IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH, 2001 181

An Introduction to Kernel-Based
Learning Algorithms

Klaus-Robert Miiller, Sebastian Mika, Gunnar Ratsch, Koji Tsuda, Bernhard Scholkopf

Abstract— This review provides an introduction to Sup-
port Vector Machines, Kernel Fisher Discriminant analysis
and Kernel PCA, as examples for successful kernel based
learning methods. We first give a short background about
VC theory and kernel feature spaces and then proceed to
kernel based learning in supervised and unsupervised sce-
narios including practical and algorithmic considerations.
We illustrate the usefulness of kernel algorithms by finally
discussing applications such as OCR and DNA analysis.

Keywords— Kernel methods, Support Vector Machines,
Fisher’s discriminant, Mathematical Programming Ma-
chines, PCA, Kernel PCA, single-class classification, Boost-
ing, Mercer Kernels.

I. INTRODUCTION

N the last years, a number of powerful kernel-based

learning machines, e.g. Support Vector Machines
(SVMs) [1], [2], [3], [4], [5], [6], Kernel Fisher Discrimi-
nant (KFD) [7], [8], [9], [10] and Kernel Principal Com-
ponent Analysis (KPCA) [11], [12], [13], have been pro-
posed. These approaches have shown practical relevance
not only for classification and regression problems but also,
more recently, in unsupervised learning [11], [12], [13], [14],
[15]. Successful applications of kernel based algorithms
have been reported for various fields, for instance in the
context of optical pattern and object recognition [16], [17],
[18], [19], [20], text categorization [21], [22], [23], time-series
prediction [24], [25], [15], gene expression profile analysis
[26], [27], DNA and protein analysis [28], [29], [30] and
many more.!

The present review introduces the main ideas of kernel
algorithms, and reports applications from OCR (optical
character recognition) and DNA analysis. We do not at-
tempt a full treatment of all available literature, rather, we
present a somewhat biased point of view illustrating the
main ideas by drawing mainly from the work of the authors
and providing — to the best of our knowledge — reference
to related work for further reading. We hope that it nev-

K.-R. Miiller, S. Mika, G. Rétsch, and K. Tsuda are with GMD
FIRST, Kekuléstr. 7, 12489 Berlin, Germany, EMail {klaus, mika,
raetsch, tsuda}@first.gmd.de; K.—R. Miiller is also with University of
Potsdam, Neues Palais 10, 14469 Potsdam, Germany; K. Tsuda is also
with Electrotechnical Laboratory, 1-1-4, Umezono, Tsukuba, 305-
0031, Japan; B. Scholkopf is with Barnhill Technologies, 6709 Wa-
ters Av., Savannah, Georgia 31406, USA, EMail bsc@scientist.com.
We thank A. Smola, A. Zien and S. Sonnenburg for valuable dis-
cussions. Moreover, we gratefully acknowledge partial support from
DFG (JA 379/9-1, MU 987/1-1), EU (IST-1999-14190 — BLISS) and
travel grants from DAAD, NSF and EU (Neurocolt II). SM thanks
for warm hospitality during his stay at Microsoft Research in Cam-
bridge. Furthermore, GR would like to thank UC Santa Cruz and
CRIEPI for warm hospitality. Thanks also to the reviewers for giving
valuable comments that improved this paper.

1See also Isabelle Guyon’s web page http://www.clopinet.com/
isabelle/Projects/SVM/applist.html on applications of SVMs.

ertheless will be useful for the reader. It differs from other
reviews, such as the ones of [3], [32], [6], [33], [34], mainly
in the choice of the presented material: we place more em-
phasis on kernel PCA, kernel Fisher discriminants, and on
connections to Boosting.

We start by presenting some basic concepts of learning
theory in Section II. Then we introduce the idea of kernel
feature spaces (Section III) and the original SVM approach,
its implementation and some variants. Subsequently we
discuss other kernel-based methods for supervised and un-
supervised learning in Sections IV and V. Some attention
will be devoted to questions of model selection (Section VI),
i.e. how to properly choose the parameters in SVMs and
other kernel-based approaches. Finally, we describe sev-
eral recent and interesting applications in Section VII and
conclude.

TABLE I
NOTATION CONVENTIONS USED IN THIS PAPER

i,n counter and number of patterns
X,N the input space, N = dim(X)

X,y a training pattern and the label
(x-x'") scalar product between x and x’

F feature space

® the mapping ® : X — F

k(-,-) scalar product in feature space F

F; a function class

h the VC dimension of a function class
d the degree of a polynomial

w normal vector of a hyperplane

Q; Lagrange multiplier /Expansion coef-
ficient for w

& the “slack-variable” for pattern x;

v the quantile parameter (determines

the number of outliers)

the £,—norm, p € [1, 0]

|S| number of elements in a set S

(] The Heaviside function: ©(z) = 0 for
z < 0, ©(z) =1 otherwise

space of non-negative real numbers

II. LEARNING TO CLASSIFY — SOME THEORETICAL
BACKGROUND

Let us start with a general notion of the learning prob-
lems that we consider in this paper. The task of classifi-
cation is to find a rule, which, based on external observa-
tions, assigns an object to one of several classes. In the
simplest case there are only two different classes. One

182 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH, 2001

possible formalization of this task is to estimate a func-
tion f: RV — {—1,+1}, using input-output training data
pairs generated i.i.d. according to an unknown probability
distribution P(x,y)

(Xlayl)a"'a(xnayn) G]RN XYJ Y:{_17+1}

such that f will correctly classify unseen examples (x,y).
An example is assigned to the class +1 if f(x) > 0 and to
the class —1 otherwise. The test examples are assumed to
be generated from the same probability distribution P(x, y)
as the training data. The best function f that one can
obtain is the one minimizing the expected error (risk)

RIf] = /z

where [denotes a suitably chosen loss function,
e.g. I(f(x),y) = O(—yf(x)), where O(z) = 0 for 2 < 0
and O(z) = 1 otherwise (the so-called 0/1-loss). The same
framework can be applied for regression problems, where
y € R Here, the most common loss function is the squared
loss: 1(f(x),y) = (f(x) —y)?; see [35], [36] for a discussion
of other loss functions.

Unfortunately the risk cannot be minimized directly,
since the underlying probability distribution P(x,y) is un-
known. Therefore, we have to try to estimate a function
that is close to the optimal one based on the available in-
formation, i.e. the training sample and properties of the
function class F' the solution f is chosen from. To this end,
we need what is called an induction principle. A particular
simple one consists in approximating the minimum of the
risk (1) by the minimum of the empirical risk

=S U)o @)

It is possible to give conditions on the learning machine
which ensure that asymptotically (as n — o0), the em-
pirical risk will converge towards the expected risk. How-
ever, for small sample sizes large deviations are possible
and overfitting might occur (see Figure 1). Then a small

y)dP(x,y), (1)

Remp[f] =

° %% ® °

__. [] ; % .000.: . 0o °® .oo:..:.. ..o,
ON ’ o o 00 - e,
o/ e ° -_.'_'ae&v—'c—-wc- SN B el
G 0 0 PYRSES W

\. ®/0000 o ’

o 90 oé)oé)‘fuo% 0790 og\goolo%o

I ot~ /oOO 000z 08 IOOO 0500 09

O O @) o X o 0% o OOOOOO

Fig. 1. [Illustration of the overfitting dilemma: Given only a small
sample (left) either, the solid or the dashed hypothesis might
be true, the dashed one being more complex, but also having a
smaller training error. Only with a large sample we are able to see
which decision reflects the true distribution more closely. If the
dashed hypothesis is correct the solid would underfit (middle); if
the solid were correct the dashed hypothesis would overfit (right).

generalization error cannot be obtained by simply minimiz-
ing the training error (2). One way to avoid the overfitting
dilemma is to restrict the complexity of the function class
F that one chooses the function f from [3]. The intuition,
which will be formalized in the following is that a “sim-
ple” (e.g. linear) function that explains most of the data is

preferable to a complex one (Occam’s razor). Typically one
introduces a regularization term (e.g. [37], [38], [39], [40])
to limit the complexity of the function class F' from which
the learning machine can choose. This raises the problem
of model selection (e.g. [41], [39], [42], [43]), i.e. how to find
the optimal complexity of the function (cf. Section VI).

A specific way of controlling the complexity of a func-
tion class is given by VC theory and the structural risk
minimization (SRM) principle [44], [3], [5]. Here the con-
cept of complexity is captured by the Vapnik-Chervonenkis
(VC) dimension h of the function class F' that the esti-
mate f is chosen from. Roughly speaking, the VC dimen-
sion measures how many (training) points can be shattered
(i.e. separated) for all possible labelings using functions of
the class. Constructing a nested family of function classes
Fy C --- C F}, with non-decreasing VC dimension the SRM
principle proceeds as follows: Let fi,..., fr be the solu-
tions of the empirical risk minimization (2) in the function
classes F;. SRM chooses the function class F; (and the
function f;) such that an upper bound on the generaliza-
tion error is minimized which can be computed making use
of theorems such as the following one (see also Figure 2):

Theorem 1 ([3], [5]) Let h denote the VC dimension of
the function class F' and let Ren, be defined by (2) us-
ing the 0/1-loss. For all 6 > 0 and f € F the inequality
bounding the risk

h(ln%"+1)
n

—1n(6/4)

R[f] < Remp[f] + \/ 3)

holds with probability of at least 1 — § for n > h.

Note, this bound is only an example and similar formu-
lations are available for other loss functions [5] and other
complexity measures, e.g. entropy numbers [45]. Let us
discuss Inequality (3): the goal is to minimize the gener-
alization error R[f], which can be achieved by obtaining
a small training error Req,,[f] while keeping the function
class as small as possible. Two extremes arise for (3): (i) a
very small function class (like F}) yields a vanishing square
root term, but a large training error might remain, while
(ii) a huge function class (like F},) may give a vanishing em-
pirical error but a large square root term. The best class
is usually in between (cf. Figure 2), as one would like to
obtain a function that explains the data quite well and to
have a small risk in obtaining that function. This is very
much in analogy to the bias-variance dilemma scenario de-
scribed for neural networks (see e.g. [46]).

A. VC-dimension in practice

Unfortunately in practice the bound on the expected er-
ror in (3) is often neither easily computable nor very help-
ful. Typical problems are that the upper bound on the
expected test error might be trivial (i.e. larger than one),
the VC-dimension of the function class is unknown or it is
infinite (in which case one would need an infinite amount of
training data). Although there are different, usually tighter
bounds, most of them suffer from similar problems. Nev-
ertheless, bounds clearly offer helpful theoretical insights
into the nature of learning problems.

MULLER ET. AL.: AN INTRODUCTION TO KERNEL-BASED LEARNING ALGORITHMS

A Expected Risk

Fig. 2. Schematic illustration of Eq. (3). The dotted line repre-
sents the training error (empirical risk), the dash-dotted line the
upper bound on the complexity term (confidence). With higher
complexity the empirical error decreases but the upper bound on
the risk confidence becomes worse. For a certain complexity of
the function class the best expected risk (solid line) is obtained.
Thus, in practice the goal is to find the best tradeoff between
empirical error and complexity.

B. Margins and VC-dimension

Let us for a moment assume that the training sample
is separable by a hyperplane (see Figure 3), i.e. we choose
functions of the form

f(x) = (w-x)+b. (4)
It was shown (e.g. [44], [3]) that for the class of hyper-
planes the VC-dimension itself can be bounded in terms
of another quantity, the margin (also Figure 3). The mar-
gin is defined as the minimal distance of a sample to the
decision surface. The margin in turn can be measured by
the length of the weight vector w in (4): as we assumed
that the training sample is separable we can rescale w and
b such that the points closest to the hyperplane satisfy
|[(w-x;) + b =1 (i.e. obtain the so-called canonical rep-
resentation of the hyperplane). Now consider two samples
x; and x, from different classes with (w-x;)+b =1 and
(w-x2)+b = —1, respectively. Then the margin is given by
the distance of these two points, measured perpendicular to
the hyperplane, i.e. (”x—” (%1 — xz)) = ”fv—” The result
linking the VC-dimension of the class of separating hyper-
planes to the margin or the length of the weight vector w
respectively is given by the following inequalities:
h<A’R?*4+1 and |w]s<A (5)
where R is the radius of the smallest ball around the data
(e.g. [3]). Thus, if we bound the margin of a function class
from below, say by %, we can control its VC-dimension?.
Support Vector Machines, which we shall treat more closely
in Section IV-A, implement this insight. The choice of
linear functions seems to be very limiting (i.e. instead of
being likely to overfit we are now more likely to underfit).
Fortunately there is a way to have both, linear models and

2There are some ramifications to this statement, that go beyond the
scope of this work. Strictly speaking, VC theory requires the structure
to be defined a priori, which has implications for the definition of the
class of separating hyperplanes, cf. [47].

