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a b s t r a c t

This paper presents a novel approach for object detection using a feature construction method called
Evolution-COnstructed (ECO) features. Most other object recognition approaches rely on human experts
to construct features. ECO features are automatically constructed by uniquely employing a standard
genetic algorithm to discover series of transforms that are highly discriminative. Using ECO features
provides several advantages over other object detection algorithms including: no need for a human
expert to build feature sets or tune their parameters, ability to generate specialized feature sets for
different objects, and no limitations to certain types of image sources. We show in our experiments that
ECO features perform better or comparable with hand-crafted state-of-the-art object recognition
algorithms. An analysis is given of ECO features which includes a visualization of ECO features and
improvements made to the algorithm.

& 2013 Published by Elsevier Ltd.
1. Introduction

Object recognition is a very challenging task that many
researchers are currently pursuing [1]. The difficulty of detecting
and labeling objects in images is due in part to issues such as
lighting conditions, object pose and articulation, distortions, high
intraclass variation, image sensor noise, wide variability in the
types of cues necessary to detect the specific object type, partial
occlusions, as well as naturally varying parameters of the objects.

Overcoming these obstacles in order to achieve robust object
recognition would be beneficial for many scientific fields and
applications which include automotive safety, surveillance, video
indexing, image classification, content-based image retrieval,
tracking, robotics, and a host of others. Despite the large number
of applications that would benefit from robust object recognition
and other incentives, object recognition is still not yet widely
adopted in industry.

One of the main goals of computer vision is to take raw sensor
data, the input signal, and create a set of symbols that represents
the data. In object recognition these symbols are referred to as
features. Machine learning techniques are commonly used to take
these features and then classify them as either belonging to the
object of interest or not. In general, machine learning algo-
rithms take in symbols, find patterns in the symbols, and use
mathematical methods to separate the symbols into classes.
Machine learning frees the user from having to identify rules for
lsevier Ltd.

+1 801 422 0201.
lywhite),
ippetts),
classification and in general is more accurate at creating rules than
human experts are. Machine learning techniques, however, are
most successful when the set of features uniquely describes the
object of interest. The image processing used to create a higher-
level representation of the input signal bridges the semantic gap
that exists between the raw input signal and what is needed by
the machine learning algorithm. Agarwal and Roth state it this way
“…we suggest that in order to extract high-level, conceptual
information such as the presence of an object in an image, it is
essential to transform the raw, low-level input (in this case, the
pixel grayscale values) to a higher-level, more ‘meaningful’ repre-
sentation that can support the detection process [2].”

The various methods that have been used to obtain high quality
features can be categorized into three groups: feature selection,
feature extraction, and feature construction. The following defini-
tions are taken from Motoda and Liu [3]:
Feature
selection
is a process that chooses a subset of features from
the original features so that the feature space is
optimally reduced according to a certain criterion.
Feature
extraction
is a process that extracts a set of new features from
the original features through some functional
mapping.
Feature
construction
is a process that discovers missing information
about the relationships between features and
augments the space of features by inferring or
creating additional features.
Fig. 1 shows where feature selection, extraction, and construc-
tion fit into the process of object recognition. Feature construction
will generate a set of symbols from the raw data that is obtained
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Fig. 1. The steps of object recognition with the forms that the data takes during the
process.

Fig. 2. Shows a current look at what tasks are performed by whom.
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from the imaging sensor. Those symbols are enhanced by choosing
a subset of the most important symbols through feature selection,
or creating new symbols through some functional mapping by
performing feature extraction. Then the symbols are classified as
belonging to the object or not.

Feature construction is mostly performed by humans currently,
while the classification step is almost always performed by
computers. Feature extraction and selection on the other hand
have been performed by both but with the scales tipping more
toward computers. Fig. 2 shows a current estimated distribution of
which object recognition steps is performed humans versus
computers. In the object recognition literature, the pattern of
human experts creating features and then using machine learning
algorithms for classification is clear [2,4–16].

In the same way that the application of machine learning has
improved the accuracy of object recognition, we believe that
feature construction can have the same kind of impact on
improving the quality of features. And as stated before, higher
quality features are more able to uniquely describe the object of
interest, producing more accurate object recognition. One major
reason for this is the ability of a computer to find patterns in large
amounts of data that humans simply cannot do. In the same way
that machine learning frees the user from having to generate its
own rules for classification, feature construction frees the user
from having to generate their own features.

The main focus of this work is to produce a high quality feature
construction algorithm capable of general object recognition.
Rather than relying on human experts our method, which we call
Evolution-COnstructed (ECO) features, uses simulated evolution to
construct series of transforms that convert the input signal of raw
pixels into high quality features [17–19]. Using ECO features also
provides many benefits:
1.
 Good features can be discovered without the use of a human
expert.
2.
 Non-intuitive features can be constructed that are not normally
considered by human experts.
3.
 ECO features are not limited to certain image sources including
data originating from CMOS sensors, synthetic aperture
radar (SAR), infrared (IR), and potentially others such as
magnetic resonance imaging (MRI), computed tomography
(CT), X-ray, etc.
4.
 ECO features can be learned off-line for any object type. In other
systems the human expert creates features that are good for one
class of objects but may do poorly on other objects types.
2. Background

As the amount of data increases and the desire to capture all
the information possible, dimensionality reduction through fea-
ture selection is becoming much more important. There is a good
deal of literature on feature selection [20,21]. Narendra and
Fukunaga use a branch and bound method to avoid an exhaustive
search of all feature subsets but still select the best subset
according to their criterion [22]. Liu et al. also develop a feature
selection method to avoid exhaustive search for a bag-of-visual
words applications [23]. Dash and Liu evaluate the effectiveness of
various feature selection methods using an inconsistency measure
and explore various search strategies for feature selection. Wang
et al. use particle swarm optimization to do feature selection in a
stochastic way [24]. Pedrycz and Ahmad do feature selection,
again in a stochastic manner, using both a genetic algorithm and
particle swarm optimization but using structure retention as their
criteria [25]. These methods highlight a progression from exhaus-
tive methods, to search based methods that find the best subset
possible, to stochastic methods to deal with the size of the feature
selection space.

