
onsiderable progress has been made in speech-recog- 
nition technology over the last few years and no- 
where has this progress been more evident than in the 

area of large-vocabulary recognition (LVR). Current labora- 
tory systems are capable of transcribing continuous speech 
from any speaker with average word-error rates between 5% 
and 10%. If speaker adaptation is allowed, then after 2 or 3 
minutes of speech, the error rate will drop well below 5% for 

dependent and required words to be spoken with a short pause 
between them. However, the capability to recognize natural 
continuous-speech input from any speaker opens up many 
more applications. As a result, LVR technology appears to 
be on the brink of widespread deployment across a range of 
information technology (IT) systems. 

This article discusses the principles and architecture of 
current LVR systems and identifies the key issues affecting 

most speakers. 
LVR systems had been limited to dictation 

applications since the systems were speaker 

their future deployment. To illustrate the 
various points raised, the Cambridge Uni- 
versity HTK system is described. This sys- 
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tem is a modem design that gives state-of-the-art perform- 
ance, and it is typical of the current generation of recogni- 
tion systems. 

System Overview 

Current LVR systems are firmly based on the principles of 
statistical pattem recognition. The basic methods of applying 
these principles to the problem of speech recognition were 
pioneered by Baker, Jelinek, and their colleagues from IBM 
in the 1970s, and little has changed since [13, 541. Figure 1 
illustrates the main components of an LVR system. 

An unknown speech waveform is converted by a front-end 
signal processor into a sequence of acoustic vectors, Y =yi .  
y2, ...,Y T. Each of these vectors is a compact representation 
of the short-time speech spectrum covering a period of typi- 
cally 10 msecs. Thus, a typical 10-word utterance might have 
a duration of around 3 seconds and would be represented by 
a sequence of T = 300 acoustic vectors. 

The utterance consists of a sequence of words, W = wi, 
w2,..wn, and it is the job of the LVR system to determine the 
most probable word sequence, W, given the observed acous- 
tic signal Y .  

To do this, Bayes’ rule is used to decompose the required 
probability P( WIY) into two components, that is, 

This equation indicates that to find the most likely word 
sequence W, the word sequence that maximizes the product 
of P(W) and P(YIW) must be found. The first of these terms 
represents the a priori probability of observing W inde- 
pendent of the observed signal, and this probability is deter- 
mined by a language model. The second term represents the 
probability of observing the vector sequence Y given some 
specified word sequence W, and this probability is deter- 
mined by an acoustic model. 

Figure 1 shows how these relationships might be com- 
puted. The word sequence W = “This is speech” is postulated 
and the language model computes its probability P(W). Each 
word is then converted into a sequence of basic sounds or 
phones using a pronouncing dictionary. For each phone there 
is a corresponding statistical model called a hidden Markov 
model (HMM). The sequence of HMMs needed to represent 
the postulated utterance are concatenated to form a single 
composite model, and the probability of that model generat- 
ing the observed sequence Y is calculated. This is the required 
probability P(YI W). In principle, this process can be repeated 
for all possible word sequences with the most likely sequence 
selected as the recognizer output. 

To convert the above design philosophy into a practical 
system requires the solution of a number of challenging 
problems. First, a front-end parameterization is needed that 
can extract from the speech waveform all of the necessary 
acoustic information in a compact form compatible with the 
HMM-based acoustic models. Second, the HMM models 

1. Overview of Statistical Speech Recognition. This diagram 
shows the computation of the probability P(WIY) of word se- 
quence W given the parameterized acoustic signal Y. The prior 
probability P(W) is determined directly from a language model. 
The likelihood of the acoustic data P(Yl W )  is computed using a 
composite hidden Markov model representing W constructed 
from simple HMMphone models joined in sequence according to 
word pronunciations stored in a dictionary. 

2. MFCC-based Front-End Processor. To peiform pattern-match- 
ing, the speech waveform must be converted to a sequence of 
acoustic vectors representing a smoothed log spectrum computed 
every 10 msecs. Per fomnce  is improved by using a non-linear 
mel-jirequency scale followed by a discrete cosine transform 
(DCT). The latter has the effect of decorrelating the signal, 
thereby improving assumptions of statistical independence. Fi- 
nally, first and second differentials are appended to incorporate 
dynamic information about the signal. 
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themselves must accurately represent the distributions of 
each sound in each of the many contexts in which the sound 
may occur. Furthermore, the HMM parameters must be esti- 
mated from data, and it will never be possible to obtain 
sufficient data to cover all possible contexts. Third, the lan- 
guage model must be designed to give accurate word predic- 
tions based on the preceding history. However, as for the 
HMMs, data sparsity is an ever-present problem and the 
language model must be able to deal with word sequences for 
which no examples occur in the training data. Finally, the 
process outlined above for finding W by enumerating all 
possible word sequences is clearly impractical. Instead, po- 
tential word sequences are explored in parallel, discarding 
hypotheses as soon as they become improbable. This process 
is called decoding, and the design of efficient decoders is 
crucial to the realization of practical LVR systems capable of 
fast and accurate operation on today’s computing platforms. 
The next four sections of this article deal with each of these 
issues in more detail. 