183

Fig. 3. Linear classifier and margins: A linear classifier is defined by
a hyperplane’s normal vector w and an offset b, i.e. the decision
boundary is {x|(w - x) + b = 0} (thick line). Each of the two
halfspaces defined by this hyperplane corresponds to one class,
i.e. f(x) = sign((w - x) + b). The margin of a linear classifier is
the minimal distance of any training point to the hyperplane. In
this case it is the distance between the dotted lines and the thick
line.

a very rich set of nonlinear decision functions, by using the
tools that will be discussed in the next section.

III. NONLINEAR ALGORITHMS IN KERNEL FEATURE
SPACES
Algorithms in feature spaces make use of the following
idea: via a nonlinear mapping
o:RY - F
x = P(x)
the data xi,...,x, € RY is mapped into a potentially
much higher dimensional feature space F. For a given

learning problem one now considers the same algorithm
in F instead of RV, i.e. one works with the sample

(@(Xl)ayl); tey (@(Xn

Given this mapped representation a simple classification

), yn) € F x Y.

Fig. 4.
order monomials w%, V2z122 and w% as features a separation in
feature space can be found using a linear hyperplane (right). In
input space this construction corresponds to a non-linear ellip-
soidal decision boundary (left) (figure from [48]).

Two dimensional classification example. Using the second

or regression in F is to be found. This is also implicitly
done for (one hidden layer) neural networks, radial basis
networks (e.g. [49], [50], [61], [52]) or Boosting algorithms
[53] where the input data is mapped to some representation
given by the hidden layer, the RBF bumps or the hypothe-
ses space respectively.

The so-called curse of dimensionality from statistics says
essentially that the difficulty of an estimation problem in-
creases drastically with the dimension N of the space, since
—in principle — as a function of N one needs exponentially

184 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH, 2001

many patterns to sample the space properly. This well
known statement induces some doubts about whether it is
a good idea to go to a high dimensional feature space for
learning.

However, statistical learning theory tells us that the con-
trary can be true: learning in F can be simpler if one uses a
low complexity, i.e. simple class of decision rules (e.g. linear
classifiers). All the variability and richness that one needs
to have a powerful function class is then introduced by the
mapping ®. In short: not the dimensionality but the com-
plexity of the function class matters [3]. Intuitively, this
idea can be understood from the toy example in Figure 4:
in two dimensions a rather complicated nonlinear decision
surface is necessary to separate the classes, whereas in a
feature space of second order monomials (see e.g. [54])

R - R

(x1,20) = (21,20,23) 1=

(z3,V2m133,73) (6)

all one needs for separation is a linear hyperplane. In this
simple toy example, we can easily control both: the sta-
tistical complexity (by using a simple linear hyperplane
classifier) and the algorithmic complexity of the learning
machine, as the feature space is only three dimensional.
However, it becomes rather tricky to control the latter for
large real world problems. For instance, consider images of
16 x 16 pixels as patterns and 5th order monomials as map-

ping ® — then one would map to a space that contains all 5t}
order products of 256 pixels, i.e. to a (5 + 226 - 1) ~ 1010-
dimensional space. So, even if one could control the statis-
tical complexity of this function class, one would still run
into intractability problems while executing an algorithm
in this space.

Fortunately, for certain feature spaces F and correspond-
ing mappings ® there is a highly effective trick for comput-
ing scalar products in feature spaces using kernel functions
[65], [56], [1], [3]- Let us come back to the example from
Eq. (6). Here, the computation of a scalar product between
two feature space vectors, can be readily reformulated in
terms of a kernel function k

(®(x)-8(y)) = (23,V2129,23)(57, V2 y192,43) "
= ((&1,22)(y1,92) ")

(x-y)?

=: k(x,y).

This finding generalizes:
e For x,y € RV, and d € N the kernel function

k(x,y) = (x - y)*

computes a scalar product in the space of all products of d
vector entries (monomials) of x and y [3], [11].

e If K : C xC — R is a continuous kernel of a positive
integral operator on a Hilbert space L2(C) on a compact
set C C RV, ie.

Vi€ Lo(C) : /C k(x,¥)(x) f(y) dx dy > 0,

then there exists a space F and a mapping ® : RV — F
such that k(x,y) = (®(x) - ®(y)) [3]. This can be seen
directly from Mercers Theorem [59] saying that any ker-
nel of a positive integral operator can be expanded in its
Eigenfunctions 9; (A; > 0, Nx < 00):

NgF
%,¥) = D A ()15 (y)-
7j=1
In this case

- (\/x¢l (X)7 \/g¢2 (X),

is a possible realization.
o Note furthermore that using a particular SV kernel cor-
responds to an implicit choice of a regularization opera-
tor (cf. [39], [57]). For translation invariant kernels, the
regularization properties can be expressed conveniently in
Fourier space in terms of the frequencies [58], [60]. For ex-
ample Gaussian kernels (7) correspond to a general smooth-
ness assumption in all k-th order derivatives [58]. Vice
versa using this correspondence, kernels matching a cer-
tain prior about the frequency content of the data can be
constructed that reflect our prior problem knowledge.
Table IT lists some of the most widely used kernel func-
tions. More sophisticated kernels (e.g. kernels generating
splines or Fourier expansions) can be found in [4], [36], [5],
158, [30], [28], [61].

A. Wrapping up

The interesting point about kernel functions is that the
scalar product can be implicitly computed in F, without
explicitly using or even knowing the mapping ®. So, ker-
nels allow to compute scalar products in spaces, where one
could otherwise hardly perform any computations. A di-
rect consequence from this finding is [11]: every (linear)

TABLE II
COMMON KERNEL FUNCTIONS: GAUSSIAN RBF (¢ € R), POLYNOMIAL
(d € N, 8 € R), SIGMOIDAL (k,6 € R) AND INVERSE MULTIQUADRIC
(c € Ry) KERNEL FUNCTIONS ARE AMONG THE MOST COMMON ONES.
WHILE RBF AND POLYNOMIAL ARE KNOWN TO FULFILL MERCERS
CONDITION, THIS IS NOT STRICTLY THE CASE FOR SIGMOIDAL KERNELS
[33]. FURTHER VALID KERNELS PROPOSED IN THE CONTEXT OF
REGULARIZATION NETWORKS ARE E.G. MULTIQUADRIC OR SPLINE
KERNELS [39], [57], [58].

e — 2
Gaussian RBF k(x,y) = exp (M) (7

¢
Polynomial (x-y)+6)?
Sigmoidal tanh(k(x-y) +6)
1

inv. multiquadric

VIx=yl*+¢

MULLER ET. AL.: AN INTRODUCTION TO KERNEL-BASED LEARNING ALGORITHMS 185

algorithm that only uses scalar products can implicitly be
executed in F by using kernels, i.e. one can very elegantly
construct a nonlinear version of a linear algorithm.?

In the following sections we follow this philosophy for
supervised and unsupervised learning: by (re-) formulating
linear, scalar product based algorithms that are simple in
feature space, one is able to generate powerful nonlinear
algorithms, which use rich function classes in input space.

IV. SUPERVISED LEARNING

We will now briefly outline the algorithms of SVMs and
the Kernel Fisher Discriminant (KFD). Furthermore we
discuss the Boosting algorithm from the kernel feature
space point of view and show a connection to SVMs. Fi-
nally, we will point out some extensions of these algorithms
proposed recently.

A. Support Vector Machines

Let us recall from Section II that the VC dimension of
a linear system, e.g. separating hyperplanes (as computed
by a perceptron)

y = sign ((w - x) + b)

can be upper bounded in terms of the margin (cf. (5)). For
separating hyperplane classifiers the conditions for classifi-
cation without training error are
As linear function classes are often not rich enough in prac-
tice, we will follow the line of thought of the last section and
consider linear classifiers in feature space using dot prod-
ucts. To this end, we substitute ®(x;) for each training
example x;, i.e. y = sign ((w - ®(x)) + b). In feature space,
the conditions for perfect classification are described as
p((w-B(x)+b) >1, i=1,...,n. (8
The goal of learning is to find w € F and b such that the
expected risk is minimized. However, since we cannot ob-
tain the expected risk itself, we will minimize the bound
(3), which consists of the empirical risk and the complex-
ity term. One strategy is to keep the empirical risk zero by
constraining w and b to the perfect separation case, while
minimizing the complexity term, which is a monotonically
increasing function of the VC dimension h. For a linear
classifier in feature space the VC dimension h is bounded
according to h < ||[w||?R2 + 1 (cf. (5)), where R is the ra-
dius of the smallest ball around the training data (e.g. [3]),
which is fixed for a given data set. Thus, we can mini-
mize the complexity term by minimizing ||w]|?. This can
be formulated as a quadratic optimization problem
min 2 lw|?)
w,b 2

3Even algorithms that operate on similarity measures k generating
positive matrices k(x;,%;);; can be interpreted as linear algorithms
in some feature space F [4].

subject to (8). However, if the only possibility to access the
feature space is via dot—products computed by the kernel,
we can not solve (9) directly since w lies in that feature
space. But it turns out that we can get rid of the explicit
usage of w by forming the dual optimization problem. In-
troducing Lagrange multipliers a; > 0,4 = 1,... ,n, one
for each of the constraints in (8), we get the following La-
grangian:

L(w,b,a) = 2wl =3 (- ®(xi)) +8) ~ 1),
i=1

(10)

The task is to minimize (10) with respect to w,b and to
maximize it with respect to a;. At the optimal point, we
have the following saddle point equations:

oL oL

— =0 and —— =0,

ab " ow

which translate into
n 4
Zaiyi =0 and w= Zaiyi@(xi). (11)
i=1 i=1

From the right equation of (11), we find that w is contained
in the subspace spanned by the ®(x;). By substituting
(11) into (10) and by replacing (®(x;) - ®(z;)) with kernel
functions k(x;, x;), we get the dual quadratic optimization
problem:

n n
1
max Zai ~3 Z a;05y:y5 k(xi,%5)
i=1 ij=1
Qa; ZO, 1=].,...,TL,
Z?:l o;y; = 0.

Thus, by solving the dual optimization problem, one ob-
tains the coefficients «;, ¢ = 1,...,n, which one needs to
express the w which solves (9). This leads to the nonlinear
decision function

subject to

f(x) = sgn (Z yiai (®(x) - ®(x;)) + b)

= sgn (Z yio; k(x, x;) + b) .

i=1

Note that we have up to now only considered the separa-
ble case. This corresponds to an empirical error of zero
(cf. Theorem 1). However for noisy data, this might not be
the minimum in the expected risk (cf. (3)) and we might
face overfitting effects (cf. Fig. 1). Therefore a “good”
trade-off between the empirical risk and the complexity
term in (3) needs to be found. Using a technique which was
first proposed in [62] and later used for SVMs in [2], one
introduces slack-variables to relax the hard-margin con-
straints:

yl((wq)(xl))+b)21_£za £i205 i=1,...,n, (12)

186 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH, 2001

additionally allowing for some classification errors. The
SVM solution can then be found by (a) keeping the upper
bound on the VC dimension small and (b) by minimizing
an upper bound 7 & on the empirical risk,! i.e. the
number of training errors. Thus, one minimizes

w’b7£

1 -
min §||w||2+CZ§z~.
i=1

where the regularization constant C' > 0 determines the
trade-off between the empirical error and the complexity
term. This leads to the dual problem:

= 1

i=1
0<a;<C,i=1,...,n,
2?21042'1/1' =0.

n
> ooy k(xi,x;) (13)
ij—=1

(14)
(15)

subject to

From introducing the slack-variables &;, one gets the box
constraints that limit the size of the Lagrange multipliers:
Qa; SC,Z': 1,... s T

A.1 Sparsity

Most optimization methods are based on the second or-
der optimality conditions, so called Karush-Kuhn-Tucker
conditions which state necessary and in some cases suffi-
cient conditions for a set of variables to be optimal for an
optimization problem. It comes handy that these condi-
tions are particularly simple for the dual SVM problem
(13) [64]:

a;=0 = yf(x))>1 and & =0
O<a;<C = y,'f(Xi) =1 and & =0 (16)
a;=C = yf(x)<1l and & >0

They reveal one of the most important property of SVMs:
the solution is sparse in «, i.e. many patterns are outside
the margin area and the optimal «;’s are zero. Specifically,
the KKT conditions show that only such «; connected to a
training pattern x;, which is either on the margin (i.e. 0 <
a; < Cand y; f(x;) = 1) or inside the margin area (i.e. a; =
C and y;f(x;) < 1) are non-zero. Without this sparsity
property, SVM learning would hardly be practical for large
data sets.