Feature selection is also used for a few other applications.
Huang et al. use feature selection to find a subset of features for a
support vector machine [26]. Bala et al. use a genetic algorithm
and decision trees to select features for visual concepts [27]. Dollár
et al. reduce the dimensionality of an initial random set of features
using AdaBoost [28] in order to detect humans in images. Sun et al.
do feature selection by using a genetic algorithm to select a subset
of eigenvectors rather than the traditional method of selecting
some percentage of the top eigenvectors, and then test their
method on vehicle and face detection [29].

Feature extraction is most commonly seen as a way to reduce
the dimensionality of the feature space by using a function that
finds linear combinations of the most important features. Linear
discriminate analysis and principle component analysis are very
common methods for feature extraction [30,31]. Variations of
linear discriminate analysis have also been done for feature
extraction [32]. Sherrah et al. use genetic programming to decide
whether to do feature selection or extraction [33] as a pre-process-
ing step before classification.

Feature construction methods appear much less frequently in
the literature than feature selection and feature extraction meth-
ods. Feature construction has been used to improve general
machine learning algorithms. Both [34] and [35] use genetic
programming to construct features to improve the results of a
decision tree. They build trees of operators that are applied to
primitive features to construct richer features.

Feature construction has also been applied to object recogni-
tion using evolutionary techniques to build trees of mathematical
operators and primitive features. Vafaie and De Jong [36] use
genetic programming to construct features and then reduce the
number and redundancy of their features through feature selec-
tion. Their trained features are then used by a decision tree to
detect eyes. Brumby et al. [37] apply the same technique to find
water in multi-spectral aerial-photography. Roberts and Claridge
[38] use pixel statistics as their primitive features and then pull
pasta shapes from a noisy background. Bulitko et al. do automatic
image interpretation that search for transforms that allow remote
sensing images to be automatically segmented [39]. Krawiec
and Bhanu use series of transforms found through evolution to



Table 1
A list of image transforms available to the genetic algorithm for composing ECO
features and the number of parameters the genetic algorithm must set for each
transform.

Image transform jϕj Image transform jϕj

Gabor filter 6 Sobel operator 4
Gradient 1 Difference of Gaussians 2
Square root 0 Morphological erode 1
Gaussian blur 1 Adaptive thresholding 3
Histogram 1 Hough lines 2
Hough circles 2 Fourier transform 1
Normalize 3 Histogram equalization 0
Convert 0 Laplacian edge 1
Median blur 1 Distance transform 2
Integral image 1 Morphological dilate 1
Canny edge 4 Harris corner strength 3
Rank transform 0 Census transform 0
Resize 1 Pixel statistics 2
Log 0

Fig. 3. Two example ECO features. The first example shows an ECO feature where
the transforms are applied to the subregion where x1 ¼ 12, y1 ¼ 25, x2 ¼ 34, and
y2 ¼ 90 from Eq. (1). The values below the transforms are the parameter vectors ϕi ,
also from Eq. (1).
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construct features [40]. Although somewhat similar to the ECO
feature algorithm, in the end they use a set of feature extraction
operators (various moments and other pixel statistics) to construct
a real-valued feature vector of predetermined length. This techni-
que forces a specific dimensionality and constrains the features to
be of a certain class, namely those that can be generated from the
set of extraction operators selected by the authors.

None of the feature construction techniques that we could find
in the literature, and discussed here, performs well at general
object detection. Generally they are tested on a single dataset with
various constraints. The authors believe that the real power of a
feature construction algorithm is manifest when it is able to
automatically generate sufficiently unique features to perform
well at general object recognition.

Automatic feature construction is also related to deep learning.
Both are aimed at automatically finding a better representation of
the image. Deep learning methods have had good success on many
datasets. Cirşan et al. use a deep six layer neural network to do
handwritten digit recognition [41]. Their method is currently the
best known method on the MNIST handwritten digits dataset
achieving a 0.23% error rate on the dataset. Krizhevsky et al.
achieve top-1 and top-5 error rates of 37.5% and 17.0% respectively
[42] in the ImageNet LSVRC-2010 contest. Both these methods use
deep neural networks optimized to run on GPUs and use the
processing power of the GPU to overcome the “vanishing gradients
problem” that exists in deep neural networks. Le et al. use deep
learning methods of stacking and convolution to learn hierarchical
representations of images [43]. Their work uses unlabeled video
data to find features like other unsupervised feature learning
methods such as Sparse Coding and Stacked Autoencoders.