Front-End Parameterization 

A key assumption made in the design of current recognizers 
is that the speech signal can be regarded as stationary (i.e., 
the spectral characteristics are relatively constant) over an 
interval of a few milliseconds. Thus, the prime function of 
the front-end parameterization stage is to divide the input 
speech into blocks and from each block derive a smoothed 
spectral estimate. The spacing between blocks is typically 10 
msecs, and blocks are normally overlapped to give a longer 
analysis window of typically 25 msecs. As with all processing 
of this type, it is common to apply a tapered window function 
(e.g., Hamming) to each block. Also the speech signal is often 
pre-emphasized by applying high-frequency amplification to 
compensate for the attenuation caused by the radiation 
from the lips. 

The required spectral estimates may be computed via 
linear prediction or Fourier analysis [89], and there are a 
number of additional transformations that can be applied in 
order to generate the final acoustic vectors. To illustrate one 
typical arrangement, Fig. 2 shows the front end of the HTK 
recognizer, which generates mel-frequency cepstral coeffi- 
cients (MFCCs) [24]. 

To compute MFCC coefficients, the Fourier spectrum is 
smoothed by integrating the spectral coefficients within tri- 
angular frequency bins arranged on a non-linear scale called 
the mel-scale. For 8 kHz bandwidth speech, the HTK recog- 
nizer uses 24 of these triangular frequency bins. The mel- 
scale is designed to approximate the frequency resolution of 
the human ear and is linear up to 1000 Hz and logarithmic 
thereafter. More importantly, its use has been shown empiri- 
cally to improve recognition accuracy [91]. In order to make 
the statistics of the estimated speech power spectrum ap- 
proximately Gaussian, log compression is applied to the 
filter-bank output. 

The final processing stage is to apply the discrete cosine 
transform (DCT) to the log filter-bank coefficients. This has 
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3. HMM-based Phone Model. An HMM can be regarded as a ran- 
dom generator of acoustic vectors. It consists of a sequence of 
states connected by probabilistic transitions. It changes to a new 
state each time period, generating a new acoustic vector accord- 
ing to the output distribution of that state. The transition prob- 
abilities therefore model the durational variability in real speech 
and the output probabilities model the spectral variability. 

y = Y l  Y2 Y3 Y4 YS 

the effect of compressing the spectral information into the 
lower-order coefficients, and it also decorrelates them to 
allow the subsequent statistical modelling to use diagonal 
covariance matrices. In the HTK recognizer, the signal en- 
ergy plus the first 12 cepstral coefficients are retained to form 
a basic 13-element acoustic vector. Cepstral coefficients can 
also be derived from LP coefficients where they achieve a 
similar decorrelating effect [4, 301. Good results have also 
been reported using LP coefficients to derive a smoothed 
spectrum that is then perceptually weighted to give percep- 
tually weighted linear prediction (PLP) coefficients [44]. 

As will be discussed in the next section, the acoustic 
modelling assumes that each acoustic vector is uncorrelated 
with its neighbors. This is a rather poor assumption since the 
physical constraints of the human vocal apparatus ensure that 
there is continuity between successive spectral estimates. 
However, appending the first- and second-order differentials 
to the basic static coefficients will greatly reduce the problem 
[3, 311. In the HTK recognizer, these are approximated by 
fitting a linear regression over a window covering the two 
preceding and two following vectors. When this is done, the 
final acoustic vector has 39 components. 

Although the above description is specific to one particu- 
lar recognition system, it is typical of most modern LVR 
systems. An important point to emphasize is the degree to 
which the front end of modern recognizers has evolved to 
optimize the subsequent pattern matching. For example, in 
the above, the log compression, DCT transform, and delta 
coefficients are all introduced primarily to satisfy the as- 
sumptions made by the acoustic modelling component. 

Acoustic Modelling 

The purpose of the acoustic models is to provide a method of 
calculating the likelihood of any vector sequence Y given a 
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word w. In principle, the required probability distribution 
could be located by finding many examples of each w and 
collecting the statistics of the corresponding vector se- 
quences. However, this is impractical for large-vocabulary 
systems and, instead, word sequences are decomposed into 
basic sounds called phones. 

Each individual phone is represented by an HMM. An 
HMM has a number of states connected by arcs. HMM phone 
models typically have three emitting states and a simple 
left-right topology as illustrated by Fig. 3. The entry and exit 
states are provided to make it easy to join models together. 
The exit state of one phone model can be merged with the 
entry state of another to form a composite HMM. This allows 
phone models to be joined together to form words and words 
to be joined together to cover complete utterances. 

