evolutionary process will be terminated. Here, HEANN
escapes from local optima by the rank-based selection mech-
anism. Low-performance ANNs located far from the current

OONG AND ISA: ADAPTIVE EVOLUTIONARY ANNs FOR PATTERN CLASSIFICATION 1829

baseP
l

0

Pr
ob

ab
ili

ty

Generation

Fig. 4. Variation of average local mutation probability.

important region will not necessarily be eliminated from the
population, and HEANN will continue to look for a better
solution. Thus, HEANN can still explore new regions of the
search space because of the high local mutation probability,
even though the evolutionary process has reached its final
stage. The analysis of the global adaptive mutation probability
is valid for SSg because the same adaptive strategy is being
used.

B. Local Adaptive Mutation Strategy

Unlike the global adaptive mutation strategy, each individual
in the population has a different local mutation probability
(Pl). Fig. 4 depicts the general trend of the average local
mutation probability in the population for a typical case
(obtained from the results of a diabetes problem). Pl fluctuates
wildly in the initial stages of the evolutionary process because
of the scattered solutions and rank-based selection mechanism
of HEANN. Moreover, a large difference between F(n) of the
n-th individual in the population and Fbest accounts for the
large average mutation probability in the initial stage of the
evolutionary process. Although Pl fluctuates throughout the
evolutionary process, it exhibits a decreasing trend in average
value, which indicates that the F(n) of n-th individual in the
population is close to Fbest. In other words, HEANN converges
to an optimum solution.

To prevent the disruption of the near-optimal ANNs or
premature convergence, the HEANN local adaptive mutation
strategy assigns a lower value of Pl for high-fitness ANNs and
a higher value of Pl for low-fitness ANNs. This is achieved
by (4)–(6). Coupled with the rank-based selection mechanism,
the low-fitness ANNs prevent HEANN from being stranded at
a local optimum, whereas the high-fitness ANNs aid in the
convergence of HEANN. This analysis is applicable to SSl

because the same adaptive strategy is being used.

C. Combination of Global and Local Adaptive Mutation
Strategies

The global adaptive mutation strategy controls the mutabil-
ity of the entire population, and the local adaptive mutation
strategy determines the severity of the mutation for a given
individual in the population. Thus, HEANN emphasizes the
exploration of the entire search space and the exploitation

of important regions. In the initial stage of the evolutionary
process, the value of Pg and the average value of Pl are
sufficiently large to account for the exploration of the entire
search space. As Pg decreases, the evolutionary process enters
the intermediate stage, where high-fitness ANNs start to fine-
tune the network parameters and connections, meanwhile, low-
fitness ANNs continue to search for better search regions.
Lastly, the low Pg in the final stage of the evolutionary
process emphasizes the exploitation of important regions. Only
a small portion of the population with large Pl remains for
exploration. As a result, HEANN overcomes the shortcoming
of EAs in fine-tuning ANNs while preserving the global search
capability of EAs.

IV. BENCHMARK FUNCTIONS

The evolutionary framework of HEANN as described above
is designed to evolve ANN. To examine the performance of
this evolutionary framework in optimizing the local search
capability of the evolutionary process and gaining a greater
probability of escaping from local minima, four benchmark
functions [17], [32] are used to test the evolutionary frame-
work. We call this evolutionary framework a hybrid EA
(HEA). The details of the HEA are the same as those described
in Section II except for the weight perturbation step size,
which is equivalent to the input variable perturbation step
size in the benchmark functions, and the weight mutation
probability, which is equivalent to the input variable mutation
probability. The structural mutation probability is ignored in
this test.

The four functions fi (x); i = 1, 2, 3, 4, where x = [x1,
x2, . . . , x30]T is a 30-D input, are defined as follows.

1) Sphere Model

f1(x) =
30∑

i=1

x2
i , −5.12 ≤ xi ≤ 5.12

min(f1) = f1(0, . . . , 0) = 0. (15)

2) Schwefel’s Problem 2.22

f2(x) =
30∑

i=1

|xi | +
30∏

i=1

|xi |, −10 ≤ xi ≤ 10

min(f2) = f2(0, . . . , 0) = 0. (16)

3) Generalized Rastrigin’s Function

f3(x) =
30∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]
,

−5.12 ≤ xi ≤ 5.12

min(f3) = f3(0, . . . , 0) = 0. (17)

4) Generalized Griewank Function

f4(x) = 1

4000

30∑
i=1

x2
i −

30∏
i=1

cos

(
xi√

i

)
+ 1,

−600 ≤ xi ≤ 600

min(f4) = f4(0, . . . , 0) = 0 (18)

1830 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 11, NOVEMBER 2011

100

10

1

0.1

0.01

10

1

0.1

0.01

1

0.1

0.01

0.001

0.0001

Fi
tn

es
s

Fi
tn

es
s

Fi
tn

es
s

100

10

1

0.1

0.01

Fi
tn

es
s

Sphere Schwefel
HEA

EA

HEA

EA

HEA

EA

HEA

EA

0 500 1000 1500 0 500 1000 1500

Generation

0 500 1000 1500

Generation

0 500 1000 1500

Generation

Generation

Rastrigin Griewank

Fig. 5. Comparison between HEA and EA on functions f1 to f4.