There are many works on general object recognition. Viola and
Jones, in a very well known work, developed an algorithm using
AdaBoost to select basic integral image features and build a
cascade of detectors so that background images are quickly
classified. Mohan et al. built a parts based detector with Haar
wavelets to represent the image. They then use a support vector
machine for classification [44]. Belongie et al. create a shape
descriptor that represents shape with a set of discrete points
sampled from the contour of the shape and then use K nearest
neighbors for classification [5]. Agarwal and Roth use Förstner
operator to find representative parts of the target object and create
image patches that can then be used to represent the object [2].
While by itself it is not an object recognition algorithm, Lowe
developed an image feature he called SIFT, that became the basis
for features in many object recognition algorithm [45]. Schneider-
man and Kanade built a classifier based on the statistics of
localized parts. Each part is described using a subset of wavelet
coefficients [11]. Dalal and Triggs created a feature called histo-
grams of oriented gradients that excelled at many object detection
tasks [46] and was modeled in part from SIFT features. Many
works since then use some form of histograms of oriented
gradients [4,47,7,8,13]. Laptev uses histograms as features,
weighted Fisher linear discriminant as a weak classifier, and then
AdaBoost for classification. Serre et al. Bileshi, and Siagian and Itti
developed biologically inspired features that are based on Gabor
filters [48,6,49].
3. ECO feature algorithm

ECO features are constructed using a genetic algorithm which
creates an ordering of basic image transforms. The set of trans-
forms that are available to the genetic algorithm are shown in
Table 1. According to the definition of an ECO feature, Eq. (1), the
ECO feature output vector, V, is created by applying each of n
transforms to a subregion, Iðx1; y1; x2; y2Þ, of an input image, I. Each
transform, Ti, of the series is applied to the output of the previous
transform, Vi−1, using the transform parameters in vector ϕi, which
are also set by the genetic algorithm. Fig. 3 shows graphical
examples of two ECO features

V ¼ TnðVn−1;ϕnÞ ð1Þ

Vn−1 ¼ Tn−1ðVn−2;ϕn−1Þ
⋮

V1 ¼ T1ðIðx1; y1; x2; y2Þ;ϕ1Þ

In addition to generating a sequence of transforms and their
operating parameters, the genetic algorithm also selects which
portion of the image the transforms will operate on. Any amount
of the image may be selected as the input to the transform series,
Iðx1; y1; x2; y2Þ, from the whole image down to a subregion as small
as a single pixel. Examples of subregions are shown in Fig. 4, which
shows how the selection of the subregion causes ECO features to
specialize at an aspect of the target object. Rather than making any
assumptions about what the salient regions of the image are, and
defining a criteria for their selection, the genetic algorithm is used
to automatically search for the subregion parameters x1, y1, x2, y2.
In this way the saliency of a subregion is not determined by the
subregion itself, but in its ability, after being operated on by the
transforms, to help classify objects. The use of subregions allows
each ECO feature to specialize at identifying different aspects of
the target object.

3.1. Constructing ECO features

ECO features are constructed using a standard genetic algo-
rithm (GA) [50]. GAs, in general, are used for optimization and



Fig. 4. Examples of subregions selected by the genetic algorithm.
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searching large spaces efficiently. They start with a population of
creatures, representing possible solutions, which then undergo
simulated evolution. Each creature is made up of genes which are
the parameters of that particular solution. A fitness score, which is
designed specifically for the problem, is computed for each
creature and indicates how good the solution is. At each genera-
tion, creatures are probabilistically selected from the population to
continue on to the next generation. Creatures with higher fitness
scores are more likely to be selected. Some new creatures are
made through crossover, which combines the genes of two
creatures to form one. Finally the genes of each creature in the
population can possibly be mutated according to a mutation rate,
which effectively creates a slightly different solution. This process
is repeated for several generations, evolving solutions so that they
have better fitness scores. The algorithm ends at some predefined
number of generations or when some criteria for fitness scores is
satisfied.

In our algorithm, GA creatures represent ECO features. Genes
are the elements of an ECO feature which include the subregion
(x1, y1, x2, y2), the transforms (T1, T2,…, Tn), and the parameters for
each transform ϕi. The number of genes that make up a creature is
not of fixed length since the number of transforms can vary and
each transform has a different number of parameters. Initially, the
genetic algorithm randomly generates a population of ECO fea-
tures and verifies that each ECO feature consists of a valid ordering
of transforms.

In order to assign a fitness score to each ECO feature a weak
classifier is associated with it. The fitness score is related to how
well this classifier identifies an object in a small set of training
images. A single perceptron is used as the weak classifier as
defined in Eq. (2). The perceptron maps the ECO feature input
vector V to a binary classification, α, through a weight vector W
and a bias term b

α¼ 1 if W � V þ b40
0 else

�
ð2Þ

Training the perceptron generates the weight vector W according
to Eq. (3). Training images are processed according to Eq. (1) and
the output vector V is the input to the perceptron. The error, δ,
is found by subtracting the perceptron output, α, from the
actual image classification β. The perceptron weights are updated
according to this error and a learning rate λ

δ¼ β−α

W ½i� ¼W ½i� þ λ � δ � V ½i� ð3Þ
A fitness score, s, is computed using Eq. (4), which reflects how
well the perceptron classifies a holding set. In Eq. (4), p is a
penalty, tp is the number of true positives, fn is the number of false
negatives, tn is the number of true negatives, and fp is the number
of false positives. The fitness score is an integer in the range
[0, 1000]

s¼ tp � 500
f n þ tp

þ tn � 500
f p þ tn

ð4Þ

Unlike classification accuracy, this fitness is not sensitive to
unbalanced numbers of negative and positive training examples.
For instance, if there are far more negative examples in the
training set, a fitness score based on classification accuracy would
favor a weak classifier that classifies everything as negative,
although it has no ability to discriminate positive examples from
negative examples.