A.2 v-SVMs

Several modifications have been proposed to the basic
SVM algorithm. One particular useful modification are v-
SVMs [65], originally proposed for regression. In the case
of pattern recognition, they replace the rather un-intuitive
regularization constant C' with another constant v € (0, 1]
and yield, for appropriate parameter choices, identical so-

40ther bounds on the empirical error, like S 51-2 are also fre-

quently used (e.g. [2], [63]).

lutions. Instead of (13) one solves

1 n
_5 Z aiajyiyj k(Xi,X]‘)

max
o
2,j=1
subject to 0<a;<1/n,i=1,...,n,
iy oy =0,
zi (674 Z V.

The advantage is that this new parameter v has a clearer
interpretation than simply “the smaller, the smoother”:
under some mild assumptions (data i.i.d. from continuous
probability distribution [65]) it is asymptotically (i) an up-
per bound on the number of margin errors® and (ii) a lower
bound on the number of support vectors.

A.3 Computing the Threshold

The threshold b can be computed by exploiting the fact
that for all SVs x; with 0 < «a; < C, the slack variable §;
is zero. This follows from the Karush-Kuhn-Tucker (KKT)
conditions (cf. (16)). Thus, for any support vector x; with
ie€l:={i:0<a; <C} holds:

Yi b+Zyjajk(Xi,Xj)) =L

j=1

Averaging over these patterns yields a numerically stable
solution:

1 n
b= mz i — Y yjoy k(xi, ;)
7j=1

iel
A.4 A geometrical explanation

Here, we will present an illustration of the SVM solution
to enhance intuitive understandings. Let us normalize the
weight vector to 1 (i.e. ||[w]lz = 1) and fix the threshold
b = 0. Then, the set of all w which separate the training
samples is completely described as

V= {W|y,f(X,) > 077’ =]-a Y () ||W||2 =]-}

The set V is called “version space” [66]. It can be shown
that the SVM solution coincides with the Tchebychefi-
center of the version space, which is the center of the largest
sphere contained in V (cf. [67]). However, the theoretical
optimal point in version space yielding a Bayes-optimal de-
cision boundary is the Bayes point, which is known to be
closely approximated by the center of mass [68], [69]. The
version space is illustrated as a region on the sphere as
shown in Figures 5 and 6. If the version space is shaped
as in Figure 5, the SVM solution is near to the optimal
point. However, if it has an elongated shape as in Fig-
ure 6, the SVM solution is far from the optimal one. To
cope with this problem, several researchers [70], [68], [71]
proposed a billiard sampling method for approximating the
Bayes point. This method can achieve improved results, as
shown on several benchmarks in comparison to SVMs.

5 A margin error is a point x; which is either being misclassified or
lying inside the margin area.

MULLER ET. AL.: AN INTRODUCTION TO KERNEL-BASED LEARNING ALGORITHMS

Fig. 5. An example of the version space where the SVM works fine.
The center of mass (<) is close to the SVM solution (x). Figure
taken from [72].

Fig. 6. An example of the version space where SVM works poorly.
The version space has an elongated shape and the center of mass
(©) is far from the SVM solution (x). Figure taken from [72].

A.5 Optimization Techniques for SVMs

To solve the SVM problem one has to solve the (convex)
quadratic programming (QP) problem (13) under the con-
straints (14) and (15) (Eq. (13) can be rewritten as maxi-

la"Ka+1"a where K is the positive semidefinite

matrix K;; = yiy; k(xi,x;) and 1 the vector of all ones).
As the objective function is convex every (local) maximum
is already a global maximum. However, there can be sev-
eral optimal solutions (in terms of the variables ;) which
might lead to different testing performances.

There exists a huge body of literature on solving
quadratic programs and several free or commercial software
packages (see e.g. [73], [74], [33] and references therein).
However, the problem is that most mathematical program-
ming approaches are either only suitable for small prob-
lems or assume that the quadratic term covered by K is
very sparse, i.e. most elements of this matrix are zero. Un-
fortunately this is not true for the SVM problem and thus
using standard codes with more than a few hundred vari-
ables results in enormous training times and more than
demanding memory needs. Nevertheless, the structure of
the SVM optimization problem allows to derive specially

mizing —

187

tailored algorithms which allow for fast convergence with
small memory requirements even on large problems. Here
we will briefly consider three different approaches. Ref-
erences, containing more details and tricks can be found
e.g. in [6], [33].

A.5.a Chunking. A key observation in solving large scale
SVM problems is the sparsity of the solution a. Depending
on the problem, many of the optimal «; will either be zero
or on the upper bound C. If one knew beforehand which
a; were zero, the corresponding rows and columns could
be removed from the matrix K without changing the value
of the quadratic form. Further, a point a can only be op-
timal for (13) if and only if it fulfills the KKT conditions
(cf. (16)). In [64] a method called chunking is described,
making use of the sparsity and the KKT conditions. At
every step chunking solves the problem containing all non—
zero «a; plus some of the a; violating the KKT conditions.
The size of this problem varies but is finally equal to the
number of non-zero coefficients. While this technique is
suitable for fairly large problems it is still limited by the
maximal number of support vectors that one can handle
and it still requires a quadratic optimizer to solve the se-
quence of smaller problems. A free implementation can be
found e.g. in [75].

A.5.b Decomposition Methods. Those methods are sim-
ilar in spirit to chunking as they solve a sequence of small
QPs as well. But here the size of the subproblems is fixed.
They are based on the observations of [76], [77] that a se-
quence of QPs which at least always contains one sample
violating the KKT conditions will eventually converge to
the optimal solution. It was suggested to keep the size of
the subproblems fixed and to add and remove one sample
in each iteration. This allows the training of arbitrary large
data sets. In practice, however, the convergence of such an
approach is very slow. Practical implementations use so-
phisticated heuristics to select several patterns to add and
remove from the subproblem plus efficient caching meth-
ods. They usually achieve fast convergence even on large
datasets with up to several thousands of support vectors.
A good quality (free) implementation is SVMy;gn; [78]. A
quadratic optimizer is still required and contained in the
package. Alternatively, the package [75] also contains a
decomposition variant.

A.5.c Sequential Minimal Optimization (SMO). This
method proposed by [79] can be viewed as the most ex-
treme case of decomposition methods. In each iteration it
solves a quadratic problem of size two. This can be done
analytically and thus no quadratic optimizer is required.
Here the main problem is to chose a good pair of variables
to optimize in each iteration. The original heuristics pre-
sented in [79] are based on the KKT conditions and there
has been some work (e.g. [80]) to improve them. The imple-
mentation of the SMO approach is straight forward (pseudo
code in [79]). While the original work was targeted at an
SVM for classification, there are now also approaches which
implement variants of SMO for SVM regression (e.g. [36],
[33]) and single-class SVMs (cf. below, [14]).

188 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH, 2001

A.5.d Other techniques. Further algorithms have been
proposed to solve the SVM problem or a close approxi-
mation. For instance, the Kernel-Adatron [81] is derived
from the Adatron algorithm by [82] proposed originally in
a statistical mechanics setting. It constructs a large mar-
gin hyperplane using online learning. Its implementation is
very simple. However, its drawback is that is does not allow
for training errors, i.e. is only valid for separable data sets.
In [83] a slightly more general approach for data mining
problems is considered.

A.5.e Codes. A fairly large selection of optimization codes
for SVM classification and regression may be found on the
web at [84] together with the appropriate references. They
range from simple MATLAB implementation to sophisti-
cated C, C++ or FORTRAN programs. Note that most of
these implementations are for non-commercial use only.

B. Kernel Fisher Discriminant

The idea of the Kernel Fisher Discriminant (KFD)
(e.g. [7], [9], [10]) is to solve the problem of Fisher’s linear
discriminant [85], [86] in a kernel feature space F, thereby
yielding a nonlinear discriminant in the input space. In the

WpCA

Fig. 7. Illustration of the projections of PCA and Fisher’s Discrim-
inant for a toy data set. It is clearly seen that PCA is purely
descriptive, whereas the Fisher projection is discriminative.

linear case, Fisher’s discriminant aims at finding a linear
projections such that the classes are well separated (cf. Fig-
ure 7). Separability is measured by two quantities: How far
are the projected means apart (should be large) and how
big is the variance of the data in this direction (should be
small). This can be achieved by maximizing the Rayleigh
coefficient
w'Spw

J(w) =

W Syw’

(17)

of between and within class variance with respect to w,
where
SB = (m2 — ml)(mg — ml)T

and

Sw =Y > (xi—m)(x; —m)".

Here m;, and 7; denote the sample mean and the index
set for class k, respectively. Note, that under the assump-
tion that the class distributions are (identically distributed)
Gaussians, Fisher’s discriminant is Bayes optimal; it can

also be generalized to the multi—class case®. To formulate
the problem in a kernel feature space F one can make use
of a similar expansion as (11) in SVMs for w € F, i.e. one
can express w in terms of mapped training patterns [7]:

n
W= a;®(x). (18)
i=1
Substituting ®(x) for all x in (17) and plugging in (18),
the optimization problem for the KFD in the feature space
can then be written as [8]:

(@'p)? a'Ma
a'Na a'Na’

J(a) = (19)
where p, = ‘Il—lelk, N =KK"- D k=12 I | prper, p =
Bo—py, M = pp’, and Kij = (B(x;) - B(x;)) = k(xi, x;).
The projection of a test point onto the discriminant is com-
puted by

(w-®(x)) = Zaik(xi,x).

Finally, to use this projections in classification one needs
to find a suitable threshold which can either be chosen as
the mean of the average projections of the two classes or,
e.g., by training a linear SVM on the projections.

As outlined before, the dimension of the feature space
is equal to or higher than the number of training samples
n which makes regularization necessary. In [7] it was pro-
posed to add a multiple of e.g. the identity or the kernel
matrix K to N, penalizing ||c||? or ||w||?, respectively (see
also [87], [88]).

To maximize (19) one could either solve the general-
ized Eigenproblem M a = AN, selecting the Eigenvector
« with maximal Eigenvalue A, or, equivalently, compute
a = N~Y(u, — ;). However, as the matrices N and M
scale with the number of training samples and the solu-
tions are non—sparse this is only feasible for moderate n.
One possible solution is to transform KFD into a convex
quadratic programming problem [89] which allows to derive
a sparse variant of KFD and a more efficient, sparse—greedy
approximation algorithm [90]. Recalling that Fisher’s Dis-
criminant tries to minimize the variance of the data along
the projection whilst maximizing the distance between the
average outputs for each class, the following quadratic pro-
gram does exactly this:

min [1€]1” + CP(ex) (20)
subject to Ka+1lb=y+¢&

1€ =0fork=1,2

for o, € R*, and b,C € R Here P is a regularizer as
mentioned before and (1y); is one for y; belonging to class
k and zero otherwise. It is straightforward to show, that

6This can be done with kernel functions as well and has explicitely
been carried out e.g. in [9], [10]. However, most further developments
for KFD do not easily carry over to the multi—class case, e.g. resulting
in integer programming problems.

MULLER ET. AL.: AN INTRODUCTION TO KERNEL-BASED LEARNING ALGORITHMS

this program is equivalent to (19) with the same regularizer
added to the matrix N [89]. The proof is based on the facts
the (i) the matrix M is rank one and (ii) that the solutions
w to (19) are invariant under scaling. Thus one can fix the
distance of the means to some arbitrary, positive value, say
two, and just minimize the variance. The first constraint,
which can be read as (w-x;)+b=y;+&,i=1,... ,n, pulls
the output for each sample to its class-label. The term ||£||?
minimizes the variance of the error committed, while the
constraints 1—',;5 = 0 ensure that the average output for each
class is the label, i.e. for £1 labels the average distance of
the projections is two. For C' = 0 one obtains the original
Fisher algorithm in feature space.