TABLE II

COMPARISON BETWEEN HEA AND EA ON FOUR BENCHMARK FUNCTIONS

Function
HEA EA

t-test against HEA
Mean Std. Dev. Mean Std. Dev.

f1 2.40 × 10−4 8.30 × 10−5 3.91 × 10−4 9.10 × 10−5 1.09 × 10−13

f2 5.97 × 10−2 9.31 × 10−3 8.00 × 10−2 1.47 × 10−2 2.14 × 1012

f3 3.05 × 10−2 1.01 × 10−2 1.91 × 10−1 7.12 × 10−2 3.25 × 10−21

f4 2.91 × 10−2 5.57 × 10−3 5.69 × 10−2 1.33 × 10−2 7.01 × 10−9

where functions f1 and f2 are unimodal, and functions f3
and f4 are multimodal. The number of local minima for
functions f3 and f4 increases exponentially with the problem
dimension [32]. Functions f1 and f2 are aimed to investigate
the strength of HEA to finely tune the local minima. Func-
tions f3 and f4 are used to examine the ability of HEA to
escape from poor local minima and finely tune a good search
region.

The results are then compared with those obtained from
conventional EA, which has a constant mutation probability
and mutation step size. For each test function, the population
size is 100 and the test is run over 1500 generations. These
parameters are the same for HEA and EA. The basePlw and
tmpPgw for HEA assume the same value to maintain the
balance between global search and local search. These values
for functions f1 to f4 are set to 0.01, 0.01, 0.02, and 0.02,
respectively. Similarly, the baseSSl and tmpSSg assume the
same value and are set to 1, 1, 1, and 20 for the four benchmark
functions, respectively. The mutation probabilities of EA for
functions f1 to f4 are set to 0.01, 0.01, 0.02, and 0.02, respec-
tively, and the mutation perturbation step sizes are set to 1, 1,
1, and 20, respectively. These values are selected from prelimi-
nary experiments for good performance. The initial population

is generated uniformly at random in the range specified in
(15)–(18).

Fig. 5 shows the progress of the mean best solutions found
by HEA and EA over 50 runs for functions f1 to f4. The
convergence rate of HEA and EA are almost equal during
the early stage of the evolution, but HEA outperforms EA in
the final stage of the evolution. Moreover, the average results
of 50 independent runs shown in Table II indicate that HEA
outperforms EA with a 95% confidence level. Functions f1
and f2 are unimodal, and the better results of HEA over EA
in these functions indicate that EA is weaker than HEA in fine
tuning. Such weakness is apparent when the solution is near
the global minimum. The ability of HEA to escape from local
minima can be observed from the results for functions f3 and
f4. HEA performs significantly better than EA consistently for
these two functions.

V. RESULTS OF EVOLVING ANN

To examine the performance of HEANN, seven benchmark
classification problems were selected from the UCI machine
learning repository [33] and are summarized in Table III.
The chosen datasets cover examples of different difficulties

OONG AND ISA: ADAPTIVE EVOLUTIONARY ANNs FOR PATTERN CLASSIFICATION 1831

TABLE III

CHARACTERISTICS OF SEVEN BENCHMARK PROBLEMS

Data set Inputs Classes
Size of
training

set

Size of
validation

set

Size of
testing

set

Cancer 9 2 349 175 175
Diabetes 8 2 384 192 192

Iris 4 3 75 38 37
Wine 13 3 89 45 44

Mammography 5 2 481 240 240
Blood 4 2 374 187 187

Survival 3 2 154 76 76

and various sizes of input attributes, output classes, and data
patterns.

A. Experimental Setup

Prechelt [28] proposed a set of ANN benchmarking method-
ologies. We followed these methodologies to set up the
experiments for all problems to allow a fair comparison
with other similar works. The datasets of all problems were
partitioned into three sets: a training set, a validation set and
a testing set following the partition rule of Prechelt [28].
The number of examples in these sets is shown in Table III.
The input attributes of all problems were rescaled to between
0 and 1 by a linear function. The output attributes of all
problems were encoded using a 1-of-m output representation
for the m classes. The output node with the highest activation
indicates the output class (the winner-take-all strategy). The
initial connection density of the ANNs was set to 0.75, and
the initial connection weights were assigned uniform random
values between −1 and 1.