An HMM is most easily understood as a generator of 
vector sequences. It is a finite-state machine that changes 
state once every time unit, and each time, t ,  that a state,j, is 
entered, an acoustic speech vector, yt, is generated with 
probability density bj(yt). Furthermore, the transition from 
state i to statej is also probabilistic and is governed by the 
discrete probability azj. Figure 3 shows an example of this 
process where the model moves through the state sequence 
X = 1,2,2,  3,4,4,  5 in order to generate the sequenceyl to 
Y5. 

The joint probability of a vector sequence, Y, and state 
sequence X, given some model, M ,  is calculated simply as the 
product of the transition probabilities and the output prob- 
abilities. So for the state sequence X in Fig. 3: 

More formally, the joint probability of an acoustic vector 
sequence, Y, and some state sequence X = x( l), x(2), x(3), ..., 
x(T)  is 

(3) 

where x(0) is constrained to be the model entry state and x(T+ 1) 
is constrained to be the model exit state. 

In practice, of course, only the observation sequence Y is 
known and the underlying state sequence X is hidden. This is 
why it is called a hidden Markov model. However, the re- 
quired probability P(YlM) is easily found by summing Eq. 3 
over all possible state sequences. The Forward-Backward 
algorithm is an efficient recursive method of perfonning this 
calculation. A crucial feature of this algorithm is that it also 
allows the probability of being in a specific model state at a 
specific time to be calculated. This leads to the Baum- Welch 
algorithm, which is a very simple and efficient procedure for 
finding maximum-likelihood estimates of both the a and b 
HMM parameter sets. Parameter estimation is beyond the 
scope of this article, but it is important to note that the 
existence of Baum-Welch has been a key factor in making 
HMMs the dominant technology in acoustic modelling, 

Alternatively, P( YIM) can be approximated by finding the 
state sequence that maximizes Eq. 3. The Viterbi algorithm 

is a simple algorithm for computing this efficiently. As will 
be discussed later, this algorithm is important in decoding, 
where determination of the most likely state sequence is the 
key to recognizing an unknown word sequence. 

The brief outline of HMMs presented above is textbook 
material that has been well understood for many years. How- 
ever, it is only recently that methods have been developed 
that allow HMM-based phone models to provide the acoustic 
discrimination necessary for large-vocabulary, speaker-inde- 
pendent speech recognition. 

It is instructive to rewrite Eq. 3 in logarithmic form and 
separate out the a and b terms so that 

(4) 

The transition probabilities ~ ~ ( t ) ~ ( t + i )  model the temporal 
structure of the data. Regarding each log probability in Eq. 4 
as a score, each transition term can be viewed as the cost of 
moving from one state to another. This actually provides a 
very poor model for the duration of real speech, but this is not 
crucial since, in practice, the above expression is dominated 
by the output probabilities bX(t)bt). Each HMM state provides 
a prototype acoustic vector, and the log output probability 
function provides a distance metric to allow the actual acous- 
tic vectors to be compared with the prototype. 

The choice of output probability function is crucial since 
it must model all of the intrinsic spectral variability in real 
speech, both within and across speakers. Early HMM systems 
used discrete output probability functions in conjunction with 
a vector quantizer. Each incoming acoustic vector was re- 
placed by the index of the closest vector in a precomputed 
codebook, and the output probability functions were just 
look-up tables containing the probabilities of each possible 
VQ index. Computationally, this approach is very efficient, 
but the quantization introduces noise that limits the precision 
that can be obtained. Hence, modem systems use parametric 
continuous-density output distributions that model the acous- 
tic vectors directly [lo, 56,671. The most common choice of 
distribution is the multivariate mixture Gaussian: 

( 5 )  
m = l  

where cjm is the weight of mixture component m in state j and 
NPy; p, X) denotes a multivariate Gaussian of mean p and 
covariance Z. 

So far there has been an implicit assumption that only one 
HMM is required per phone, and since approximately 45 
phones are needed for English, it may be thought that only 
45 phone HMMs need be trained. In practice, however, 
contextual effects cause large variations in the way that 
different sounds are produced. Hence, to achieve good pho- 
netic discrimination, different HMMs have to be trained for 
each different context. The simplest and most common ap- 
proach is to use triphones, where every phone has a distinct 
HMM model for every unique pair of left and right neighbors. 
For example, suppose that the notation x-y+z represents the 
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4. State Tying. In order to maximize the amount of data available 
to train each state while preserving discrimination ability, similar 
HMM states of the allophonic variants of each basic phone are 
tied together. The choice of which states to tie is made using a de- 
cision tree. 