B.1 Optimization

Besides a more intuitive understanding of the mathe-
matical properties of KFD [89], in particular in relation to
SVMs or the Relevance Vector Machine (RVM) [91], the
formulation (20) allows to derive more efficient algorithms
as well. Choosing a ¢;—norm regularizer P(a) = ||a|1
we obtain sparse solutions (sparse KFD (SKFD))”. By go-
ing even further and replacing the quadratic penalty on
the variables € with an ¢;—norm as well, we obtain a lin-
ear program which can be very efficiently optimized us-
ing column generation techniques (e.g. [92]) (Linear Sparse
KFD (LSKFD)). An alternative optimization strategy aris-
ing from (20) is to iteratively construct a solution to the full
problem as proposed in [90]. Starting with an empty solu-
tion one adds in each iteration one pattern to the expansion
(18). This pattern is chosen such that it (approximately)
gives the largest decrease in the objective function (other
criteria are possible). When the change in the objective
falls below a predefined threshold the iteration is termi-
nated. The obtained solution is sparse and yields compet-
itive results compared to the full solution. The advantages
of this approach are the smaller memory requirements and
faster training time compared to quadratic programming
or the solution of an Eigenproblem.

C. Connection between Boosting and Kernel Methods

We will now show a connection of Boosting to SVMs
and KFD. Let us start with a very brief review of Boost-
ing methods, which does not claim to be complete — for
more details see e.g. [93], [53], [94], [95], [96], [97]. The
first boosting algorithm was proposed by Rob Schapire [98].
This algorithm was able to “boost” the performance of a
weak PAC learner [99] such that the resulting algorithm
satisfies the strong PAC learning criteria [100].® Later,

"Roughly speaking, a reason for the induced sparseness is the
fact that vectors far from the coordinate axes are “larger” with re-
spect to the £;-norm than with respect to £p-norms with p > 1.
For example, consider the vectors (1,0) and (1/v/2,1/4/2). For the
two norm, ||(1,0)||2 = ||(1/v2,1/v2)|]2 = 1, but for the £;—norm,
1= [|(1,0)|l1 < ||(1/v2,1/v2)|]2 = V2. Note that using the £;—
norm as regularizer the optimal solution is always a vertex solution
(or can be expressed as such) and tends to be very sparse.

8 A method that builds a strong PAC learning algorithm from a
weak PAC learning algorithm is called a PAC boosting algorithm
[96].

189

Freund and Schapire found an improved PAC boosting al-
gorithm — called AdaBoost [53] — which repeatedly calls a
given “weak learner” (also: base learning algorithm) £ and
finally produces a master hypothesis f which is a convex
combination of the functions h; produced by the base learn-
ing algorithm, i.e. f(x) = Zthl Ww”ﬁht(x) and w; > 0,
t=1,...,T. The given weak learner £ is used with dif-
ferent distributions p = [p1,... ,pn] (where) . p; = 1,
p; > 0,i = 1,...,n) on the training set, which are cho-
sen in such a way that patterns poorly classified by the
current master hypothesis are more emphasized than other
patterns.

Recently, several researchers [101], [102], [103], [104]
have noticed that AdaBoost implements a constraint gradi-
ent descent (coordinate-descent) method on an exponential
function of the margins. From this understanding, it is ap-
parent that other algorithms can be derived [101], [102],
[103], [104].° A slight modification of AdaBoost — called
Arc-GV - has been proposed in [105].1% For Arc-GV it
can be proven that it asymptotically (with the number of
iterations) finds a convex combination of all possible base
hypotheses that maximizes the margin — very much in spirit
to the hard margin SVM mentioned in Section IV-A. Let
H :={h; | j =1,...,J} be the set of hypotheses, from
which the base learner can potentially select hypotheses.
Then the solution of Arc-GV is the same as the one of the
following linear program [105], that maximizes the smallest
margin p:

max p
weF,pER

J
subject to inUthj(Xi) >p for i=1,...,n
i=1
Iwlly = 1.
(21)

Let us recall that SVMs and KFD implicitly compute
scalar products in feature space with the help of the kernel
trick. Omitting the bias (b = 0) for simplicity, the SVM
minimization of (9) subject to (8) can be restated as a
maximization of the margin p (cf. Fig. 3)

max
weF,pERy
N
subject to inwj Pi[®(x;)] >p for i=1,...,n
Jj=1
Iwll2 =1,

(22)

where N = dim(F) and P; is the operator projecting onto
the j-th coordinate in feature space. The use of the fo—
norm of w in the last constraint implies that the resulting
hyperplane is chosen such that the minimum £y—distance of
a training pattern to the hyperplane is maximized (cf. Sec-
tion II-B). More generally, using an arbitrary ¢,—norm

9¢f. also [96] for an investigation in which potentials lead to PAC
boosting algorithms.

10A generalization of Arc-GV using slack variables as in Eq. (12)
can be found in [106], [92].

190 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH, 2001

constraint on the weight vector leads to maximizing the
£,~distance between hyperplane and training points [107],
where 1 + 1 = 1. Thus, in (21) one maximizes the mini-
mum £,—distance of the training points to the hyperplane.

On the level of the mathematical programs (22) and
(21), one can clearly see the relation between Boosting and
SVMs. The connection can be made even more explicit by
observing that any hypothesis set H implies a mapping ®
by

®:x - [hy(x),...,hn(x)]",

and therefore also a kernel k(x,y) = (®(y) - ®(y)) =
Zj.vzl hj(x)h;(y), which could in principle be used for SVM
learning. Thus, any hypothesis set H spans a feature space
F. Furthermore, for any feature space JF, which is spanned
by some mapping ®, the corresponding hypothesis set H
can be readily constructed by h; = P;[®].

Boosting, in contrast to SVMs, performs the computa-
tion explicitly in feature space. This is well-known to be
prohibitive, if the solution w is not sparse, as the feature
space might be very high dimensional. As mentioned in
Section IV-B (cf. Footnote 7), using the ¢;—norm instead
of the f3—norm, one can expect to get sparse solutions in
w.!l This might be seen as one important ingredient for
Boosting, as it relies on the fact that there are only a few
hypotheses/dimensions h; = P;[®] needed to express the
solution, which Boosting tries to find during each iteration.
Basically, Boosting considers only the most important di-
mensions in feature space and can this way be very efficient.

D. Wrapping Up

SVMs, KFD and Boosting work in very high-dimensional
feature spaces. They differ, however, in how they deal
with the algorithmic problems that this can cause. One
can think of boosting as an SV approach in a high di-
mensional feature space spanned by the base hypothesis
of some function set H. The problem becomes tractable
since Boosting uses effectively a £/;—norm regularizer. This
induces sparsity, hence one never really works in the full
space, but always in a small subspace. Vice versa, one can
think of SVMs and KFD as a “boosting approach” in a
high-dimensional space. There we use the kernel trick and
therefore never explicitly work in the feature space. Thus,
SVMs and KFD get away without having to use £;-—norm
regularizers; indeed, they could not use them on w, as the
kernel only allows computation of the ¢5-norm in feature
space. SVM and Boosting lead to sparse solutions (as does
KFD with the appropriate regularizer [89]), although in
different spaces, and both algorithms are constructed to
exploit the form of sparsity they produce. Besides pro-
viding insight, this correspondence has concrete practical
benefits for designing new algorithms. Almost any new de-
velopment in the field of SVMs can be translated to a cor-
responding Boosting algorithm using the ¢;—norm instead
of the ¢y-norm and vice versa (cf. [106], [109], [110]).

I Note that the solution of SVMs is under rather mild assumption
not sparse in w = Y7 | a; ®(x;) [108], but in .

V. UNSUPERVISED LEARNING

In unsupervised learning only the data x1,...,x, € RV,
is given, i.e. the labels are missing. Standard questions of
unsupervised learning are clustering, density estimation,
and data description (see e.g. [111], [51]). As already out-
lined above, the kernel trick cannot only be applied in su-
pervised learning scenarios, but also for unsupervised learn-
ing, given that the base algorithm can be written in terms
of scalar products. In the following sections we will first
review one of the most common statistical data analysis
algorithm, PCA, and explain its “kernelized” variant: ker-
nel PCA (see [11]). Subsequently, single-class classification
is explained. Here the support of a given data set is be-
ing estimated (see e.g. [14], [112], [113], [110]). Recently,
single-class SVMs are frequently used in outlier or novelty
detection applications.

A. Kernel PCA

The basic idea of PCA is depicted in Figure 8. For N-

linear PCA k(x,y) = (xy)
R2

kernel PCA k(xy) = (x:y)*

Fig. 8. By using a kernel function, Kernel-PCA is implicitly perform-
ing a linear PCA in some high dimensional feature space, that is
nonlinearly related to input space. Linear PCA in the input space
(top) is not sufficient to describe the most interesting direction in
this toy example. Contrary, using a suitable nonlinear mapping
& and performing linear PCA on the mapped patterns (Kernel
PCA), the resulting nonlinear direction in the input space can
find the most interesting direction (bottom) (figure from [11]).

dimensional data, a set of orthogonal directions — capturing
most of the variance in the data — is computed, i.e. the first
k projections (k = 1,...,N) allow to reconstruct the data
with minimal quadratic error. In practice one typically
wants to describe the data with reduced dimensionality by
extracting a few meaningful components, while at the same
time one is retaining most existing structure in the data
(see e.g. [114]). Since PCA is a linear algorithm it is clearly
beyond its capabilities to extract nonlinear structures in
the data as, e.g., the one observed in Figure 8. It is here,
where the Kernel-PCA algorithm sets in. To derive Kernel-
PCA we first map the data xq,...,x, € RY into a feature

MULLER ET. AL.: AN INTRODUCTION TO KERNEL-BASED LEARNING ALGORITHMS 191

space F (cf. Section IIT) and compute the covariance matrix
1< -
C=- D d(x)B(x;)"
j=1
The principal components are then computed by solving
the Eigenvalue problem: find A > 0,V # 0 with
1 n
AV=CV =- ®(x;) - V)P(x;).
-3 @) V)B(x))

=1

(23)

Furthermore, as can be seen from (23) all Eigenvectors with
non—zero Eigenvalue must be in the span of the mapped
data, i.e. V € span{®(x1), ..., ®(x,)}. This can be writ-
ten as

V= zn: a,-<1>(x,-).
i=1

By multiplying with ®(xy) from the left (23) reads
AM®(xk) - V) =(®(x¢)-CV) forallk=1,...,n.
Defining an n x n-matrix

Kij == (2(xi) - B(x;)) = k(xi,%;) (24)
one computes an Eigenvalue problem for the expansion co-
efficients a;, that is now solely dependent on the kernel
function

da=Ka (o= (ag,...,an)").

The solutions (A, a¥) further need to be normalized by
imposing A\x(a® - a*) = 1in F. Also — as in every PCA
algorithm — the data needs to be centered in F. This can
be done by simply substituting the kernel-matrix K with

K=K-1,K— K1, +1,K1,,

where (1,);; = 1/n; for details see [11].

For extracting features of a new pattern x with kernel
PCA one simply projects the mapped pattern ®(x) onto
Vk
M
Dok (®(xi) - 3(x))
i=1
M

= Zaf k(x;,x).

i=1

(V- 3(x) =

(25)

Note that in this algorithm for nonlinear PCA the nonlin-
earity enters the computation only at two points that do
not change the nature of the algorithm: (a) in the calcula-
tion of the matrix elements of K (24), and (b) in the eval-
uation of the expansion (25). So, for obtaining the Kernel-
PCA components one only needs to solve a similar linear
Eigenvalue problem as before for linear PCA, the only dif-
ference being that one has to deal with an n x n problem
instead of an N x N problem. Clearly, the size of this

problem becomes problematic for large n. [115] proposes
to solve this by using a sparse approximation of the matrix
K which still describes the leading Eigenvectors sufficiently
well. In [116] a sparse kernel PCA approach is proposed,
set within a Bayesian framework. Finally, the approach
given in [117] places a ¢;-regularizer into the (kernel) PCA
problem with the effect of obtaining sparse solutions as well
at a comparably low computational cost. Figures 9 — 11

Eigenvalue=1.000

Fig. 9. Linear PCA, or, equivalently, Kernel-PCA using k(x,y) =
(x-y). Plotted are two linear PCA features (sorted according to
the size of the Eigenvalues) on an artificial data set. Similar grey
values denote areas of similar feature value (cf. (25)). The first
feature (left) projects to the direction of maximal variance in the
data. Clearly, one cannot identify the nonlinear structure in the
underlying data using linear PCA only (figure from [118]).