The use of conventional classification accuracy measures
will disproportionately emphasize large classes. Other gener-
alization error measures such as the receiver-operating charac-
teristic curve and area under the curve are useful for problems
with unbalanced classes [34]. However, these two measures are
only suitable for two class problems. As used in this paper,
the average class error rate is independent of class distribution
and is defined as follows:

average class error rate = 1

m

m∑
i=1

ei

ni
(19)

where m is the number of classes in a problem, ei is the
number of misclassified examples of class i and ni is the total
number of example of class i .

The compactness of the ANN is measured by the number
of connections of a network. Moreover, Akaike’s information
criterion (AIC) [35] is used to evaluate the structure of an ANN
that combines the number of free parameters in an ANN and
the output error of the ANN as an estimated statistical model.
The AIC penalizes the number of parameters to discourage
overfitting. The corrected version of AIC used in this paper is
defined as follows:

AIC = n ln(MSE) + 2K + (2K (K + 1))

(n − K − 1)
(20)

where n is the sample data size, MSE is the mean square
error of ANN, and K is the number of estimated parameters
in ANN (i.e., number of connections in the ANN). A lower
AIC indicates better ANN structure.

To further justify the importance of combining the local
and global adaptive mutations (HEANN-GL), HEANN with
a global adaptive mutation (HEANN-G) and HEANN with a
local adaptive mutation (HEANN-L) were compared in the
experiments. In addition, ANNs evolved from the normal EA
with fixed mutation probability (EANN) were also compared.
About 50 independent runs were simulated for each variant
of HEANN and EANN. Some control parameters need to
be set. However, HEANN is not very sensitive to these
parameters, and tuning all of them is unnecessary. Table IV
lists the implementation details of three HEANN variants and
EANN used in the experiments. EANN has a fixed mutation
probability of 0.01 and weight perturbation step size of 1.
For HEANN variants, the mutation probability and weight
perturbation step size decayed from 0.02 and 2, respectively,
(global) or fluctuated up to a maximum of 0.02 and 2,
respectively (local). Furthermore, a few similar works were
chosen for comparison with HEANN. This paper does not
seek to compare HEANN exhaustively with all other similar
algorithms because it is difficult to compare the designs of
the ANNs with EA. Therefore, the comparisons here mainly
serve as a guide to evaluate the performance of HEANN for
different problems. In addition, HEANN is also compared
with other leading classification techniques used for modern
classification benchmarks, i.e., backpropagation-trained ANN
(BP-ANN), support vector machine (SVM), k-nearest neighbor
(k-NN) algorithm and C4.5 decision tree.

B. Experimental Results

The results presented in Table V show that HEANN-GL
achieves the lowest test error rate (TER) in all problems.
The TER is tabulated using (19). Although the t-test based
on the TER shows a close match among HEANN variants
and EANN in four out of seven problems, the network
complexity and the number of generations of HEANN-GL
are significantly lower than those observed for HEANN-L
and EANN at a 95% confidence level, with the exception
of the iris problem, in which the number of generations of
HEANN-GL is significantly lower than that of HEANN-L and
EANN at 90% confidence level. Furthermore, HEANN-GL
has the lowest AIC value in all problems, which indicates that
HEANN-GL evolves a better ANN structure than all other
algorithms. HEANN-GL performs better than HEANN-G in
terms of network complexity in six out of seven problems. The
number of generations of HEANN-GL and HEANN-G does
not show a significant difference. In addition to the comparison
between HEANN variants and EANN, the results of the EPNet
[11], mutation-based genetic neural network (MGNN-ep)
[12], and self-adaptive growth-probability-based neural net-
work (NN-SAGP) [13] are also compared. EPNet uses five
mutation operators, which include gradient learning to modify
the ANN architecture and weights. MGNN-ep uses the EP and
scheduled mutation probability for weight learning. NN-SAGP

1832 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 11, NOVEMBER 2011

TABLE IV

IMPLEMENTATION DETAILS

Features
Algorithms

HEANN-GL HEANN-G HEANN-L EANN

Maximum local mutation probability and 0.02 – 0.02 –
step size (basePls , basePlw, baseSSl) 0.02 0.02

2 2

Initial global mutation probability and 0.02 0.02 – –
step size [Pgs (0), Pgw(0), SSg (0)] 0.02 0.02

2 2

Structural mutation probability (Ps) Pls + Pgs Pgs 0.01 + Pls 0.01

Weight mutation probability (Pw) Plw + Pgw Pgw 0.01 +Plw 0.01

Weight perturbation step size (SS) SSl + SSw SSw 1 + SSl 1

Stopping counter (S) 500

Population size 100

Maximum generation 3000

Max hidden nodes 10

Fitness constant α1 = 1; α2 = 0.1; α3 = 0; (α3 = 1 for evolution includes input feature selection)

uses the self-adaptive growth probability to evolve the weights
and the hidden nodes of the ANNs. These algorithms share one
ultimate goal, i.e., to design a compact and well-generalized
ANN topology.