phone y occurring after an x and before a z. The phrase, “Beat 
it!” would be represented by the phone sequence si1 b iy t ih 
t sil, and if triphone HMMs were used the sequence would 
be modelled as 

si1 sil-b+iy b-iy+t iy-t+ih t-ih+t ih-t+sil si1 

Notice that the triphone contexts span word boundaries and the 
two instances of the phone t are represented by different HMMs 
because their contexts are different. This use of so-called cross- 
word triphones gives the best modelling accuracy, but it leads 
to complications in the decoder, as discussed later. Simpler 
systems result from the use of word-intemal triphones, where 
the above example would become 

si1 b+iy b-iy+t iy-t ih+t ih-t si1 

Here far fewer distinct models are needed, which simpli- 
fies both the parameter estimation problem and decoder 
design. However, the cost is an inability to model contextual 
effects at word boundaries, which, in fluent speech, are 
considerable. 

The use of Gaussian mixture output distributions allows 
each state distribution to be modelled very accurately. How- 
ever, when triphones are used they result in a system that has 
too many parameters to train. For example, a large-vocabu- 
lary cross-word triphone system will typically need around 
60,000 triphones (With 45 phones, there are 453 = 91125 
possible triphones, but not all can occur due to the phonotac- 
tic constraints of the language). In practice, around 10 mix- 
ture components give good performance in LVR systems. 
Assuming that the covariances are all diagonal, then the HTK 

recognizer with its 39-element acoustic vectors would require 
around 790 parameters per state. Hence, 60,000 3-state 
triphones would have a total of 142 million parameters. 

The problem of too many parameters and too little training 
data is absolutely crucial in the design of a statistical speech 
recognizer. Early systems dealt with the problem by tying all 
Gaussian components together to form a pool that was then 
shared among all HMM states. In these so-called tied-mixture 
systems, only the mixture component weights were state 
specific, and these could be smoothed by interpolating with 
context-independent models [ 16, 48, 861. Comparisons be- 
tween discrete, tied-mixture, and continuous-density HMMs 
showed that tied-mixture HMMs were superior [47]. How- 
ever, this followed mainly from the lack of good smoothing 
techniques for continuous-density systems. More recently, 
smoothing based on parameter tying has become popular 
[104]. In particular, state-tying [49, 1061 and phone-based 
component tying [26] have been studied. Using these tying 
techniques with continuous-density HMMs has led to sub- 
stantial improvements in modelling accuracy. 

The HTK recognizer uses state tying. The idea is to tie 
together states that are acoustically indistinguishable. This 
allows all the data associated with each individual state to be 
pooled and thereby give more robust estimates for the pa- 
rameters of the tied state. This is illustrated in Fig. 4. At the 
top of the figure, each triphone has its own private output 
distribution. After tying, several states share distributions. 

In the HTK recognizer, the choice of which states to tie is 
made using phonetic decision trees [12, 57, 1051. This in- 
volves building a binary tree for each phone and state posi- 

states of all allophonic variants of each basic phone are tied to 
form a single pool. Phonetic questions are then used to partition 
the pool into subsets in a way that maximizes the likelihood of the 
training data. The leaf nodes of each tree determine the sets of 
state tyings for each of the allophonic variants. 
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tion. Each tree has a yeslno phonetic question such as “Is the 
left context a nasal?” at each node. Initially, all states for a 
given phone state position are placed at the root node of a 
tree. Depending on each answer, the pool of states is succes- 
sively split and this continues until the states have trickled 
down to leaf nodes. All states in the same leaf node are then 
tied. For example, Fig. 5 illustrates the case of tying the center 
states of all triphones of the phone /awl (as in “out”). All of 
the states trickle down the tree, and, depending on the answer 
to the questions, they end up at one of the shaded terminal 
nodes. For example, in the illustrated case, the center state of 
s-aw+n would join the second leaf node from the right since 
its right context is a central consonant and a nasal, but its left 
context is not a central stop. 

The questions at each node are chosen to maximize the 
likelihood of the training data given the final set of state 
tyings. In practice, phonetic decision trees give compact, 
good-quality state clusters that have sufficient associated data 
to robustly estimate mixture Gaussian output probability 
functions. Furthermore, they can be used to synthesize an 
HMM for any possible context, whether it appears in the 
training data or not, simply by descending the trees and using 
the state distributions associated with the terminating leaf 
nodes. Finally, phonetic decision trees can be used to include 
more than simple triphone contexts. For example, the HTK 
recognizer can use questions spanning +2 phones and can 
also take account of the presence of word boundaries. 