Eigenvalue=0.531

Eigenvalue=1.000 Eigenvalue=0.394

Eigenvalue=0.25

ST

Fig. 10. The first 4 nonlinear features of Kernel-PCA using a sig-
moidal Kernel on the data set from Figure 9. The Kernel-PCA
components capture the nonlinear structure in the data, e.g. the
first feature (upper left) is better adapted to the curvature of
the data than the respective linear feature from Figure 9 (figure
from [118]).

show examples for feature extraction with linear PCA and
Kernel-PCA for artificial data sets. Further applications of
kernel PCA for real world data can be found in Section VII-
A.1 for OCR or in Section VII-C.1 for denoising problems,
other applications are found in e.g. [6], [12], [119].

B. Single-Class Classification

A classical unsupervised learning task is density estima-
tion. Assuming that the unlabeled observations x1, ..., %,
were generated i.i.d. according to some unknown distribu-
tion P(x), the task is to estimate its density. However,
there are several difficulties to this task. First, a density
need not always exist — there are distributions that do not
possess a density. Second, estimating densities exactly is

192 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH, 2001

Fig. 11.
Kernel on a toy data set consisting of 3 Gaussian clusters (see

The first 8 nonlinear features of Kernel-PCA using a RBF

[11]). Upper left: the first and second component split the
data into three clusters. Note that Kernel-PCA is not primar-
ily built to achieve such a clustering. Rather it tries to find a
good description of the data in feature space and in this case
the cluster structure extracted has the maximal variance in fea-
ture space. The higher components depicted split each cluster
in halves (components 3 — 5), finally features 6 — 8 achieve or-
thogonal splits with respect to the previous splits (figure from

[11]).

known to be a hard task. In many applications it is enough
to estimate the support of a data distribution instead of the
full density. Single-class SVMs avoid solving the harder
density estimation problem and concentrate on the simpler
task [3], i.e. estimating quantiles of the multivariate distri-
bution, i.e. its support. So far there are two independent
algorithms to solve the problem in a kernel feature space.
They differ slightly in spirit and geometric notion [113],
[14]. Tt is, however, not quite clear which of them is to be
preferred in practice (cf. Figures 12 and 13). One solution
of the single-class SVM problem by Tax and Duin [113] uses
spheres with soft margins to describe the data in feature
space, close in spirit to the algorithm of [120]. For certain
classes of kernels, such as Gaussian RBF ones, this sphere
single-class SVM algorithm can be shown to be equivalent
to the second Ansatz which is due to Scholkopf et. al. [14].
For brevity we will focus on this second approach as it is
more in the line of this review since it uses margin argu-
ments. It computes a hyperplane in feature space such
that a pre-specified fraction of the training example will lie
beyond that hyperplane, while at the same time the hy-
perplane has maximal distance (margin) to the origin. For
an illustration see Figure 12. To this end, we solve the

o 4 f

°/vn outliers

p/llwll
origin

Fig. 12. Illustration of single-class idea. Solving Eq.(26), a hyper-
plane in F is constructed that maximizes the distance to the
origin while allowing for v outliers.

vn outliers

o

Fig. 13. Illustration of single-class idea. Construction of the smallest
soft sphere in F that contains the data.

following quadratic program [14]:

min shwll® + 52 & —p (26)
weF,£eR, peR
subject to (W -®(x;)) > p—§&, &>0. (27)

Here, v € (0,1] is a parameter akin to the one described
above for the case of pattern recognition. Since nonzero
slack variables &; are penalized in the objective function,
we can expect that if w and p solve this problem, then the
decision function f(x) = sign((w-®(x))—p) will be positive
for most examples x; contained in the training set, while
the SV type regularization term ||w|| will still be small.
The actual trade-off between these two goals is controlled
by v. Deriving the dual problem, the solution can be shown
to have a SV expansion (again, patterns x; with nonzero
«a; are called SVs)

f(X) = Sigl’l (Z a; k(Xi,X) - p))

where the coefficients are found as the solution of the dual
problem:
(28)

. 1
min 3 Z a0 k(xq,x;5)
ij

0<a;<1/(vn),i=1,...,n
Zz;laiz 1.

This problem can be solved with standard QP routines.
It does, however, possess features that sets it apart from
generic QPs, most notably the simplicity of the constraints.
This can be exploited by applying a variant of SMO devel-
oped for this purpose [14].

The offset p can be recovered by exploiting that for
any «; which is not at the upper or lower bound, the
corresponding pattern x; satisfies p = (w - ®(x;)) =
Zj Qj k(xjaxi)'

Note that if v approaches 0, the upper boundaries on the
Lagrange multipliers tend to infinity, i.e. the first inequal-
ity constraint in (28) becomes void. The problem then
resembles the corresponding hard margin algorithm, since
the penalization of errors becomes infinite, as can be seen
from the primal objective function (26). It can be shown
that if the data set is separable from the origin, then this

subject to

MULLER ET. AL.: AN INTRODUCTION TO KERNEL-BASED LEARNING ALGORITHMS 193

algorithm will find the unique supporting hyperplane with
the properties that it separates all data from the origin,
and its distance to the origin is maximal among all such
hyperplanes. If, on the other hand, v equals 1, then the
constraints alone only allow one solution: the one where
all ; are at the upper bound 1/(vn). In this case, for
kernels with integral 1, such as normalized versions of (7),
the decision function corresponds to a thresholded Parzen
windows estimator. For the parameter v one can show that
it controls the fraction of errors and SVs (along the lines
of Section TV-A).

Theorem 2 ([14]) Assume the solution of (27) satisfies
p # 0. The following statements hold:
(i) v is an upper bound on the fraction of outliers.
(ii) v is a lower bound on the fraction of SVs.
(iii) Suppose the data were generated independently from
a distribution P(x) which does not contain discrete com-
ponents. Suppose, moreover, that the kernel is analytic
and non-constant. When the number n of samples goes to
infinity, with probability 1, v equals both the fraction of
SVs and the fraction of outliers.

We have thus described an algorithm which will compute
a region that captures a certain fraction of the training
examples. It is a “nice” region, as it will correspond to a
small value of ||wl|?, thus the underlying function will be
smooth [58]. How about test examples? Will they also lie
inside the computed region? This question is the subject of
single-class generalization error bounds [14]. Roughly, they
state the following: suppose the estimated hyperplane has
a small ||w||? and separates part of the training set from
the origin by a certain margin p/||w||. Then the probability
that test examples coming from the same distribution lie
outside of a slightly larger region will not be much larger
than the fraction of training outliers.

Figure 14 displays 2-D toy examples, and shows how
the parameter settings influence the solution. For further
applications, including an outlier detection task in hand-
written character recognition, cf. [14].

T
] =
i *

“‘C’B

T
I . —
I [T

"

1] '_ @ @

i N

x l
x
3 -

v, width ¢ 0.5,0.5 | 0.5,0.5 | 0.1,0.5 | 0.5,0.1
frac. SVs/OLs |0.54, 0.43(0.59, 0.47|0.24, 0.03|0.65, 0.38
margin p/||w|| 0.84 0.70 0.62 0.48

Fig. 14. A single-class SVM using RBF kernel (7) applied to a toy
problem; domain: [—1,1]2. First two pictures: Note how in both
cases, at least a fraction of v of all examples is in the estimated
region (cf. table). The large value of v causes the additional data
points in the upper left corner to have almost no influence on
the decision function. For smaller values of v, such as 0.1 (third
picture), the points cannot be ignored anymore. Alternatively,
one can force the algorithm to take these ‘outliers’ into account
by changing the kernel width (7): in the fourth picture, using
¢ = 0.1,y = 0.5, the data is effectively analyzed on a different
length scale which leads the algorithm to consider the outliers as
meaningful points. Figure taken from [14].

VI. MODEL SELECTION

In the kernel methods discussed so far, the choice of the
kernel has a crucial effect on the performance, i.e. if one
does not choose the kernel properly, one will not achieve
the excellent performance reported in many papers. Model
selection techniques provide principled ways to select a
proper kernel. Usually, the candidates of optimal kernels
are prepared using some heuristic rules, and the one which
minimizes a given criterion is chosen. There are three typ-
ical ways for model selection with different criteria, each of
which is a prediction of the generalization error

(i) Bayesian evidence framework The training of a
SVM is interpreted as Bayesian inference, and the model
selection is done by maximizing the marginal likelihood
(i.e. evidence), e.g. [121], [91].

(i) PAC The generalization error is upper bounded using
a capacity measure depending both on the weights and the
model, and these are optimized to minimize the bound.
The kernel selection methods for SVM following this ap-
proach are reported e.g. in [122], [36], [123].

(iii) Cross validation Here, the training samples are di-
vided to k subsets, each of which have the same number
of samples. Then, the classifier is trained k-times: In the
i-th (i = 1,...,k) iteration, the classifier is trained on all
subsets except the i-th one. Then the classification error is
computed for the i-th subset. It is known that the average
of these k errors is a rather good estimate of the gener-
alization error [124]. The extreme case, where k is equal
to the number of training samples, is called leave-one-out
cross validation. Note that bootstrap [125], [126] is also a
principled resampling method which is often used for model
selection.

Other approaches, namely asymptotic statistical methods
such as AIC [41] and NIC [43] can be used. However, since
these methods need a large amount of samples by assump-
tion, they have not been used in kernel methods so far. For
(i) and (ii), the generalization error is approximated by ex-
pressions that can be computed efficiently. For small sam-
ple sizes, these values are sometimes not very accurate, but
it is known that nevertheless often acceptable good models
are selected. Among the three approaches, the most fre-
quently used method is (iii) [124], but the problem is that
the computational cost is the highest, because the learn-
ing problem must be solved k times. For SVM, there is
an approximate way to evaluate the n-fold cross validation
error (i.e. the leave-one-out classification error) called span
bound [127]. If one assumes that the support vectors do
not change even when a sample is left out, the leave-one-
out classification result of this sample can be computed
exactly. Under this assumption, we can obtain an estimate
of the leave-one-out error — without retraining the SVM
many times. Although this assumption is rather crude and
not true in many cases, this approach gives a close approx-
imation of the true leave-one-out error in experiments. For
KFD there exists a similar result.

Now we would like to describe a particular efficient model
selection method that has in practice often been used [128],

194

[102], [89], [7], [129], [130] in conjunction with the bench-
mark data sets described in Section VII-B.

In model selection for SVMs and KFD we have to
determine the kernel parameters (one (RBF) or more
(e.g. polynomial kernel)) and the regularization constant
C or v, while for Boosting one needs to choose the model-
parameters of the base learner, a regularization constant
and the number of boosting iterations. Given a certain
benchmark data set, one usually has a number, say M
(e.g- 100), realizations, i.e. splits into training and test set,
available (cf. Section VII-B). The different splits are of-
ten necessary to average the results in order to get more
reliable estimates of the generalization error.

One possibility to do model-selection would be to con-
sider each realization independently from all others and to
perform the cross-validation procedure M times. Then, for
each realization one would end-up with different model pa-
rameters, as the model selection on each realizations will
typically have various results.

It is less computationally expensive to have only one
model for all realizations of one data set: To find this
model, we run a 5-fold-cross validation procedure only on
a few, say five, realizations of the data set. This is done in
two stages: first a global search (i.e. over a wide range of
the parameter space) is done to find a good guess of the pa-
rameter, which becomes more precise in the second stage.
Finally, the model parameters are computed as the median
of the five estimations and are used throughout the training
on all M realization of the data set. This way of estimating
the parameters is computationally still quite expensive, but
much less expensive than the full cross validation approach
mentioned above.

VII.

This section describes selected'? interesting applications
of supervised and unsupervised learning with kernels. It
serves to demonstrate that kernel based approaches achieve
competitive results over a whole range of benchmarks with
different noise levels and robustness requirements.

APPLICATIONS

A. Supervised Learning
A.1 OCR

Historically the first real-world experiments of SVMs!?
— all done on OCR benchmarks (see Fig. 15) — exhibited
quite high accuracies for SVMs [2], [120], [4], [131] compa-
rably to state-of-the—art results achieved with convolutive
multi-layer perceptrons [132], [133], [134], [135]. Table IIT

e3S47303)

Fig. 15. Typical handwritten digits from the US-Postal Service
(USPS) benchmark data set with 7291 training and 2007 test
patterns (16 X 16 gray scale images).

12Note that for our own convenience we have biased the selection
towards applications pursued by the IDA group while adding abun-
dant references to other work.