Table V shows that HEANN-GL outperforms MGNN-ep in
terms of TER, the network complexity and the average number
of generations in cancer, iris and wine problems. Although
MGNN-ep uses a scheduled mutation probability to evolve
ANNs, it only considers the severity of the mutation for a
given individual in the population and neglects the adaptability
of the entire population. This is the main reason for the
difference in the performance of HEANN-GL and MGNN-
ep. Compared with NN-SAGP, HEANN-GL has a lower TER
and standard deviation in cancer and diabetes problems. The
self-adaptive growth probability strategy of NN-SAGP is a
good attempt at adapting the structural mutation of ANNs
throughout the whole evolutionary process. However, NN-
SAGP overlooks the importance of adapting the mutation
probability, which plays a major role in parametric learning
and fine tuning. Another comparison is performed between
HEANN-GL and EPNet. The results in Table V show that
HEANN-GL outperforms EPNet in terms of TER in cancer
and diabetes problems. However, the network complexity is
not significantly different between HEANN-GL and EPNet in
cancer problems. This can be explained by the comparable per-
formance between the adaptive mutation strategy of HEANN-
GL and ordered mutation operators of EPNet, which encourage
the parsimony of evolved ANNs. Nevertheless, EPNet still
suffers from the noisy evaluation of its fitness function aris-
ing from its continuous reliance on gradient learning during
mutation.

Table VI compares the HEANN results with those of other
leading classification techniques on modern classification
benchmarks, i.e., BP-ANN, SVM, k-NN algorithm and C4.5

decision tree. The parameters used by various classification
techniques are also shown in this table. These parameters are
selected by trial-and-error experiments for good performance.
The results presented are the average of a single 10-fold
cross-validation run. HEANN achieved the lowest TER in six
out of seven problems. The TER measure is independent of
the class distribution. Thus, it can be clearly seen that C4.5
decision tree perform poorly for imbalanced class distribution
problems, such as diabetes, blood and survival problems. The
SVM and k-NN algorithms achieve good results in non-noisy
problems but perform poorly for noisy datasets such as
diabetes and survival problems. The BP-ANN shows good
average results in all problems. However, the performance
of BP-ANN is not better than that of HEANN because the
network structure obtained by trial and error might not be
optimal.

C. Effect of Mutation Parameters

This section investigates the effect of different mutation
parameters on the performance of HEANN and EANN.
Three problems were selected for this analysis: cancer, dia-
betes and mammography problems. These problems were
selected because they possess different class distributions
and different difficulties. For example, the cancer problem
is an easy problem and has an unbalanced class distribu-
tion, the diabetes problem is a difficult problem that has
an unbalanced class distribution, the mammography prob-
lem possesses a moderate difficulty and a nearly balanced
class distribution. For other control parameters, HEANN is
not very sensitive to the distributions, and tuning them is
unnecessary.

Fig. 6 compares the TER and AIC achieved by HEANN
and EANN for cancer, diabetes and mammography problems

OONG AND ISA: ADAPTIVE EVOLUTIONARY ANNs FOR PATTERN CLASSIFICATION 1833

Cancer Cancer

T
E

R
T

E
R

T
E

R

1.4
1.3
1.2
1.1

1
0.9
0.8
0.7

0
(0)

0.02
(2)

0.04
(4)

0.06
(6)

0.08
(8)

0.1
(10)

23.5

23

22.5

22

21.5

21

21.5
21

20.5

19.5
19

20

18.5

17.5
18

0
(0)

0.02
(2)

0.04
(4)

0.06
(6)

0.08
(8)

0.1
(10)

0
(0)

0.02
(2)

0.04
(4)

0.06
(6)

0.08
(8)

0.1
(10)

Diabetes

0
(0)

0.02
(2)

0.04
(4)

0.06 0.08
(8)

0.1
(10)(6)

Diabetes

0
(0)

0.02
(2)

0.04
(4)

0.06
(6)

0.08
(8)

0.1
(10)

0
(0)

0.02
(2)

0.04
(4)

0.06
(6)

0.08
(8)

0.1
(10)

Mutation probability (Mutation step size)

Mutation probability (Mutation step size)
Mutation probability (Mutation step size)

Mammography

Mutation probability (Mutation step size)

Mutation probability (Mutation step size) Mutation probability (Mutation step size)

Mammography

A
IC

−150

−200

−250

−300

−350

−400

−450

A
IC

−50

−100

−150

−200

−250

A
IC

0

−20

−40

−60

−80

−100

−120

HEANN

EANN

HEANN

EANN

HEANN

EANN
HEANN

EANN

HEANN

EANN

HEANN

EANN

Fig. 6. Effect of mutation probability and mutation step size on HEANN and EANN.

using different mutation parameters. The values of Ps and
Pw were varied from 0.01 to 0.10, and the value of SS was
varied from 1 to 10. These parameters are proportional to
each other because the increase in these parameters will favor
a global search and achieve poor fine tuning. For HEANN,
the basePls , tmpPgs , basePlw, and tmpPgw assume the same
value to maintain the balance between global search and
local search. These parameters are varied from 0.01 to 0.10.
Similarly, the baseSSl and tmpSSg assumed the same value
and were varied from 1 to 10. The results presented are
the average of 50 independent runs. HEANN and EANN
demonstrate an increasing trend with respect to TER when the
mutation probability and mutation step size increase. However,
HEANN is not very sensitive to the mutation parameters
compared with EANN. Although a low mutation probability
and mutation step size can produce ANN with low TER, the
network structure evaluated using AIC is not optimal. Thus,
the mutation probability and mutation step size should not

be too low because the performance of EA will suffer from
premature convergence.