Language Modelling 

The purpose of the language model is to provide a mechanism 
for estimating the probability of some word, wk, in an utter- 
ance given the preceding words, Wk-’ = w,. . . wL-, . A simple 
but effective way of doing this is to use N-grams, in which it 
is assumed that wk depends only on the preceding n - 1 words, 
that is 

N-grams simultaneously encode syntax, semantics, and prag- 
matics and they concentrate on local dependencies. This 
makes them very effective for languages like English where 
word order is important and the strongest contextual effects 
tend to come from near neighbors. Furthermore, N-gram 
probability distributions can be computed directly from text 
data and hence there is no requirement to have explicit 
linguistic rules such as a formal grammar of the language. 

In principle, N-grams can be estimated from simple fre- 
quency counts and stored in a look-up table. For example, for 
the case of trigrams (N = 3) ,  

(7) 

where t(a,b,c) is the number of times the trigram a,b,c appears 
in the training data and b(a,b) is the number of times the 
bigram a,b appears. The problem, of course, i s  that for a 

6. Fragment of Decoder Network. In principle, the decoder 
searches through a network representing all possible word se- 
quences. In practice, only paths corresponding to the most likely 
word sequences are constructed. Part (a)  shows the directed net- 
work of words that the recognizer is considering initially. Part (b) 
shows the same network decomposed into triphones. Note that in or- 
der to take account of cross-word context, the$rst/ax/sound has to 
be replicated and the word a duplicated. Part (c) shows that tree- 
structuring the network can reduce the size of the network. 

vocabulary of V words, there are V 3 potential trigrams. Even 

for a very modest vocabulary of 10,000 words, this is a very 
large number. Thus, many trigrams will not appear in the 
training data and many others will only appear once or twice, 
so that the estimate given by Eq. 7 will be very poor. In short, 
there is an acute data sparsity problem. 

The solution to training data sparsity is to use a combina- 
tion of discounting and backing-off [SS, 771. Discounting 
means that the trigram counts of the more frequently occur- 
ring trigrams are reduced and the resulting excess probability 
mass is redistributed among the less frequently occurring 
trigrams. Backing-off is applied when there are too few 
trigrams to form any estimate at all (e.g., just one or two 
occurrences in the training data). It involves replacing the 
trigram probability by a scaled bigram probability, that is 
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where B is a back-off function included to ensure that 
@ ( W ~ ~ W ~ - ~ ,  w ~ - ~ )  is properly normalized. 

Although robust estimation of trigram probabilities re- 
quires considerable care, the problems are soluble and good 
performance can be obtained. N-grams do have obvious 
deficiencies resulting from their inability to exploit long- 
range constraints such as subject-verb agreement [%]. As a 
consequence, various alternatives have been studied such as 
tree-based models [ 111, trellis models [98], trigger models 
[63], history models [17], and variable N-grams [25]. How- 
ever, in general, all of these attempts have yielded only small 
improvements at considerable computational cost. Thus to 
date, bigram and trigram language models dominate 
LVR systems. 

Decoding 

The preceding sections have described the main components 
of a large-vocabulary system. In order to perform recognition 
using these components, the sequence of words W that maxi- 
mizes Eq. 1 must be found. This is a search problem and its 
solution is the domain of the decoder. 

As with all search problems, there are two main ap- 
proaches: depth-first and breadth-first. In depth-first designs, 
the most promising hypothesis is pursued until the end of the 
speech is reached. Examples of depth-first decoders are 
stack-decoders and A*-decoders [58, 59, 86, 871. More re- 
cently, a refinement of stack decoding based on an envelope 
search has been proposed [40]. 

In breadth-first designs, all hypotheses are pursued in 
parallel. Breadth-first decoding exploits Bellman’s optimal- 
ity principle and is often referred to as Viterbi decoding. Since 
LVR systems are complex and pruning of the search space 
is essential, a process called beam search is typically used 
[41, 961. The HTK decoder uses beam search and Viterbi 
decoding. 

To understand the decoding problem, imagine that a 
branching tree network is constructed such that at the start 
there is a branch to every possible start word. All first words 
are then connected to all possible follow words and so on. 
This is illustrated in part (a) of Fig. 6. Clearly this tree will 
be very large, but if extended deep enough it would, in 
principle, represent all possible sequences. At first sight, this 
representation might seem very extravagant. In small-vo- 
cabulary systems, it is usually sufficient to put all words in 
parallel and place a loop around them. This allows all possible 
word sequences to be represented in a compact way since 
every vocabulary word appears only once. Unfortunately, 
however, such an arrangement does not allow a trigram 
language model to be used since the available history is 
limited to one word. Furthermore, a single loop back prevents 
cross-word triphones from being used. An explicit branching 
tree, however, allows both to be used in a straightforward 
manner [ 51. 