13performed at AT&T Bell Labs.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH, 2001

shows the classification performance of SVMs in compar-
ison to other state—of—the art classifiers on the US-Postal
Service (USPS) benchmark. Plain SVM give a performance
very similar to other state—of-the-art methods. However
SVMs can be strongly improved by using prior knowledge.
For instance in [4] virtual support vectors have been gen-
erated by transforming the set of support vectors with an
appropriate invariance transformation and retraining the
machine on these vectors. Furthermore one can structure
kernels such that they induce local invariances like trans-
lations, line thickening or rotations or that e.g. products
of neighboring pixels in an image [131], that are thought
to contain more information, are emphasized. So, prior
knowledge can be used for engineering a larger data set or
problem specific kernels (see also Section VII-A.2 for an
application of this idea to DNA analysis). In a two stage

TABLE III
CLASSIFICATION ERROR IN % FOR OFF-LINE HANDWRITTEN

CHARACTER RECOGNITION ON THE (USPS) WITH 7291 PATTERNS.

INVARIANT SVMS ARE ONLY SLIGHTLY BELOW THE BEST EXISTING
RESULTS (PARTS OF THE TABLE ARE FROM [136]). THIS IS EVEN MORE
REMARKABLE SINCE IN [137], [135], [136], A LARGER TRAINING SET
WAS USED, CONTAINING SOME ADDITIONAL MACHINE-PRINTED DIGITS

WHICH HAVE BEEN FOUND TO IMPROVE THE ACCURACY.

linear PCA & linear SVM (Scholkopf et. al. [11]) | 8.7%
k-Nearest Neighbor 5.7%
LeNetl (LeCun et. al. [132], [133], [134]) 4.2%
Regularized RBF Networks (Rétsch [128]) 4.1%
Kernel-PCA & linear SVM (Schélkopf et. al. [11]) | 4.0%
SVM (Scholkopf et. al. [120]) 4.0%
Virtual SVM (Schélkopf [4]) 3.0%
Invariant SVM (Scholkopf et. al. [131]) 3.0%
Boosting (Drucker et. al. [137]) 2.6%
Tangent Distance (Simard et. al. [135], [136]) 2.5%
Human error rate 2.5%

process we also used kernel-PCA to extract features from
the USPS data in the first step. A subsequent linear clas-
sification on these nonlinear features allowed to achieve an
error rate of 4%, which is better by a factor of two than
operating on linear PCA features (8.7%, cf. [11]).

A benchmark problem larger than the USPS data set
(7291 patterns) was collected by NIST and contains 120000
handwritten digits. Invariant SVMs achieved the record er-
ror rate of 0.6% [18] on this challenging and more realistic
data set, better than tangent distance (1.1%) and convo-
lutional neural networks (LeNet 5: 0.9%). With an error
rate of 0.7%, an ensemble of LeNet 4 networks that was
trained on a vast number of artificially generated patterns
(using invariance transformations) almost matches the per-
formance of the best SVM [134].

A.2 Analyzing DNA Data

The genomic text contains untranslated regions and so
called coding sequences (CDS) that encode proteins. In or-

MULLER ET. AL.: AN INTRODUCTION TO KERNEL-BASED LEARNING ALGORITHMS 195

der to extract protein sequences from nucleotide sequences,
it is a central problem in computational biology to recog-
nize the translation initiation sites (TIS) from which cod-
ing starts to determine which parts of a sequence will be
translated and which not.

Coding sequences can in principle be characterized
with alignment methods that use homologous proteins
(e.g. [138]) or intrinsic properties of the nucleotide sequence
that are learned for instance with Hidden Markov models
(e.g. [139]). A radically different approach that has turned
out to be even more successful is to model the task of find-
ing TIS as a classification problem (see e.g. [140], [28]). A
potential start codon is typically a ATG triplet. The clas-
sification task is therefore to decide whether or not a binary
coded (fixed length) sequence window!® around the ATG
indicates a true TIS. The machine learning algorithm, for
example the neural network [140] or the SVM [28] gets a
training set consisting of an input of binary coded strings
in a window around the ATG together with a label indi-
cating true/false TIS. In contrast to alignment methods,
both neural networks and the SVM algorithm are finding
important structure in the data by learning in the respec-
tive feature space to successfully classify from the labeled
data.

As indicated in Section VII-A.1, one can incorporate
prior knowledge to SVMs e.g. by using a proper feature
space F. In particular in the task of TIS recognition it
turned out to be very helpful to include biological knowl-
edge by engineering an appropriate kernel function [28].
We will give three examples for kernels that are particularly
useful for start codon recognition. While certain local cor-
relations are typical for TIS, dependencies between distant
positions are of minor importance or are a priori known to
not even exist. We want the feature space to reflect this.
Thus, we modify the kernel utilizing a technique that was
originally described for OCR in [131]: At each sequence
position, we compare the two sequences locally, within a
small window of length 2/ + 1 around that position. We
count matching nucleotides, multiplied with weights p in-
creasing from the boundaries to the center of the window.
The resulting weighted counts are taken to the d{* power

d
+1 !

Z p; matchpy(x,y) | ,
j=—1

WiIlp (X, Y) =

where d; reflects the order of local correlations (within
the window) that we expect to be of importance. Here,
matchpy;(x,y) is 1 for matching nucleotides at position
p+ j and 0 otherwise. The window scores computed with
win,, are summed over the whole length of the sequence.

14DNA has a four letter alphabet: A,C,G,T.

15We define the input space by the same sparse bit-encoding scheme
as used by Pedersen and Nielsen (personal communication): each
nucleotide is encoded by five bits, exactly one of which is set. The
position of the set bit indicates whether the nucleotide is A, C, G
or T, or if it is unknown. This leads to an input space of dimension
n = 1000 for a symmetric window of size 100 to the left and right of
the ATG sequence.

Correlations between up to d> windows are taken into ac-
count by applying potentiation with ds to the resulting
sum.

! d2
k(x,y) = (Z winy (x, y)) .
p=1

We call this kernel locality-improved (contrary to a plain
polynomial kernel), as it emphasizes local correlations.

In an attempt to further improve performance we aimed
to incorporate another piece of biological knowledge into
the kernel, this time concerning the codon-structure of
the coding sequence. A codon is a triplet of adjacent nu-
cleotides that codes for one amino acid. By definition the
difference between a true TIS and a pseudo site is that
downstream of a TIS there is CDS (which shows codon
structure), while upstream there is not. CDS and non-
coding sequences show statistically different compositions.
It is likely that the SVM exploits this difference for clas-
sification. We could hope to improve the kernel by re-
flecting the fact that CDS shifted by three nucleotides still
looks like CDS. Therefore, we further modify the locality-
improved kernel function to account for this translation-
invariance. In addition to counting matching nucleotides
on corresponding positions, we also count matches that
are shifted by three positions. We call this kernel codon-
improved. Again, it can be shown to be a valid mercer ker-
nel function by explicitly deriving the monomial features.

TABLE IV
COMPARISON OF CLASSIFICATION ERRORS (MEASURED ON THE TEST
SETS) ACHIEVED WITH DIFFERENT LEARNING ALGORITHMS. FOR
DETAILS SEE TEXT.

algorithm parameter | overall
setting error
neural network 15.4%
Salzberg method 13.8%
SVM, simple polynomial d=1 13.2%
SVM, locality-improved kernel | dy=4,l=4 11.9%
SVM, codon-improved kernel d=2,1=3 12.2%
SVM, Salzberg kernel di=3,l=1 11.4%

A third direction for the modification of the kernel func-
tion is obtained by the Salzberg method, where we essen-
tially represent each data point by a sequence of log odd
scores relating, individually for each position, two proba-
bilities: first, how likely the observed nucleotide at that
position derives from a true TIS and second, how likely
that nucleotide occurs at the given position relative to any
ATG triplet. We then proceed analogously to the locality-
improved kernel, replacing the sparse bit representation by
the sequence of these scores. As expected, this leads to a
further increase in classification performance. In the strict
sense this is not a kernel but corresponds to preprocessing.

The result of an experimental comparison of SVMs using
these kernel functions with other approaches are summa-

196 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH, 2001

rized in Table IV. All results are averages over six data
partitions (about 11000 patterns for training and 3000 pat-
terns for testing). SVMs are trained on 8000 data points.
An optimal set of model-parameters is selected according
to the error on the remaining training data and the aver-
age errors on the remaining test set are reported in Table
IV. Note that the windows consist of 2] 4+ 1 nucleotides.
The NN results are those achieved by Pedersen and Nielsen
([140], personal communication). There, model selection
seems to have involved test data, which might lead to
slightly over-optimistic performance estimates. Positional
conditional preference scores are calculated analogously to
Salzberg [141], but extended to the same amount of input
data also supplied to the other methods. Note that the
performance measure shown depends on the value of the
classification function threshold. For SVMs, the thresholds
are by-products of the training process; for the Salzberg
method, “natural” thresholds are derived from prior prob-
abilities by Bayesian reasoning. Overall error denotes the
ratio of false predictions to total predictions. The sensitiv-
ity versus specificity trade-off can be controlled by varying
the threshold.

In conclusion, all three engineered kernel functions
clearly outperform the NN as devised by Pedersen and
Nielsen or the Salzberg method by reducing the overall
number of misclassifications drastically: up to 25% com-
pared to the neural network.

Further successful applications of SVMs have emerged
in the context of gene expression profile analysis [26], [27],
DNA and protein analysis [29], [30], [31].

B. Benchmarks

To evaluate a newly designed algorithm it is often de-
sirable to have some standardized benchmark data sets.
For this purpose there exists some benchmark repositories,
including UCI [142], DELVE [143] and STATLOG [144].
Some of them also provide results of some standard algo-
rithms on these data sets. The problem about these repos-
itories and the given results is that

e it is unclear how the model selection was performed,

¢ it is not in all cases stated how large the training and
test samples have been,

» usually there is no information how reliable these results
are (error bars),

o the data sometimes needs preprocessing,

« the problems are often multi-class problems,

Some of these factors might influence the result of the learn-
ing machine at hand and makes a comparison with results
e.g. in other papers difficult.

Thus, another (very clean) repository — the IDA reposi-
tory [145] — has been created, which contains thirteen artifi-
cial and real world data sets collected from the repositories
above. The IDA repository is designed to cover a variety
of different data sets: from small to high expected error
rates, from low to high dimensional data and from small
and large sample sizes. For each of the data sets banana

(toy data set introduced in [128], [102]), breast cancer!?, di-
abetes, german, heart, image segment, ringnorm, flare solar,
splice, thyroid, titanic, twonorm, waveform), the repository
includes

o a short description of the dataset,

o 100 predefined splits into training and test samples,

o the simulation results for several kernel based and Boost-
ing methods on each split including the parameters that
have been used for each method,

o asimulation summary including means and standard de-
viations on the 100 realizations of the data.

To build the IDA repository for problems that are originally
not binary classification problems, a random partition into
two classes is used'”. Furthermore for all sets preprocessing
is performed and 100 different partitions into training and
test set (mostly ~ 60% : 40%) have been generated. On
each partition a set of different classifiers is trained, the
best model is selected by cross-validation and then its test
set error is computed. Some of the results are stated in
Table V. This repository has been used so far to evaluate
kernel and boosting methods e.g. in [128], [102], [89], [7],
[129], [130], [97].

In Table V we show experimental comparisons between
SVM, RBF, KFD and AdaBoost variants [§8]. Due to the
careful model selection performed in the experiments, all
kernel based methods exhibit a similarly good performance.
Note that we can expect such a result since they use similar
implicit regularization concepts by employing the same ker-
nel [58]. The remaining differences arise from their different
loss functions which induce different margin optimization
strategies: KFD maximizes the average margin whereas
SVM maximizes the soft margin (ultimately the minimum
margin). In practice, KFD or RVM have the advantage
that — if required (e.g. medical application, motion track-
ing) — they can also supply a confidence measures for a
decision. Furthermore, the solutions for KFD with a spar-
sity regularization are as sparse as for RVM [91] (i.e. much
higher sparsity than for SVMs can be achieved), yet using
an order of magnitude less computing time than the RVM
[89].

B.1 Miscellaneous Applications

The high dimensional problem of text categorization
seems to be another application where SVMs have been
performing particularly well. A popular benchmark is
the Reuters-22173 text corpus, where Reuters collected
21450 news stories from 1997, and partitioned and indexed
them into 135 different categories, to simplify the access.
The feature typically used to classify Reuters documents
are 10000-dimensional vectors containing word frequencies
within a document. With such a coding SVMs have been
achieving excellent results, see e.g. [146], [78].

16The breast cancer domain was obtained from the University Med-
ical Center, Inst. of Oncology, Ljubljana, Yugoslavia. Thanks go to
M. Zwitter and M. Soklic for providing the data.