VI. DISCUSSION

The benchmark function test indicates that HEA has a better
local search capability and a greater probability of escaping
from local minima than conventional EA. HEA adaptively
alters the mutation probability and mutation step size during
the evolutionary process to consistently produce better results
than EA, particularly in the final stage of the evolutionary
process.

Table V suggests that HEANN with a better local search
capability and a greater chance to escape from local minima
also performs well in fine tuning ANN. Additionally, Table VI
indicates that HEANN is more resistive to class-imbalanced
problems such as cancer, diabetes, blood and survival prob-
lems. It is also worth noting that HEANN introduces little

1834 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 11, NOVEMBER 2011

TABLE V

ANN ARCHITECTURE DESIGN: COMPARISON RESULTS FOR SEVEN BENCHMARK CLASSIFICATION PROBLEMS

Algorithm TER (Std. Dev.) Connections (Std. Dev.) Generations (Std. Dev.) AIC
t-Test Against HEANN-GL

TER Conn Gen

Cancer

HEANN-GL 0.83 (0.50) 48.48 (14.74) 78.42 (56.08) −325.43 – – –

HEANN-G 0.92 (0.84) 52.74 (14.67) 75.82 (61.75) –298.48 0.517 0.151 0.826

HEANN-L 0.89 (0.64) 60.34 (16.90) 129.44 (156.40) –225.39 0.549 0.000 0.034

EANN 0.93 (0.53) 57.44 (15.80) 123.84 (114.00) –249.36 0.333 0.004 0.014

MGNN-ep [11] 3.14 77.12 167.00 – – – –

NN-SAGP [12] 1.65 (0.68) – – – – – –

EPNet [10] 1.38 (0.94) 41.00 (14.70) – – – – –

Diabetes

HEANN-GL 21.33 (1.68) 47.56 (11.32) 404.04 (143.60) −70.21 – – –

HEANN-G 21.85 (1.54) 50.08 (12.53) 374.58 (151.50) –63.38 0.110 0.294 0.321

HEANN-L 22.15 (1.49) 53.54 (11.32) 621.22 (388.00) –51.57 0.011 0.010 0.000

EANN 21.91 (1.20) 57.68 (12.59) 547.54 (253.11) –36.01 0.049 0.000 0.001

NN-SAGP [12] 24.16 (2.58) – – – – – –

EPNet [10] 22.38 (0.014) 52.30 (16.10) – – – – –

Iris

HEANN-GL 0.70 (1.19) 31.30 (8.75) 173.36 (176.20) −29.92 – – –

HEANN-G 1.06 (1.53) 35.46 (9.22) 131.98 (95.20) 97.38 0.184 0.023 0.148

HEANN-L 0.81 (1.36) 38.10 (8.13) 378.80 (306.20) –0.07 0.664 0.000 0.000

EANN 0.8 (1.65) 41.32 (9.71) 252.82 (230.20) 73.81 0.723 0.000 0.056

MGNN-ep [11] 4.68 53.52 378.60 – – – –

Wine

HEANN-GL 3.06 (2.78) 55.42 (11.10) 128.38 (84.10) −453.78 – – –

HEANN-G 4.85 (2.99) 55.76 (9.34) 116.62 (69.53) –385.24 0.002 0.869 0.448

HEANN-L 3.59 (2.66) 70.16 (9.90) 208.10 (132.3) –371.85 0.325 0.000 0.001

EANN 4.63 (3.05) 68.92 (12.00) 221.38 (132.3) –368.55 0.008 0.000 0.000

MGNN-ep [11] 4.68 129.70 619.20 – – – –

Mammography

HEANN-GL 18.12 (1.11) 42.86 (10.78) 835.64 (296.10) −178.91 – – –

HEANN-G 18.32 (1.28) 41.66 (11.34) 875.06 (303.60) –176.33 0.392 0.589 0.513

HEANN-L 18.87 (1.24) 49.44 (9.44)
1429.24
(474.90) –154.98 0.002 0.002 0.000

EANN 18.76 (1.13) 51.50 (12.59)
1586.70
(520.20) –158.01 0.005 0.000 0.000

Blood

HEANN-GL 31.84 (0.86) 22.04 (7.26) 203.18 (146.10) −120.09 – – –

HEANN-G 31.89 (1.19) 24.76 (9.35) 212.80 (189.10) –111.64 0.808 0.108 0.777

HEANN-L 31.96 (1.68) 27.36 (11.97) 487.04 (418.30) –110.44 0.668 0.009 0.000

EANN 32.00 (1.19) 25.38 (9.23) 447.62 (337.60) –113.45 0.455 0.047 0.000

Survival