7. Early Application of the Language Model. In a tree-structured 
network, the language model probability cannot be applied until 
the end of the word is reached. However, this delayed application 
severely limits the effectiveness of the language model for prun- 
ing. To solve this problem, each phone model carries a list of all 
possible words that it can belong to. This allows the probability 
of the most likely word to be used as an estimate for the prob- 
ability of the actual word. 

Next, let each word in this tree be replaced by the sequence 
of models representing its pronunciation. If there are multiple 
pronunciations then models can be joined in parallel within 
the word. Part (b) of Fig. 6 shows a fragment of the tree 
expanded into models. Finally, merge all identical phone 
models in identical contexts that have a common entry point 
as illustrated in part (c) of Fig. 6. Notice here that the use of 
cross-word triphones significantly limits the amount of 
model sharing possible. 

The net result of the above is a branching tree of HMM- 
state nodes connected by state transitions and word-end 
nodes connected by word transitions. Any path from the start 
node to some point in the tree can be evaluated by adding all 
the log state transition probabilities, all the log state output 
probhbilities, and the log language-model probabilities. Such 
a path can be represented by a movable token placed in the 
node at the end of the path [ 1031. The token has a score, which 
is the total log probability up to that point, and a history, 
which records the sequence of word-end nodes that the token 
has passed through. Any path can be extended by moving the 
token from its current node to an adjoining node and updating 
its score according to the current state-transition probability, 
state-output probability, and the language-model prob- 
ability, if any. 

The search problem can now be recast in the form of a 
token-passing algorithm. Initially, a single token is placed in 
the start node of the tree. As each acoustic vector is input, 
every token is copied into all connecting nodes and the scores 
updated. If more than one token lands in a node, only the best 
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scoring token needs to be retained since, by Bellmans' opti- 
mality principle, all other tokens must lie on inferior paths. 
When all of the acoustic vectors have been processed, the 
word-end nodes are scanned and the token with the highest 
score represents the most likely path and, hence, the most 
likely word sequence. 

This basic token-passing algorithm is guaranteed to find 
the best possible path, but unfortunately, it would take too 
much time and space to compute. Hence, to make the algo- 
rithm tractable, pruning is employed. For every time frame, 
the best score in any token is noted and any token whose score 
lies more than a beam-width below this best score is de- 
stroyed. Since only the active tokens lying within the beam 
need to be kept in memory, only a fragment of the branching 
tree described above is ever needed at one time. As tokens 
move forward, new tree structure is created in front of them 
and the old structure behind them is destroyed. For this to 
work efficiently, it is crucial to prune tokens as soon as 
possible, and here tree-structuring causes a problem since a 
side-effect of merging phone models is that the identity of 
each new word entered is not known until its end node is 
reached. This is unfortunate since the language model pro- 
vides a very powerful constraint, which needs to be applied 
as soon as is practicable in order to keep the number of active 
tokens as small as possible. The HTK decoder deals with this 
problem by associating a list of possible current words with 
every token (see Fig. 7). As the token moves toward the end 
of the word, this list will shrink until eventually it contains 
just a single word. Tokens then receive a language-model 
score equal to the most likely word in the current list. As this 
gets updated on every model transition, the tokens get 
pruned accordingly. 

The dynamic network approach used in the HTK decoder 
results in a system that can arbitrarily exploit long-span 
language models and HMM phone models that depend on 
both the previous and succeeding acoustic context. Further- 
more, it can do this in a single pass [SI]. Most other Viterbi- 
based systems use a multiple-pass approach in which the first 
pass uses simple acoustic and language models and outputs 
a lattice of alternatives that are then rescored using more 
complex models in subsequent passes [6,74,90]. The prob- 
lem with this is that an error in the first pass can never be 
recovered, hence large lattices must be used and any potential 
computational savings are lost. Multiple passes are useful for 
applying more complex language models, but for maximum 
............... " . . . .  ...... 
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accuracy, the most accurate acoustic models available need 
to be applied as soon as possible. 

Current State of LVR 

The major benchmarks for assessing the performance of LVR 
systems are the US Advanced Research Project Agency 
(ARPA) CSR Evaluations. The last full evaluation of dicta- 
tion-style large-vocabulary recognition was the November 
1994 evaluation [61, 851 in which the participating systems 
included AT&T Bell Laboratories [66, 691, BBN [78], Bos- 
ton University [83], the CUED ABBOT group [46], the 
CUEDHTKgroup [lOl, 1001,IBM [8,9],LIMSI-CNRS [38, 
361, Philips [29], and SRI International 1281. 

The main focus of the evaluation was the so-called hub 
test H1 on which all participating sites evaluated their sys- 
tems. This hub test was split into two main parts: HI-C1 in 
which the acoustic training data and a 20K-word trigram 
language model trained on 227 million words of news text 
were fixed; and H1-PO in which any acoustic- or language- 
model training data could be used. In H1-C1 each utterance 
had to be recognized independently, whereas in H1-PO each 
change of speaker was known so that unsupervised incre- 
mental adaptation could be used. 