17A random partition generates a mapping m of n to two classes.
For this a random +1 vector m of length n is generated. The positive
classes (and the negative respectively) are then concatenated.

MULLER ET. AL.: AN INTRODUCTION TO KERNEL-BASED LEARNING ALGORITHMS 197

TABLE V
COMPARISON [8] BETWEEN SUPPORT VECTOR MACHINES, THE KERNEL FISHER DISCRIMINANT (KFD), A SINGLE RADIAL BASIS FUNCTION

cLASSIFIER (RBF), ADAB0OST (AB), AND REGULARIZED ADAB0OOST (ABR) ON 13 DIFFERENT BENCHMARK DATASETS (SEE TEXT). BEST

RESULT IN BOLD FACE, SECOND BEST IN ITALICS.

SVM KFD RBF AB ABpr
Banana 11.5+£0.07 | 10.8+0.05 | 10.8+0.06 | 12.3+0.07 | 10.9+0.04
B.Cancer 26.0£0.47 | 25.8+£0.46 | 27.6+0.47 | 30.4+0.47 | 26.5+£0.45
Diabetes 23.5£0.17 | 23.2+0.16 | 24.3+0.19 | 26.5+0.23 | 23.8+0.18
German 23.6+0.21 | 23.7£0.22 | 24.7+0.24 | 27.5+0.25 | 24.3+0.21
Heart 16.0+£0.33 | 16.1£0.34 17.6+£0.33 | 20.3+£0.34 | 16.5+0.35
Image 3.0£0.06 3.3+0.06 3.3£0.06 | 2.7+0.07 | 2.7+0.06
Ringnorm 1.7+0.01 1.5£0.01 1.74+0.02 1.9+0.03 | 1.6+0.01
F.Sonar 32.44+0.18 | 33.2+0.17 | 34.4+0.20 | 35.7+0.18 | 34.24+0.22
Splice 10.9£0.07 | 10.5+0.06 | 10.0+0.10 | 10.1£0.05 | 9.5+0.07
Thyroid 4.840.22 | 4.2+0.21 4.5+£0.21 | 4.4£0.22 | 4.6£0.22
Titanic 22.4+0.10 | 23.24+0.20 | 23.3£0.13 | 22.6+0.12 | 22.6+0.12
Twonorm 3.0+0.02 2.6+0.02 2.9£0.03 3.0£0.03 | 2.7£0.02
Waveform 9.9+0.04 9.9£0.04 10.7£0.11 | 10.8+0.06 | 9.8+0.08

Further applications of SVM include object and face
recognition tasks as well as image retrieval [147], [148].
SVMs have also been successfully applied to solve inverse
problems [5], [149].

C. Unsupervised Learning
C.1 Denoising

Kernel PCA as a nonlinear feature extractor has proven
powerful as a preprocessing step for classification algo-
rithms. But considering it as a natural generalization of
linear PCA the question arises, how to use nonlinear fea-
tures for data compression, reconstruction, and de-noising,
applications common in linear PCA. This is a nontrivial
task, as the results provided by kernel PCA live in the high
dimensional feature space and need not have an exact rep-
resentation by a single vector in input space. In practice
this issue has been alleviated by computing approximate
pre—images [12], [13], [116].

Formally, one defines a projection operator P which for
each test point x computes the projection onto the first k&
(nonlinear) principal components, i.e.

Py ®(x) = i, BV

where f; == (V' - ®(x)) = 37_, @} k(x,x;). Lets assume
that the Eigenvectors V are ordered with decreasing Eigen-
value size. It can be shown that these projections have sim-
ilar optimality properties as linear PCA [12] making them
good candidates for the following applications:

Denoising. Given a noisy x, map it into ®(x), discard
higher components to obtain P ®(x), and then compute a
pre-image z. Here, the hope is that the main structure in
the data set is captured in the first k directions, and the
remaining components mainly pick up the noise — in this
sense, z can be thought of as a denoised version of x.
Compression. Given the eigenvectors o and a small num-
ber of features §; of ®(x), but not x, compute a pre-image

as an approximate reconstruction of x. This is useful if k&
is smaller than the dimensionality of the input data.
Interpretation. Visualize a nonlinear feature extractor V?
by computing a pre-image.

This can be achieved by computing a vector z satisfying
®(z) = P ®(x). The hope is that for the kernel used,
such a z will be a good approximation of x in input space.
However, (i) such a z will not always exist and (ii) if it
exists, it need be not unique (cf. [12], [13]). When the
vector Py ®(x) has no pre-image z one can approximate it
by minimizing

p(z) = [|®(2) — P 2(x)|1%, (29)

what can be seen as a special case of the reduced set method
[150], [13]. The optimization of (29) can be formulated us-
ing kernel functions. Especially for RBF kernels (cf. (7))
there exists an efficient fixed—point iteration. For further
details of how to optimize (29) and for details of the exper-
iments reported below the reader is referred to [13].

C.l1.a Example. The example shown here (taken from
[12]) was carried out with Gaussian kernels, minimizing
(29). Figure 16 illustrates the pre-image approach in an
artificial de-noising task on the USPS database. In these
experiments, linear and kernel PCA were trained with the
original data. To the test set
(i) additive Gaussian noise with zero mean and standard
deviation ¢ = 0.5, or
(i) ‘speckle’ noise, where each pixel is flipped to black or
white with probability p = 0.2.
was added. For the noisy test sets, projections onto the first
k linear and nonlinear components were computed and the
reconstruction was carried out for each case. The results
were compared by taking the mean squared distance of
each reconstructed digit of the noisy test set to its original
counterpart.

For the optimal number of components in linear and ker-
nel PCA, the non-linear approach did better by a factor of

198 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH, 2001

[®)
)
ol
[9)]
@
&
=
@

w0
o

eckle’ noise

orig.

noisy

m=1

e
o0 e e ioQ

*]
Q
O
0
o
0

PN
TNV TR VY
L cwfE
A0
Ll ol WIS E N

k=

64

10
13
| 2
| Z

At alt abiad
oot
[d) -
Gﬂﬂ-

8
8
0
o

fLcow
gﬁﬁﬂﬂ:

:

256

Fig. 16.

0L Q-0
ﬂﬂﬂﬂjﬁﬂﬁﬂ@ﬂ

LLQw

01

De-noising of USPS data (see text). The left half shows: top: the first occurrence of each digit in the test set, second row: the

upper digit with additive Gaussian noise (¢ = 0.5), following five rows: the reconstruction for linear PCA using k = 1,4, 16, 64,256
components, and, last five rows: the results of the approximate pre-image approach using the same number of components. The right
half shows the same but for ‘speckle’ noise with probability p = 0.2 (figure from [12]).

1.6 for the Gaussian noise, and 1.2 for the ‘speckle’ noise
(the optimal number of components were 32 in linear PCA,
and 512 and 256 in kernel PCA, respectively). Taking iden-
tical numbers of components in both algorithms, kernel
PCA becomes up to 8 times better than linear PCA. Re-
cently, in [116] a similar approach was used together with
sparse kernel PCA on real world images showing far supe-
rior performance compared to linear PCA as well.

Other applications of Kernel PCA can be found in [151]
for object detection, and in [4], [119], [152] for preprocess-
ing in regression and classification tasks.

VIII. CONCLUSION AND DISCUSSION

The goal of the present article was to give a simple in-
troduction into the exciting field of kernel based learning
methods. We only briefly touched learning theory and fea-
ture spaces — omitting many details of VC theory (e.g. [5]) —
and instead focused on how to use and work with the algo-
rithms. In the supervised learning part, we dealt with clas-
sification, however, a similar reasoning leads to algorithms
for regression with KFD (e.g. [89]), Boosting (e.g. [108]) or
SVMs (e.g. [33]).

We proposed a conceptual framework for KFD, Boosting
and SVMs as algorithms that essentially differ in how they
handle the high dimensionality of kernel feature spaces.
One can think of boosting as a “kernel algorithm” in a
space spanned by the basis hypotheses. The problem be-
comes only tractable since Boosting uses a £;—norm regu-
larizer, which induces sparsity, i.e. we essentially only work
in a small subspace. In SVMs and KFD, on the other
hand, we use the kernel trick to only implicitly work in fea-

ture space. The three methods use different optimization
strategies, each well suited to maximize the (average) mar-
gin in the respective feature space and to achieve sparse
solutions.

The unsupervised learning part reviewed (i) kernel PCA,
a nonlinear extension of PCA for finding projections that
give useful nonlinear descriptors of the data and (ii) the
single-class SVM algorithm that estimates the support (or,
more generally, quantiles) of a data set and is an elegant
approach to the outlier detection problem in high dimen-
sions. Similar unsupervised single-class algorithms can also
be constructed for Boosting [110] or KFD.

Selected real-world applications served to exemplify that
kernel based learning algorithms are indeed highly compet-
itive on a variety of problems with different characteristics.

To conclude, we would like to encourage the reader to fol-
low the presented methodology of (re-)formulating linear,
scalar product based algorithms into nonlinear algorithms
to obtain further powerful kernel based learning machines.

REFERENCES

[1] B.E. Boser, .M. Guyon, and V.N. Vapnik, “A training algo-
rithm for optimal margin classifiers,” in Proceedings of the 5th
Annual ACM Workshop on Computational Learning Theory,
D. Haussler, Ed., 1992, pp. 144-152.

[2] C. Cortes and V.N. Vapnik, “Support vector networks,” Ma-
chine Learning, vol. 20, pp. 273 — 297, 1995.

[38] V.N. Vapnik, The nature of statistical learning theory, Springer
Verlag, New York, 1995.

[4] B. Scholkopf, Support vector learning,
Munich, 1997.

[5] V.N. Vapnik, Statistical Learning Theory, Wiley, New York,
1998.

[6] B. Scholkopf, C.J.C. Burges, and A.J. Smola,

Oldenbourg Verlag,

Advances in

MULLER ET. AL.: AN INTRODUCTION TO KERNEL-BASED LEARNING ALGORITHMS

[10]

[11]

(12]

(13]

[14]

(15]

[16]

(17]

(22]

(23]

(24]

Kernel Methods — Support Vector Learning, MIT Press, Cam-
bridge, MA, 1999.

S. Mika, G. Rétsch, J. Weston, B. Scholkopf, and K.-R. Miiller,
“Fisher discriminant analysis with kernels,” in Neural Networks
for Signal Processing IX, Y.-H. Hu, J. Larsen, E. Wilson, and
S. Douglas, Eds. 1999, pp. 41-48, IEEE.

S. Mika, G. Ritsch, J. Weston, B. Schélkopf, A.J. Smola, and
K.-R. Miiller, “Invariant feature extraction and classification in
kernel spaces,” in Advances in Neural Information Processing
Systems 12, S.A. Solla, T.K. Leen, and K.-R. Miiller, Eds. 2000,
pp- 526-532, MIT Press.

V. Roth and V. Steinhage, “Nonlinear discriminant analysis us-
ing kernel functions,” in Advances in Neural Information Pro-
cessing Systems 12, S.A. Solla, T.K. Leen, and K.-R. Miiller,
Eds. 2000, pp. 568-574, MIT Press.

G. Baudat and F. Anouar, “Generalized discriminant analysis
using a kernel approach,” Neural Computation, vol. 12, no. 10,
pp- 2385-2404, 2000.

B. Scholkopf, A.J. Smola, and K.-R. Miiller, “Nonlinear com-
ponent analysis as a kernel eigenvalue problem,” Neural Com-
putation, vol. 10, pp. 1299-1319, 1998.

S. Mika, B. Schélkopf, A.J. Smola, K.-R. Miiller, M. Scholz, and
G. Rétsch, “Kernel PCA and de—noising in feature spaces,” in
Advances in Neural Information Processing Systems 11, M.S.
Kearns, S.A. Solla, and D.A. Cohn, Eds. 1999, pp. 536-542,
MIT Press.

B. Scholkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Miiller,
G. Riétsch, and A.J. Smola, “Input space vs. feature space in
kernel-based methods,” IEFEE Transactions on Neural Net-
works, vol. 10, no. 5, pp. 1000-1017, September 1999.

B. Scholkopf, J. Platt, J. Shawe-Taylor, A.J. Smola, and R.C.
Williamson, “Estimating the support of a high-dimensional
distribution,” TR 87, Microsoft Research, Redmond, WA, 1999,
To appear in Neural Computation.

S. Mukherjee, E. Osuna, and F. Girosi, “Nonlinear prediction
of chaotic time series using a support vector machine,” in Neu-
ral Networks for Signal Processing VII — Proceedings of the
1997 IEEE Workshop, J. Principe, L. Gile, N. Morgan, and
E. Wilson, Eds., New York, 1997, pp. 511 — 520, IEEE.