HEANN-GL 31.60 (2.54) 18.30 (6.42) 240.96 (146.90) −1.10 – – –

HEANN-G 32.12 (3.01) 21.30 (9.73) 276.80 (172.40) 16.72 0.358 0.072 0.266

HEANN-L 32.23 (2.79) 21.92 (8.65) 625.36 (358.50) 14.19 0.239 0.020 0.000

EANN 32.57 (2.63) 24.94 (11.98) 602.56 (410.80) 42.68 0.063 0.001 0.000

TER – Test Error Rate (%)
Conn – Connections
Gen – Generations
AIC – Akaike Information Criterion

overhead in computational time when adapting the mutation
process compared with the fitness function. With the adaptive
mutation strategy, HEANN achieves comparable or better
results in fewer generations.

The structural mutation probability, weight mutation prob-
ability and step size of the weight perturbation are interde-
pendent. For example, a small mutation probability should be
coupled with a small step size for the weight perturbation

OONG AND ISA: ADAPTIVE EVOLUTIONARY ANNs FOR PATTERN CLASSIFICATION 1835

TABLE VI

COMPARISON BETWEEN HEANN AND BACKPROPOGATION-TRAINED ANN, SVM, k-NN AND C4.5 IN TERMS OF THE

TESTING ERROR RATE FOR SEVEN BENCHMARK CLASSIFICATION PROBLEMS

Data Set
Test Error Rate (Std. Dev.) Parameters

HEANN BP-ANN SVM k-NN C4.5

Cancer 0.83 (0.50) 3.49 (2.55) 4.21 (3.71) 3.18 (3.41) 6.13 (4.41)
Same with

HEANN-GL
epoch = 100; α = 0.3;

β = 0.5
RBF kernel C = 10;

γ = 10
k = 5 m = 35

Diabetes 21.33 (1.68) 25.87 (2.96) 30.82 (2.82) 29.06 (3.39) 37.42 (3.69)
Same with

HEANN-GL
epoch = 100; α = 0.3;

β = 0.5
RBF kernel C = 40;

γ = 30
k = 5 m = 230

Iris 0.70 (1.19) 4.67 (4.50) 4.67 (3.22) 4.00 (3.44) 8.67 (3.22)
Same with

HEANN-GL
epoch = 10000; α = 0.3;

β = 0.5
RBF kernel C = 10;

γ = 10 k = 5 m = 60

Wine 3.06 (2.78) 2.57 (3.56) 1.90 (3.33) 4.00 (3.86) 5.52 (5.81)
Same with

HEANN-GL
epoch = 10000; α = 0.3;

β = 0.5
RBF kernel C = 10;

γ = 10
k = 5 m = 1

Mammography 18.12 (1.11) 19.13 (3.45) 20.84 (4.91) 20.53 (3.69) 35.51 (15.29)
Same with

HEANN-GL
epoch = 100; α = 0.3;

β = 0.5
RBF kernel C = 10;

γ = 10
k = 5 m = 192

Blood 31.84 (0.86) 37.01 (5.60) 38.27 (4.14) 38.57 (5.00) 49.62 (1.20)
Same with

HEANN-GL
epoch = 10000; α = 0.3;

β = 0.5
RBF kernel C = 50;

γ = 500 k = 5 m = 7

Survival 31.60 (2.54) 39.46 (10.80) 47.50 (6.83) 42.30 (7.07) 49.24 (4.03)
Same with

HEANN-GL
epoch = 10000; α = 0.3;

β = 0.5
RBF kernel C = 50;

γ = 50
k = 15 m = 3

to account for the exploitation of important regions. Setting
a small mutation probability with large mutation step size is
not going to aid in exploitation because an individual will
always take a large step in solution space. Moreover, the small
mutation step size is used in HEANN to prevent the training
process from entering the sigmoid saturation region, where the
slope of sigmoid function is approaching zero.

VII. CONCLUSION

This paper described a new approach for simultaneously
evolving ANN topology and weights. To address the weakness
of EAs in finely tuning ANNs, HEANN uses an adaptive
mutation strategy to refine the local search capability in the
design of ANNs. GL and fitness value are considered to aid
the mutation adaption in the evolutionary process. Further-
more, the global and local mutation strategies of HEANN are
analytically studied.