Algorithm 1. Finding features.
for Size of population do
Randomly create creature.
Select x1; y1; x2; y2; T1ðϕ1Þ;…; TnðϕnÞ.

end for
for number of generations do
for every creature do

for every training image do
Process image with feature transformations
Train creature's perceptron

end for
for every holding set image do
Process image with feature transformations
Use perceptron output to update fitness score

end for
Assign fitness score to the creature
Save creature if fitness score 4 threshold

end for
Select creatures that make it to next generation
Create new creatures using cross over
Apply mutations to the population

end for
After a fitness score has been obtained for every creature, a
portion of the population is selected to continue to the next
generation. A tournament selection method is used to select which
creatures move to the next generation. After selection has taken
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place, the rest of the population is composed of new creatures
created through crossover as shown in Fig. 5. Through the process
of crossover it is possible for ECO features to have a transform
length, n, longer than 8 which is the cap placed on gene length
when they are being created. Once the next generation is filled,
each of the parameters in the creatures can be mutated, also
shown in Fig. 5. This whole process of finding features is summar-
ized in Algorithm 1.
3.2. Training AdaBoost

After the genetic algorithm has found good ECO features,
AdaBoost is used to combine the weak classifiers, associated with
each ECO feature, to make a stronger classifier. Algorithm 2 outlines
how AdaBoost is trained. X represents the maximum number of
weak classifiers allowed in the final model. The normalization factor
in Algorithm 2 is set so that the sum of the error over all the
training images is 1. After training, the resulting AdaBoost model
consists of a list of perceptrons and coefficients that indicate how
much to trust each perceptron. The coefficient for each perceptron,
ρ, is calculated using Eq. (5) where δw is the error of the perceptron
over the training images. See Algorithm 2 for more details about
how the error is calculated. The AdaBoost method is slightly
different than many implementations that use perceptrons as the
weak classifier. Generally the perceptron is created according to the
error distribution of the examples. ECO features are generated
before AdaBoost is trained and hence there is a finite set of
pregenerated perceptrons that can be selected for use.
Fig. 5. Examples of cros

Fig. 6. ECO features and their corresponding perceptrons are combin
Algorithm 2. Train AdaBoost.
Set of training images M
for every training image, m do
Initialize δM ½m� ¼ 1 /j Mj

end for
for x¼0 to X do
for every perceptron, w, do

for every training image, m do
if wrongly classified then
δw þ ¼ δM½m�

end if
end for

end for
Select perceptron with minimum error, Ω
if δω½Ω�4 ¼ 50% then

BREAK
end if
Calculate coefficient of perceptron using Eq. (5)
for every training image, m do

c¼ 1 if classified correctly by Ω

−1 else

�

δM ½m� ¼ δM ½m�ne−ρ�c
Normalization Factor

end for
end for
ρ¼ 1
2
� ln 1−δw

δw
ð5Þ
sover and mutation.

ed using AdaBoost to classify an image as object or non-object.



Fig. 7. Example images of the Caltech datasets after being scaled and having color removed.

Table 2
Comparison on Caltech datasets to other methods.

Method

Database Fergus [51] Serre [52] Schwartz [53] ECO

Motorbikes 95.0 98.0 100.0 100.0
Faces 96.4 98.2 100.0 100.0
Airplanes 94.0 96.7 100.0 100.0
Cars 95.0 98.0 100.0 100.0
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3.3. Using the AdaBoost model

Fig. 6 shows an example of classifying an image with an
AdaBoost model containing three ECO features. The figure shows
each feature operating on its own subregion of the image (see Eq.
(1)). As can be seen, it is possible for the subregions of different
features to overlap. Also, as the subregions pass through the
transforms, the intermediate results may vary in size from one
to the next. Each feature is accompanied by its trained perceptron.
The output of each perceptron is combined according to Eq. (6)
where X is the number of perceptrons in the AdaBoost model, ρx is
the coefficient for the perceptron x (see Eq. (5)), αx is the output of
perceptron x (see Eq. (2)), τ is a threshold value, and c is the final
classification given by the AdaBoost model. The threshold τ can be
changed to vary the tradeoff between false positives and false
negatives

c¼ 1 if ∑
X

x ¼ 1
ρx � αx4τ

0 else

8><
>: ð6Þ
1 http://www.robots.ox.ac.uk/�vgg/data3.html
4. ECO feature performance

To test the ECO features algorithm, a variety of datasets were
used. No parameters were tuned for any dataset, each was trained
and tested in the exact same way. For each dataset tested, the best
published results for that dataset were used for comparison. These
methods are described below:

Fergus [51]. Fergus et al. create a constellation of parts and
then represent the shape, appearance, occlusion, and relative
scale using a probabilistic representation. Classification is done
using a Bayesian approach. Their features look for salient
regions over both location and scale.
Serre [52]. Serre et al. detect objects by building a hierarchical
system that alternates between simple and complex layers. The
simple layers combine their inputs with a bell-shaped tuning
function and the complex layers combine their inputs through
a maximum operation. The first layer consists a battery of
Gabor filters at various scales and orientations.
Schwartz [53]. Schwartz et al. augment HOG features with
texture and color. They perform feature extraction using partial
least squares analysis to reduce the dimensionality of their
feature set.
Tuzel [54]. Tuzel et al. use covariance matrices as object
descriptors that are represented as a connected Riemannian
manifold. Their main contribution is a novel method for
classifying points that lie on a connected Riemannian manifold
using the geometry of the space.
Norouzi [55]. Norouzi et al. use a deep learning method
consisting of a stack of convolutional restricted Boltzmann
machines.
Burl [56]. Burl et al. identify volcanoes using a two pass system,
one phase to identify candidate regions and another phase to
do the final classification. They use PCA to reduce the input
dimensionality and then use a Bayesian classifier.