The HTK LV recognizer had the lowest error rate of the 
systems tested in the November 1994 evaluation, and it is 
therefore indicative of what can be achieved with current 
technology. Performance in terms of the percentage-word-er- 
ror rate for a number of conditions (including H1-C1 and 
H1-PO) is shown in Table 1. As can be seen, the best perform- 
ance achieved was 7.2 % (on average, seven words in every 
100 were mistranscribed.) Although this figure is somewhat 
high, it is interesting to look at the error rates on a per-speaker 
basis as shown in Fig. 8, where the speakers have been 
ordered based on their performance. This figure suggests that, 
at least for part of the population, useable performance is 
achievable now. Conversely, it also shows that to cover the 
majority of the population, better robustness and more 
effective adaptation is needed (some training of the speakers 
would also help!). 
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Current Issues 

The performance levels described in the previous section 
were all obtained for speech that was read in quiet recording 
conditions with a known microphone and a known task 
domain. Furthermore, the majority of systems tested were 
operating at many times slower than real time. Thus, although 
large-vocabulary continuous-speech recognition appears to 
be feasible, the following issues will need to be resolved 
before widespread deployment of LVR technology is 
possible. 

Speaker Adaptation 

Speaker independence is highly desirable since it allows a 
system to be used straight out of the box, and it allows systems 
to be built for which the speaker is not known in advance. 
However, in many applications, a speaker will either become 
a regular user or will input a reasonable quantity of speech at 
first use. In such cases it is natural to adapt the acoustic 
models to match that speaker. Adaptation can result in sub- 
stantial reductions in error rate, particularly for atypical 
speakers, and its incorporation in future LVR systems 
will be essential. 

Adaptation can be supervised or unsupervised, and it can 
be performed incrementally as the speaker is talking or off- 
line at the end of the session. Each of these different styles 
may be most appropriate for some particular application. 
However, unsupervised incremental adaptation is the least 
intrusive and most generally useful to the user. Current 
research is therefore particularly concerned with techniques 
that can yield worthwhile performance gains with very little 
adaptation data, but which also asymptotically lead to 
speaker-dependent performance once a large amount of data 
has been acquired. 

The acoustic models in an LVR system comprise a very 
large number of parameters. Hence, adaptation involving a 
very small amount of new data must depend on some form of 
general transformation rather than a direct re-estimation of 
the parameters themselves. In VQ or tied-mixture systems, 
this can be achieved by code-book mapping [95]. In CD 
systems, linear transformations can be applied to each Gauss- 
ian component. This can be a single global transform based 
on linear regression [45,52] or canonical correlation [22]. As 
more data becomes available, Gaussians can be clustered and 
an individual transform determined for each cluster [27,65]. 
Alternative approaches include clustering [32], regression- 
based prediction [23], and data augmentation, where the 
training data rather than the models is adapted [15]. Finally, 
when there is a reasonable amount of adaptation data, classi- 
cal MAP estimation can be used to update all of the acoustic 
parameters [37,64]. 

Environmental Robustness 

Robustness to background noise and channel variability is 
clearly an essential requirement for the widespread use of 

LVR technology. As explained above, LVR systems utilize 
acoustic feature vectors consisting of short-term spectral 
estimates to which some form of amplitude compression, 
such as a log operation, has been applied. 

The primary effect of additive noise is to shift the spectral 
means and shrink the variances. However, it is important to 
note that the addition of noise changes the whole distribution 
and not just the means and variances [82]. Hence, a secondary 
effect of noise is a change to the modelling assumptions. 
Channel variability is convolutive noise that after a log op- 
eration becomes a simple, but possibly time-varying, offset. 

There are a variety of approaches to dealing with noise 
[33,42]. At the front-end, the noise can be removed from the 
speech [19], noise-robust features can be used [70, 731, the 
noise can be masked [71], or the features can be mapped [76]. 
The problem with these approaches is that, at best, they can 
only exploit knowledge of the global statistics of the speech 
in order to remove the noise. Given that the acoustic models 
within a recognizer encode very detailed information about 
the speech, this is an unnecessary handicap. Alternatively, an 
attempt can be made to make the pattern-matching process 
itself robust to noise [93]. However, in LVR systems, there 
are a very large number of overlapping acoustic classes, and 
maintaining maximal discrimination is essential. 

Hence, for LVR systems, methods that adapt the recog- 
nizer to handle the corrupted speech signal directly are most 
attractive. These include code-book mapping for discrete and 
tied-mixture systems [2], cepstral mean compensation [72], 
state-based filtering [ 141, and parallel model combination 
(PMC) [34, 35, 971. Note also that many of the techniques 
used for speaker adaptation are also capable of adapting to 
different noise environments. 