HEA was first tested on four benchmark functions to
demonstrate the improvement of local search capability and
the ability to escape from local minima. The experimental
results show that HEA performs better than conventional
EA. Next, HEANN was tested on seven real-world clas-
sification problems. Overall, the results from experiments
show the superiority of HEANN in various aspects compared
with other algorithms. Very compact ANNs can be produced
by HEANN with the adaptive mutation strategy. Moreover,
HEANN requires fewer generations to achieve good results.
The only drawback of HEANN is that it has many user-
specified parameters. However, HEANN is not very sensitive
to these parameters. The results of the different mutation
parameters test show that HEANN is not very sensitive to
these parameters, however, these values should not be too low.

Without the use of gradient learning, which requires inten-
sive computation in the evolutionary process, the use of
a larger population size is feasible in HEANN. The final
population definitely contains more information than a single
ANN. Thus, it would be challenging to formulate the adaptive
mutation strategy to be suitable for evolving neural network
ensembles in future work, particularly when several sub-
populations are cooperating to solve a specific problem.

ACKNOWLEDGMENT

The authors are grateful to the anonymous reviewers for
their constructive comments, which helped to improve this
paper.

REFERENCES

[1] R. P. Lippmann, “Pattern classification using neural networks,” IEEE
Commun. Mag., vol. 27, no. 11, pp. 47–50, Nov. 1989.

[2] G. P. Zhang, “Neural networks for classification: A survey,” IEEE Trans.
Syst., Man, Cybern., Part C: Appl. Rev., vol. 30, no. 4, pp. 451–462,
Nov. 2000.

[3] K. Tin-Yau and Y. Dit-Yan, “Constructive algorithms for structure
learning in feedforward neural networks for regression problems,” IEEE
Trans. Neural Netw., vol. 8, no. 3, pp. 630–645, May 1997.

[4] R. Parekh, J. Yang, and V. Honavar, “Constructive neural-network
learning algorithms for pattern classification,” IEEE Trans. Neural Netw.,
vol. 11, no. 2, pp. 436–451, Mar. 2000.

[5] M. Islam, A. Sattar, F. Amin, Y. Xin, and K. Murase, “A new adaptive
merging and growing algorithm for designing artificial neural networks,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol. 39, no. 3, pp.
705–722, Jun. 2009.

[6] M. M. Islam, M. A. Sattar, M. F. Amin, Y. Xin, and K. Murase, “A
new constructive algorithm for architectural and functional adaptation
of artificial neural networks,” IEEE Trans. Syst., Man, Cybern., Part B:
Cybern., vol. 39, no. 6, pp. 1590–1605, Dec. 2009.

[7] R. Reed, “Pruning algorithms-a survey,” IEEE Trans. Neural Netw.,
vol. 4, no. 5, pp. 740–747, Sep. 1993.

1836 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 11, NOVEMBER 2011

[8] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning archi-
tecture,” in Advances in Neural Information Processing Systems 2, D. S.
Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 524–532.

[9] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary
algorithm that constructs recurrent neural networks,” IEEE Trans. Neural
Netw., vol. 5, no. 1, pp. 54–65, Jan. 1994.

[10] F. Jian and X. Yugeng, “Neural network design based on evolutionary
programming,” Artif. Intell. Eng., vol. 11, no. 2, pp. 155–161, Apr. 1997.

[11] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial
neural networks,” IEEE Trans. Neural Netw., vol. 8, no. 3, pp. 694–713,
May 1997.

[12] P. P. Palmes, T. Hayasaka, and S. Usui, “Mutation-based genetic neural
network,” IEEE Trans. Neural Netw., vol. 16, no. 3, pp. 587–600, May
2005.

[13] J. H. Ang, K. C. Tan, and A. Al-Mamun, “Training neural networks for
classification using growth probability-based evolution,” Neurocomput-
ing, vol. 71, nos. 16–18, pp. 3493–3508, Oct. 2008.

[14] D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and
neural networks: Optimizing connections and connectivity,” Parallel
Comput., vol. 14, no. 3, pp. 347–361, Aug. 1990.

[15] D. Whitley and T. Starkweather, “Optimizing small neural networks
using a distributed genetic algorithm,” in Proc. Int. Joint Conf. Neural
Netw., vol. 1. 1990, pp. 206–209.

[16] A. C. Martinez-Estudillo, C. Hervas-Martinez, F. J. Martinez-Estudillo,
and N. Garcia-Pedrajas, “Hybridization of evolutionary algorithms and
local search by means of a clustering method,” IEEE Trans. Syst., Man,
Cybern., Part B: Cybern., vol. 36, no. 3, pp. 534–545, Jun. 2005.

[17] F. H. F. Leung, H. K. Lam, S. H. Ling, and P. K. S. Tam, “Tuning of the
structure and parameters of a neural network using an improved genetic
algorithm,” IEEE Trans. Neural Netw., vol. 14, no. 1, pp. 79–88, Jan.
2003.