4.1. Caltech datasets

Four of the Caltech datasets [57] were used; motorcycles, faces,
airplanes, and cars. Samples from the datasets are shown in Fig. 7.
For each dataset,1 the images were split into training and test sets
according to [51] so that good comparisons could be made to other
methods.

Table 2 shows the performance of ECO features, perfectly
classifying all four Caltech datasets, alongside the results of other
methods. Fergus et al. [51] and Serre et al. [52] represent the
current best published results on the Caltech datasets. Schwartz
et al. [53] did not publish results on the Caltech dataset but we
tested their method on the Caltech datasets which was also able to
perfectly classify the four datasets.
4.2. INRIA person dataset

ECO features were also tested using the INRIA person dataset
[58]. Examples of the dataset are shown in Fig. 8. The dataset is
very challenging because it contains humans with large variations
in pose, lighting conditions, background, clothing, and partial
occlusion. It was created by Dalal and Triggs because the existing
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Fig. 8. Example images from the INRIA person dataset.

Table 3
Comparison to state-of-the-art methods on the INRIA person dataset.

Method Miss rate at 10−4 false positive rate (%)

HOG 12
Dollár [28] 7
Tuzel [54] 7
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person datasets were not challenging enough for their histograms
of oriented gradients method [46].

Table 3 gives a summary of results for the state-of-the-art
classification algorithms on the INRIA person dataset on a per-
window miss rate. A false positive rate of 10−4 is a common
comparison point for algorithms on this dataset. ECO features perform
just as well as the state-of-the-art on the INRIA person dataset.
Norouzi [55] 7
Dollár [59] 4
Schwartz [53] 3
ECO features 3
4.3. Volcanoes on Venus

The volcanoes of Venus dataset [60] is one result of the
Magellan mission to Venus from 1989 through 1994 and contains
134 1024�1024 SAR images. With the volume of images resulting
from the mission, automated methods for analyzing the data were
sought out [56]. The dataset is a challenging one, even for human
experts, and samples can be seen in Fig. 9. The ground truth for the
dataset is a labeling created by geologists.

ECO features were trained using multiple 30�30 pixel regions
from each image. The dataset is partitioned into five parts called
HOM4, HOM38, HOM56, HET5, and HET36. HOM means that the
images are fairly homogeneous and HET means that the images
were taken from different parts of the planet and have more
variability, and the number indicates the number of images in the
partition. Within each partition, cross-validation is performed
rotating which images are used for testing. Half of the volcano
examples taken from the ground truth were used for training and
the other half for testing. An equal number of non-volcano
samples were sampled randomly from the rest of the image,
taking care that there was no overlap with labeled volcanoes.

An attempt was made to do a comparison to Burl et al. [56] but
there was insufficient information to make a fair and accurate
comparison. It was possible to make a comparison against the
Schwartz method [53] by downloading available code.2 Their
method was trained and tested using the same image sets as
was used for ECO features. The results of this test are shown in
Fig. 10. ECO features outperformed Schwartz on every test and did
significantly better on the HET partitions. Eqs. (7) and (8) define
the miss rate and false positive rate

miss rate¼ fn
tpþ fn

ð7Þ
2 http://www.umiacs.umd.edu/schwartz/softwares.html
false positive rate¼ fp
tpþ fpþ tnþ fn

ð8Þ

4.4. BYU fish dataset

The fish images used are from field study images taken by our
university's biology department. The fish were captured, photo-
graphed, and released. There are four fish species represented in
the dataset: yellowstone cutthroat, cottid, speckled dace, and
whitefish. Samples of each species from the dataset are shown
in Fig. 11.

Five fold cross validation was performed to test the ability of
ECO features to distinguish each fish species. Each image in the
dataset of a chosen species was treated as the positive example
and all the other species made up the negative examples. Using
five fold cross validation one fold is treated as the test set and the
remaining four folds are used for training the ECO features. Once
the ECO features are found, the images in the current fold are used
to compute a classification accuracy. The results are given in
Table 4. The average classification accuracy is 99.4%, with a
standard deviation of 0.64%.
5. Visualization of ECO features

As has been presented, the performance of ECO features on
object detection is, on individual datasets, among the best, and
generalizes well across multiple datasets. Here, the focus has been
turned from the raw performance to taking a closer look at how
ECO features are composed and what the genetic algorithm is
finding.