In the large-vocabulary area, noise robustness remains a 
substantially unsolved problem. As the results in [U]  show, 
without any form of compensation the performance of an 
LVR system will drop dramatically in noise. Compensation 
can limit this effect but cannot yet give immunity. 

Task Independence 

Whereas the acoustic models in an LVR system are relatively 
task independent, the language model is typically trained on 
a large corpus of task-specific material. This leads to systems 
that are inherently task dependent. For example, a language 
model trained on office correspondence will not work well 
on legal documents. Moving domain typically results in a 
lowering of accuracy due to the language-model mismatch 
and an increase in the incidence of out-of-vocabulary 
(OOV) words. 

In the long term, task dependence will be reduced through 
a general increase in language-modelling capability. A recent 
trend in computational linguistics has been an increased 
interest in statistical techniques [21], and this should eventu- 
ally lead to the incorporation of explicit grammatical knowl- 
edge into LVR systems. In the nearer term, solutions being 
studied include multiple-domain modelling and adaptation. 
In the former, individual LMs are trained on a range of 
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possible domains and then combined as a mixture model [50]. 
Adaptive systems typically combine a static LM trained 
off-line with a dynamic cache of N-grams that is continuously 
updated [62, 921. 

The OOV problem has many facets [ 1021, but increased 
robustness and the ability to simply add new words to an 
existing LM suggest that N-grams should be class-based 
rather than word-based. Using word classes allows compact, 
robust language models to be developed that can support very 
large vocabularies [20,5 1,601. However, there are a number 
of problems to solve in using class-based N-grams. First, the 
method of choosing the classes is crucial since, ideally, words 
should only be grouped into a class if there is little or no 
resulting increase in perplexity. This implies that efficient, 
data-driven methods are needed. Second, since words can 
have multiple senses, it would be natural to allow the same 
word to appear in multiple classes. However, this adds con- 
siderable complexity to the decoding problem. 

Spontaneous Speech 

Much of the recent research effort in the LVR area has been 
directed at transcribing read speech. However, the ability to 
transcribe spontaneous casual speech is also an important 
requirement and this is now receiving increased attention. 
Current experimental evidence, particularly using the 
Switchboard Database, suggests that the error rate of current 
systems increases substantially when applied to spontaneous 
speech [107]. The reasons for this are still unclear but prob- 
ably stem from a number of factors, including poor articula- 
tion, increased coarticulation, highly variable speaking rate, 
and various types of disfluency such as hesitations, false- 
starts, and corrections. 

Some of the linguistic aspects of spontaneous speech have 
been studied in detail [84], and a number of specific issues 
such as identifying repairs in speech [43], modelling non- 
speech interjections [94], detecting hesitations [79], and 
modelling the timing patterns of disfluent speech [SO] have 
been addressed. However, much of this work is at a very early 
stage. Practical implementations to date have been focussed 
on small- to medium-vocabulary dialogue systems (e.g., [99]) 
and little has been done in the large-vocabulary transcrip- 
tion area. 

Real-Time Operation 

In addition to obtaining an acceptable level of recognition 
accuracy, computationally efficient implementation is 
needed in order to exploit LVR technology. As explained in 
the section on decoding, recognition in LVR systems in- 
volves searching a very large space of hypotheses. In con- 
tinuous-density systems, the computational cost of this search 
will be divided between building and searching the network 
structure and evaluating Gaussian densities. 

The search space can be reduced by making approxima- 
tions that allow alternative paths to be merged, for example, 
by approximating the language model [75] or by limiting the 

number of new words through some form of look-ahead 
based on a fast-match preselection of possible followers [7, 
391. The evaluation of state output probabilities can be re- 
duced by using vector-quantization to preselect those Gaus- 
sians that will give sufficiently high likelihoods [ 181. Also, 
careful coding can make a substantial difference on modern 
RISC-based processor architectures where efficient use of the 
cache can make a substantial difference to throughput [ 11. 

Conclusions 

This article has reviewed the main components of a speaker- 
independent, continuous-speech LVR system and briefly de- 
scribed the state-of-the-art. While it is clear that much more 
needs to be done before robust, general-purpose LVR is 
ubiquitous, the technology is nevertheless on the threshold of 
usefulness for practical applications. Given a reasonably 
controlled environment and a well-defined task domain, the 
technology is useable now. By the end of 1996, off-the-shelf 
LVR systems that run in real-time on high-end, PC-class 
machines will start to appear. LVR-based services will also 
appear in the form of remote servers in public telecom sys- 
tems, which will add telephone-based transcription capability 
to information and personal management services. Finally, 
LVR systems will facilitate multimedia information retrieval 
by allowing video soundtracks to be transcribed and then 
searched for key words and phrases. 
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