[18] P. A. Gutiérrez, C. Hervás-Martínez, and F. J. Martínez-Estudillo,
“Logistic regression by means of evolutionary radial basis function
neural networks,” IEEE Trans. Neural Netw., vol. 22, no. 2, pp. 246–263,
Feb. 2011.

[19] X. Yao, “Evolving artificial neural networks,” Proc. IEEE, vol. 87, no. 9,
pp. 1423–1447, Sep. 1999.

[20] J. Yaochu and B. Sendhoff, “Pareto-based multiobjective machine learn-
ing: An overview and case studies,” IEEE Trans. Syst., Man, Cybern.,
Part C: Appl. Rev., vol. 38, no. 3, pp. 397–415, May 2008.

[21] J. C. F. Caballero, F. J. Martinez, C. Hervas, and P. A. Gutierrez,
“Sensitivity versus accuracy in multiclass problems using memetic
Pareto evolutionary neural networks,” IEEE Trans. Neural Netw., vol. 21,
no. 5, pp. 750–770, May 2010.

[22] A. Kaylani, M. Georgiopoulos, M. Mollaghasemi, G. C. Anagnostopou-
los, C. Sentelle, and Z. Mingyu, “An adaptive multiobjective approach to
evolving ART architectures,” IEEE Trans. Neural Netw., vol. 21, no. 4,
pp. 529–550, Apr. 2010.

[23] W. Spears and V. Anand, “A study of crossover operators in genetic
programming,” in Methodologies for Intelligent Systems, vol. 542, Z. Ras
and M. Zemankova, Eds. Berlin, Germany: Springer-Verlag, 1991, pp.
409–418.

[24] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence Through
Simulated Evolution. New York: Wiley, 1966.

[25] D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. Piscataway, NJ: IEEE Press, 1995.

[26] B. M. Wilamowski, “Neural network architectures and learning algo-
rithms,” IEEE Ind. Electron. Mag., vol. 3, no. 4, pp. 56–63, Dec. 2009.

[27] B. M. Wilamowski, N. J. Cotton, O. Kaynak, and G. Dundar, “Comput-
ing gradient vector and Jacobian matrix in arbitrarily connected neural
networks,” IEEE Trans. Ind. Electron., vol. 55, no. 10, pp. 3784–3790,
Oct. 2008.

[28] L. Prechelt, “Proben1 – A set of neural network benchmark problems
and benchmarking rules,” Fakultat Inf., Univ. Karlsruhe, Karlsruhe,
Germany, Tech. Rep. 21/94, Sep. 1994.

[29] D. B. Fogel, “An introduction to simulated evolutionary optimization,”
IEEE Trans. Neural Netw., vol. 5, no. 1, pp. 3–14, Jan. 1994.

[30] X. Yao, “An empirical study of genetic operators in genetic algorithms,”
Microprocess. Microprogram., vol. 38, nos. 1–5, pp. 707–714, Sep. 1993.

[31] J. Reed, R. Toombs, and N. Barricelli, “Simulation of biological evolu-
tion and machine learning,” J. Theoret. Biol., vol. 17, no. 1, pp. 319–342,
1967.

[32] Y. Xin, L. Yong, and L. Guangming, “Evolutionary programming made
faster,” IEEE Trans. Evolut. Comput., vol. 3, no. 2, pp. 82–102, Jul.
1999.

[33] UCI Machine Learning Repository [Online]. Available: http://www.ics.
uci.edu/∼mlearn/MLRepository.html

[34] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett.,
vol. 27, no. 8, pp. 861–874, Jun. 2006.

[35] H. Akaike, “Information theory and an extension of the maximum
likelihood principle,” in Proc. 2nd Int. Symp. Inf. Theory, vol. 1. 1973,
pp. 267–281.

Tatt Hee Oong received the B.Eng. degree in elec-
tronic engineering (with first class honors) from Uni-
versiti Sains Malaysia (USM), Minden, Malaysia, in
2010. He is currently pursuing the Ph.D. degree in
electrical and electronic engineering and is part of
the Imaging and Intelligent Systems Research Team,
School of Electrical and Electronic Engineering,
USM.

His current research interests include neural
networks, pattern recognition, and evolutionary
algorithms.

Nor Ashidi Mat Isa (M’10) received the B.Eng.
degree in electrical and electronic engineering (with
first class honors) and the Ph.D. degree in elec-
tronic engineering (majoring in artificial neural net-
works and image processing) from Universiti Sains
Malaysia (USM), Minden, Malaysia, in 1999 and
2003, respectively.

He is currently a Lecturer with the School of
Electrical and Electronics Engineering, USM. He
and his research team (Imaging and Intelligent Sys-
tem Research Team) have published their works

nationally and internationally. Their contributions can be found in numerous
international and national journals, chapters in books, and in international and
national proceedings. His current research interests include intelligent systems,
image processing, neural networks, biomedical engineering (i.e., intelligent
diagnostic systems), and algorithms.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