Since ECO features are performing a series of image transforms,
what the genetic algorithm is doing can, in many cases, be
understood by analyzing the images produced after each

http://www.umiacs.umd.edu/schwartz/softwares.html


Fig. 9. Example images from the volcanoes on Venus dataset. The first row is positive examples of volcanoes and the second row is negative examples.
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transform, Vi (Eq. (1)). These images are produced by averaging all
the positive or negative examples, after each transform, and then
normalizing the result so it can be viewed as an image. Normal-
ization is done according to Eq. (9). While the normalization is
necessary to view the average output of the transforms as an
image, it also has some negative effects. The normalization causes
the perceived contrast differences to be relative and the actual
image intensity magnitudes are not evident. The normalization of
the average over the positive and negative examples is done
separately which makes some comparisons between the two
difficult. Despite the disadvantages the images do provide very
clear information about what the genetic algorithm is finding

Viðx; yÞ ¼
Viðx; yÞ−minðViÞ
maxðViÞ−minðViÞ

ð9Þ

The output of the final transform, V, becomes the input to the
perceptron of the ECO feature. Those inputs are multiplied by the
perceptron weights, W. The greater the magnitude of the percep-
tron weight, the more important the input that is connected to
that weight is. So if the perceptron weights are viewed as an
image, in the same way that the output of the other transforms is
viewed as an image, the relative importance of the inputs to the
perceptron can be viewed. The positive and negative magnitude
weights are viewed separately so that the importance of the
weights for classifying the image as object or non-object can be
seen. The visualizations give an understanding of what informa-
tion the ECO features found.

Fig. 12 shows this visualization of ECO features on many of
the datasets used in this work. Each letter represents an ECO
feature and each number represents a transform in the order
that they appear in the ECO feature. Images marked with an
asterisk are averaged over the negative examples rather than the
positive examples. The letters n and p at the end of the label
indicate that the image is a representation of the weights of the
perceptron, the negative weights n and the positive weights p. The
transforms represented in the figure are as follows: a1-Kirsh
compass kernel in x direction, a2-dilate, b1-Laplacian,
b2-difference of Gaussians, b3-histogram equalization, c1-dilate,
c2-Hough circles, d1-histogram equalization, d2-dilate, d3-Harris
corner, e1-Gabor, e2-Kirsch compass gradient in the y direction,
e3-dilate, e4-Gabor, e5-median blur, f1-Gabor, f2-Gaussian
Blur, g1-erode, g2-adaptive threshold, h1-erode, h2-dilate, h3-
Hough Circles, i1-histogram equalization, i2-erode, j1-normalize,
j2-Sobel, j3-dilate, k1-histogram equalization, k2-distance trans-
form, k3-Sobel operator, l1-Harris corner, l2-integral image, m1-
resize, m2-dilate, n1-difference of Gaussians, n2-simple gradient
in x direction, n3-Laplacian, n4-Sobel operator, n5-normalize,
n6-census, n7-simple gradient in x direction, n8-Gaussian b
lur, o1-Gabor, o2-erode, p1-resize, p2-Gabor, q1-difference of
Gaussians, q2-convert type, q3-resize, r1-difference of Gaussians,
and r2-normalize.

Fig. 12 shows that shape information is the most common piece
of information being extracted from the images. In ECO feature (a),
the shape of a commercial plane stands out with the positive
perceptrons having the greatest magnitude on the tail of the plane.
There are two ECO features shown that feature a hough circle
transform to find (c) the curve on the front of a plane and (h) the
curve of a human chin. ECO feature (d) is discriminates part of the
back of a vehicle from the road where there is a strong contrast
difference. ECO feature (g) classifies as face, images with dark
regions on the eyes and around the nose, and classifies as non-
face, images with dark regions in other areas. ECO feature (i) and
(j) look at the general shape of a motorbike. ECO feature (l) looks at
the shape of a human head, ECO feature (m) the shape of a human
at the waist, and (n) the general shape of a human with emphasis
at the head and feet. ECO feature (o) looks at the position of the
dorsal fin and adipose fin to identify Whitefish from the other
three species of fish. ECO feature (p) is looking at the general shape
of the Whitefish with emphasis on the head.

There are a few ECO features that are also looking at texture.
The visualization of ECO feature (b) shows no discernible shape
information. Fig. 13 shows the average of all the positive examples
in the training set of the Caltech airplanes dataset. The subregion
of ECO feature (b), however, is at the top of the image and as
shown in the average airplane image, this appears to most often
not to intersect with the airplane in the image. Many of the images
in the Caltech airplanes dataset show the aircraft in the sky, where
the background does not have much texture. The random images
that make up the negative examples however tend to have a lot of
texture and it seems this is what the ECO feature is trying to find.
ECO feature (k) is fairly similar to (b) with a subregion that does
not intersect the target object and instead focuses on the texture
that exists mostly in the negative examples.

ECO feature (f) appears to be detecting the shadow of the
vehicle which is much darker on average than the street scenes
that make up the negative examples. Using a vehicle's shadow was



Fig. 10. Comparison on the volcanoes on Venus dataset, partition HET36, to the Schwartz [53] method.
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recently proposed by Rosebrock et al. as a means to localize
vehicles [61]. Without human intervention the ECO features
algorithm is able to pick up on many of the same traits that
human experts also target.

There are many ECO features that contain transforms that do
not lend themselves to visualization such as a hough transforms
like in (c3) and (h3), a distance transform shown in (k2), and
integral images like (l2). Other transforms that are hard to
visualize but not shown in Fig. 12 include histograms, discrete
Fourier transform, and a pixels statistics transform. ECO feature
(e), however, uses transforms that normally can be visualized but
does not make clear in this case what information is being
exploited.

The Caltech motorbikes and cars datasets use road images, with
the absence of cars and motorbikes, as their negative examples.
Using a specific set of negative images allows information to
extracted from both the positive and negative examples. ECO
feature (f2n) shows a bright road in the averaged image. ECO
feature (i2n) and (j3n) even have the lines of the road displayed.
6. Understanding of ECO features

In addition to viewing what the genetic algorithm was finding
and what information the ECO features were keying into, an
analysis was made into the different parts of the ECO features
algorithm.

6.1. Speciation

Genetic algorithms discard creatures with the lowest fitness
scores in each generation, which eventually leads to the conver-
gence of the entire population. In general, if the fitness truly
reflects the strength of the solution, this is the desired behavior.
There are situations, however, where certain types of solutions
evolve slower than other types of solutions, but if given the
opportunity could eventually evolve to have a similar or even
better fitness score. For example, Fig. 14 shows an example search
space. Searches starting at randomly chosen locations will most
likely converge on solution A because of the gradient and size in



Fig. 11. Examples of the four fish species. From the top row to the bottom row the species are yellowstone cutthroat, cottid, speckled dace, and whitefish.

Table 4
The classification accuracy when doing five-fold cross validation (one fold for
testing and four for training) for each species. One species is treated as the positive
examples while the other species form the negative examples.

Species 1 2 3 4 5

Y. Cutthroat 99.3 99.3 100 100 100
Cottid 100 100 100 99.3 98.4
Speckled dace 99.3 99.3 100 100 99.3
Whitefish 97.8 100 98.6 98.6 99.2
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fitness score the hill around solution A provides. Searches that
start off of the hill around point A could find point B, which has a
slightly higher fitness score, but it is going to take longer and
cannot be discarded too soon because of its low fitness score.
Speciation preserves diversity and innovation by allowing crea-
tures to compete in niches rather than competing against the
entire population [62,63].

In order for speciation to occur, ECO features must be allowed
to compete in niches, rather than against a large population. One
way to allow speciation to occur would be to define species and
only allow ECO features to compete if they were from the same
species. With 27 possible transforms and millions of possible
combinations of those transforms, defining species is very difficult.
It is hard to determine a distance measure between sequences of
transforms that does not divide the ECO features arbitrarily.

A simpler method to provide speciation, that does not alter the
genetic algorithm, is to train ECO features in smaller populations.
In large populations certain combinations of transforms were
observed to appear frequently. If, however, those combinations
of transforms were not present, other transform combinations
over time could mature into solutions with equally high fitness
scores. This observation shows that some combinations of trans-
forms mature much faster within the genetic algorithm but do not
necessarily perform any better than other combinations of trans-
forms that mature more slowly.

In order to show the advantages of speciation, 500 ECO features
were trained on the INRIA person dataset using a population size of
1000 and 500 ECO features were trained using a population size of
50. Fig. 16 shows the diversity of transforms and combinations of
transforms between an AdaBoost model trained using speciation
and without speciation. The circles in the figure represent the
various possible transforms. The larger the circle the more fre-
quently that transform appears in the AdaBoost model. Each trans-
form has lines that connect it to transforms that follow it in the
transform sequence. This highlights the diversity that speciation
allows. The model with speciation has many more combinations of
transforms that appear and the counts for each transform is more
distributed.

In our previous paper we compared ECO features to the
histogram of oriented gradients (HOG) method by Dalal and Triggs
[46] on the INRIA person dataset [58]. Fig. 15 shows their
comparison to the HOG method alongside our ECO features with
added speciation. On the INRIA person dataset, speciation
decreased the miss rate 5% points at 10−4 false positive rate, giving
a 3% miss rate. ECO features with speciation is as good as or better
than other state-of-the-art methods on the INRIA person dataset.
Speciation allow ECO features to better compete with other state-
of-the-art methods while still maintaining the ability of ECO
features to adapt itself to different target objects.

6.2. ECO feature length

The number of transforms used to create an ECO feature, n,
varies from 2 to 8 transforms. This decision was made to allow ECO
features to be long and complicated if necessary but not so long
that too much time was spent on complicated features that are
unlikely to yield good results. To test the validity of this decision
several AdaBoost models were trained on the INRIA person dataset
where the range of allowable ECO feature lengths were varied. A
comparison of the accuracy of these models is given in Fig. 17.
Using only two transforms has a higher miss rate at all false
positive rates and a significantly higher miss rate at low false
positive rates. Including ECO features with three transforms gives
a significant lower miss rate at low false positive rates. Adding
more ECO features that are allowed to be longer helps a little until
accuracy start to decrease slightly after allowing ECO features with
more than seven transforms. An obvious advantage of using
shorter ECO features is computation times. The testing times on
the INRIA person dataset ranged from 5 to 9 min, on our work-
station using a AMD Phenom 1055 T, depending on the range of
lengths included in the model.



Fig. 12. Visualization of ECO features trained on many of the datasets tested in this work.
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6.3. Subregions

ECO features were designed to use subregions to allow each
ECO feature to specialize in identifying a different aspect of the
target object. Further testing has shown that the use of subregions
does not improve nor degrade the accuracy of ECO features. The
use of subregions does, however, provide a 1.75 speedup testing on
the INRIA person dataset. Subregions tend to be fairly large with



Fig. 13. The average over all the airplanes in the training set of the Caltech
airplanes dataset.

Fig. 14. A search algorithm to find the maximum fitness score is much more likely
find point A before point B.

Fig. 16. A visualization of the diversity of final trained AdaBoost model without
(a) and with (b) speciation.

Fig. 15. Comparison between histogram of oriented gradients, ECO features, and
ECO features with speciation on the INRIA person dataset.
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an average area approximately equal to 35% of the entire image
area. For example, over the INRIA person dataset where the full
size images are 64�128, the average subregion size is 37�79.
Fig. 18 shows the comparison on the INRIA person dataset with
subregions turned on and off.
6.4. Important transforms

To test the importance of any given transform, AdaBoost
models were made for the various datasets where each transform
was excluded in turn. While a very time consuming process it was
hoped that certain transforms could be identified as being impor-
tant for certain datasets. However, no individual transforms were
identified as being particularly important. The accuracy could vary
to a small degree because a new model was trained and the
random nature of how models are built, but no appreciable
decrease in accuracy was observed by removing any transform.
This indicates that the transforms provide redundant information
or, at least, equally significant information. The histogram of
oriented gradients transform and the color transform were
removed from all the tests performed in this work because they
did not improve results and they significantly slowed the compu-
tation time of the ECO features algorithm.

6.5. Histograms of oriented gradients

The histograms of oriented gradients (HOG) transform is a very
popular transform used for object recognition. Due to its popular-
ity in object recognition it was hoped that the addition of the HOG
transform would improve the accuracy of ECO features on the
datasets used for testing. The other transform in the ECO feature
algorithm are considered more basic transforms and the addition
of HOG would help determine how more high level transform
could perform. The addition did not give better results and slowed
the method considerably. In none of the tests reported in this work
was the HOG transform used because of this.



Fig. 17. Accuracy of several AdaBoost models where the range of the length of the
ECO features used by the models is increased.

Fig. 18. Accuracy of two AdaBoost models where subregions were used and where
they were not used on the INRIA person dataset.
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7. Commentary on performance

When one stops to think about the number of image transform
combinations, their parameters, and the possible locations on the
image to apply the transforms — the search space seems dizzy-
ingly large. Surprisingly, however, for all experiments run so far,
good ECO features have been found very quickly. Even after a few
generations of the genetic algorithm, weak classifiers with good
discriminative power are found. To help with run times, the image
transform functions from the OpenCV library are used, which are
optimized for fast performance.

Most of the training was done on an AMD Phenom II 920 quad-
core running at 2.8 GHz, with 4 GB of RAM. The Caltech datasets
took approximately 20 min each to train. The volcanoes on Venus
dataset, which consists of 20 different training sets, took approxi-
mately two hours to train altogether. The INRIA Person dataset
consisted of a far greater number of images and trained in about
two hours using a cluster of three Dell PowerEdge M610 with two
Xeon Quad-core X5560 processors. Although these training times
are not critical, as training is intended to be an off-line process,
they demonstrate that training time is not exorbitant nor imprac-
tical. It should be noted that as training images are added, or as the
number of generations or size of population in the genetic
algorithm increase, the training times scale linearly.
To take advantage of multiple cores, the inner loop of
Algorithm 1, where over 99% of the computation is done, was
parallelized using OpenMP. OpenMP is a library that provides
multi-threading with the use of compiler directives and library
routines. OpenMP has a construct for parallelizing for loops, and in
this situation, one simple compiler directive was all that was
needed to take advantage of all the processors and cores on our
machines.
8. Conclusion

It was shown that ECO features generalize well across datasets
based only on a set of basic image transforms. Results show that
ECO features have high discriminative properties for target objects
and that the performance on each dataset was either superior or
comparable to state-of-the-art methods. Visualizations of ECO
features were given that highlight the information that the ECO
features found useful, such as shape information. Speciation
allowed the ECO features to perform better by allowing good
solutions that took more time to mature to not be discarded by the
genetic algorithm and lead to a 5% decrease in miss rate on the
INRIA person dataset. The number of transforms of ECO features
was further explored and shown that the inclusion of longer
transforms does not improve accuracy except for a modest
improvement a lower false positive rates. The use of subregions
by ECO features was also further explored and shown to not give
any accuracy improvements but did lead to a 1.75� speed
improvement. AdaBoost was replaced with a support vector
machine learning algorithm but did not perform as well as
AdaBoost. Finally the importance of transforms was explored
and it was found that none of the transforms by themselves were
important, indicating that either redundant information or equally
significant information is given in the rest of the transforms.

While the ECO features algorithm currently is the best feature
construction method for general object recognition there are many
improvements that could be made. Beyond what is listed here it is
hoped that, based on this work, other intelligent researches will
expand the field of feature construction with their own ideas.

The use of a genetic algorithm has a few disadvantages and
speciation was added to help deal with this. There are several
alternatives that could be used that include evolution strategies,
evolutionary programming, simulated annealing, Gaussian adap-
tation, hill climbing, and particle swarm optimization. It is unclear
whether any one of these methods would improve the results,
since each method has its advantages, but it would be interesting
to look at.

The number of inputs to the perceptrons is fairly high. In many
cases the number of inputs to the perceptrons is equal to the
number of pixels in the subregion that was selected. With
hundreds or thousands of inputs, the perceptron can suffer from
Hughes phenomenon, where there are not enough training sam-
ples to ensure that there are several examples for each combina-
tion of inputs. A higher dimensional feature space will lead to
reduced predictive abilities given the same training set. A feature
selection of extraction step could be added to reduce the dimen-
sionality of the input space.

There are several things that could be done to improve the
runtime performance of ECO features. OpenCV was used exten-
sively throughout this work and many OpenCV functions now also
have a GPU implementation. In the same way that we saw a
significant improvement in run times by implementing the HOG
method on a GPU, a GPU implementation of ECO features could
help dramatically. Other works [12,13,64] have avoided using a
sliding window approach which could greatly reduce the compu-
tations needed when using full images and not just image crops.
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