Y.A. LeCun, L.D. Jackel, L. Bottou, A. Brunot, C. Cortes, J.S.
Denker, H. Drucker, I. Guyon, U.A. Miiller, E. Sickinger, P.Y.
Simard, and V.N. Vapnik, “Learning algorithms for classifica-
tion: A comparism on handwritten digit recognition,” Neural
Networks, pp. 261-276, 1995.

C.J.C. Burges and B. Schélkopf, “Improving the accuracy and
speed of support vector learning machines,” in Adwvances in
Neural Information Processing Systems 9, M. Mozer, M. Jor-
dan, and T. Petsche, Eds., Cambridge, MA, 1997, pp. 375381,
MIT Press.

D. DeCoste and B. Scholkopf, “Training invariant support
vector machines,” Machine Learning, 2001, to appear. Also:
Technical report JPL-MLTR-00-1, Jet Propulsion Laboratory,
Pasadena.

V. Blanz, B. Scholkopf, H. Biilthoff, C.J.C. Burges, V.N. Vap-
nik, and T. Vetter, “Comparison of view-based object recogni-
tion algorithms using realistic 3D models,” in Artificial Neural
Networks — ICANN’96, C. von der Malsburg, W. von Seelen,
J. C. Vorbriiggen, and B. Sendhoff, Eds., Berlin, 1996, pp. 251 —
256, Springer Lecture Notes in Computer Science, Vol. 1112.
D. Roobaert and M.M. Van Hulle, “View-based 3d object recog-
nition with support vector machines,” in Proc. IEEE Neural
Networks for Signal Processing Workshop 1999, 1999.

T. Joachims, “Text categorization with support vector ma-
chines: Learning with many relevant features,” in Proceedings
of the European Conference on Machine Learning, Berlin, 1998,
pp. 137 — 142, Springer.

S. Dumais, J. Platt, D. Heckerman, and M. Sahami, “Induc-
tive learning algorithms and representations for text catego-
rization,” in 7th International Conference on Information and
Knowledge Management, 1998, 1998.

H. Drucker, D. Wu, and V.N. Vapnik, “Support vector ma-
chines for span categorization,” IEEE Transactions on Neural
Networks, vol. 10, no. 5, pp. 1048-1054, 1999.

K.-R. Miiller, A.J. Smola, G. Rétsch, B. Scholkopf, J. Kohlmor-
gen, and V.N. Vapnik, “Predicting time series with support
vector machines,” in Artificial Neural Networks — ICANN’97,
W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, Eds.,

(25]

(26]

(27]

28]

[29]

(30]

(31]

[43]

[44]

[46]

199

Berlin, 1997, pp. 999 — 1004, Springer Lecture Notes in Com-
puter Science, Vol. 1327.

D. Mattera and S. Haykin, “Support vector machines for dy-
namic reconstruction of a chaotic system,” in Advances in Ker-
nel Methods — Support Vector Learning, B. Scholkopf, C.J.C.
Burges, and A.J. Smola, Eds., Cambridge, MA, 1999, pp. 211-
242, MIT Press.

M.P.S. Brown, W.N. Grundy, D. Lin, N. Cristianini, C. Sugnet,
T.S. Furey, M. Ares, and D. Haussler, “Knowledge-based anal-
ysis of microarray gene expression data using support vector
machines,” Proceedings of the National Academy of Sciences,
vol. 97, no. 1, pp. 262-267, 2000.

T. Furey, N. Cristianini, N. Duffy, D. Bednarski, M. Schummer,
and D. Haussler, “Support vector machine classification and
validation of cancer tissue samples using microarray expression
data,” Bioinformatics, 2001, to appear.

A. Zien, G. Réatsch, S. Mika, B. Scholkopf, T. Lengauer, and K.-
R. Miiller, “Engineering support vector machine kernels that
recognize translation initiation sites in DNA,” Biolnformatics,
2001, to appear.

T.S. Jaakkola, M. Diekhans, and D. Haussler, “A
discriminative framework for detecting remote pro-
tein homologies,” Unpublished, available from

http://www.cse.ucsc.edu/ “research/compbio/research.html,
Oct. 1999.

D. Haussler, “Convolution kernels on discrete structures,”
Tech. Rep. UCSC-CRL-99-10, UC Santa Cruz, July 1999.

C. Watkins, “Dynamic alignment kernels,” in Advances
in Large Margin Classifiers, A.J. Smola, P.L. Bartlett,
B. Scholkopf, and D. Schuurmans, Eds., Cambridge, MA, 2000,
pp- 39-50, MIT Press.

C.J.C. Burges, “A tutorial on support vector machines for
pattern recognition,” Knowledge Discovery and Data Mining,
vol. 2, no. 2, pp. 121-167, 1998.

A. Smola and B. Schdélkopf, “A tutorial on support vector
regression,” Statistics and Computing, 2001, Forthcoming.

N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines, Cambridge University Press, Cambridge,
UK, 2000.

A.J. Smola and B. Scholkopf, “On a kernel-based method for
pattern recognition, regression, approximation and operator in-
version,” Algorithmica, vol. 22, pp. 211-231, 1998.

A. J. Smola, Learning with Kernels, Ph.D. thesis, Technische
Universitat Berlin, 1998.

G.S. Kimeldorf and G. Wahba, “Some results on Tchebychef-
fian spline functions,” J. Math. Anal. Applic., vol. 33, pp.
82-95, 1971.

A.N. Tikhonov and V.Y. Arsenin, Solutions of Ill-posed Prob-
lems, W.H. Winston, Washington, D.C., 1977.

T. Poggio and F. Girosi, “Regularization algorithms for learn-
ing that are equivalent to multilayer networks,” Science, vol.
247, pp. 978-982, 1990.

D.D. Cox and F. O’Sullivan, “Asymptotic analysis of penalized
likelihood and related estimates,” The Annals of Statistics, vol.
18, no. 4, pp. 1676-1695, 1990.

H. Akaike, “A new look at the statistical model identification,”
IEEE Trans. Automat. Control, vol. 19, no. 6, pp. 716-723,
1974.

J. Moody, “The effective number of parameters: An analysis
of generalization and regularization in non-linear learning sys-
tems,” in Advances in Neural information processings systems
4, S. J. Hanson J. Moody and R. P. Lippman, Eds., San Mateo,
CA, 1992, pp. 847-854, Morgan Kaufman.

N. Murata, S. Amari, and S. Yoshizawa, “Network information
criterion — determining the number of hidden units for an ar-
tificial neural network model,” IEEE Transactions on Neural
Networks, vol. 5, pp. 865-872, 1994.

V.N. Vapnik and A.Y. Chervonenkis, Theory of Pattern Recog-
nition [in Russian], Nauka, Moscow, 1974, (German Transla-
tion: W. Wapnik & A. Tscherwonenkis, Theorie der Zeichen-
erkennung, Akademie-Verlag, Berlin, 1979).

R.C. Williamson, A.J. Smola, and B. Scholkopf, “Generaliza-
tion performance of regularization networks and support vector
machines via entropy numbers of compact operators,” Neuro-
COLT Technical Report NC-TR-98-019, Royal Holloway Col-
lege, University of London, UK, 1998, To appear in IEEE
Transactions on Information Theory.

S. Geman, E. Bienenstock, and R. Doursat, “Neural networks

200

[50]
[51]
(52]

(53]

(54]

[55]

[56]

[57]

(62]

[63]

[64]

[65]

(66]

(67]

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH, 2001

and the bias/variance dilemma,” Neural Computation, vol. 4,
no. 1, pp. 1-58, 1992.

J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, and M. An-
thony, “A framework for structural risk minimization,” in Proc.
COLT. 1996, Morgan Kaufmann.

B. Scholkopf and A. J. Smola, Learning with Kernels, MIT
Press, Cambridge, MA, 2001, Forthcoming.

J. Moody and C. Darken, “Fast learning in networks of locally-
tuned processing units,” Neural Computation, vol. 1, no. 2, pp.
281-294, 1989.

S. Haykin, Neural Networks :
Macmillan, New York, 1994.
C.M. Bishop, Neural Networks for Pattern Recognition, Oxford
University Press, 1995.

G. Orr and K.-R. Miiller, Eds., Neural Networks: Tricks of the
Trade, vol. 1524, Springer LNCS, 1998.

Y. Freund and R.E. Schapire, “A decision-theoretic generaliza-
tion of on-line learning and an application to boosting,” Journal
of Computer and System Sciences, vol. 55, no. 1, pp. 119-139,
August 1997.

J. Schiirmann, Pattern Classification: a unified view of statis-
tical and neural approaches, Wiley, New York, 1996.

M. Aizerman, E. Braverman, and L. Rozonoer, “Theoretical
foundations of the potential function method in pattern recog-
nition learning.,” Automation and Remote Control, vol. 25, pp.
821 — 837, 1964.

S. Saitoh, Theory of Reproducing Kernels and its Applications,
Longman Scientific & Technical, Harlow, England, 1988.

F. Girosi, M. Jones, and T. Poggio, “Priors, stabilizers and
basis functions: From regularization to radial, tensor and ad-
ditive splines,” Tech. Rep. A.I. Memo No. 1430, Massachusetts
Institute of Technology, June 1993.

A.J. Smola, B. Scholkopf, and K.-R. Miiller, “The connection
between regularization operators and support vector kernels,”
Neural Networks, vol. 11, pp. 637649, 1998.

J. Mercer, “Functions of positive and negative type and
their connection with the theory of integral equations,” Phi-
los. Trans. Roy. Soc. London, vol. A 209, pp. 415-446, 1909.
F. Girosi, “An equivalence between sparse approximation and
support vector machines,” A.I. Memo No. 1606, MIT, 1997.
M. Stitson, A. Gammerman, V.N. Vapnik, V. Vovk,
C. Watkins, and J. Weston, “Support vector regression with
ANOVA decomposition kernels,” Tech. Rep. CSD-97-22, Royal
Holloway, University of London, 1997.

K.P. Bennett and O.L. Mangasarian, “Robust linear program-
ming discrimination of two linearly inseparable sets,” Opti-
mization Methods and Software, vol. 1, pp. 23-34, 1992.

O.L. Mangasarian and D.R. Musicant, “Lagrangian support
vector machines,” Journal of Machine Learning Research,
2000, in press.

V.N. Vapnik, Estimation of Dependences Based on Empirical
Data, Springer-Verlag, Berlin, 1982.

B. Scholkopf, A. Smola, R.C. Williamson, and P.L. Bartlett,
“New support vector algorithms,” Neural Computation, vol.
12, pp. 1207 — 1245, 2000.

M. Opper and D. Haussler, “Generalization performance of
Bayes optimal classification algorithm for learning a percep-
tron,” Physical Review Letters, vol. 66, pp. 2677, 1991.

J. Shawe-Taylor and R.C. Williamson, “A PAC analysis of
a Bayesian estimator,” Tech. Rep. NC2-TR-1997-013, Royal
Holloway, University of London, 1997.

T. Graepel R. Herbrich and C. Campbell, “Bayes point ma-
chines: Estimating the bayes point in kernel space,” in Pro-
ceedings of IJCAI Workshop Support Vector Machines, 1999,
pp. 23-27.

T. Watkin, “Optimal learning with a neural network,” Furo-
physics Letters, vol. 21, pp. 871-877, 1993.
P. Rujan, “Playing billiard in version space,
tation, vol. 9, pp. 197-238, 1996.

R. Herbrich and T. Graepel, “Large scale Bayes point ma-
chines,” in Advances in Neural Information System Processing
13, 2001, accepted for publication.

Ralf Herbrich, Thore Graepel, and Colin Campbell, “Bayesian
learning in reproducing kernel Hilbert spaces,” Tech. Rep.,
Technical University of Berlin, 1999, TR 99-11.

R.J. Vanderbei, “Interior-point methods: Algorithms and for-
mulations,” ORSA Journal on Computing, vol. 6, no. 1, pp.
32-34, 1994.

A Comprehensive Foundation,

” Neural Compu-

[74]

[75]

(76]

[77]

(80]

(81]

D.P. Bertsekas, Nonlinear Programming,
Belmont, MA, 1995.

C. Saunders, M.O. Stitson, J. Weston, L. Bottou, B. Schélkopf,
and A.J. Smola, “Support vector machine reference manual,”
Tech. Rep. CSD-TR-98-03, Royal Holloway University, London,
1998.

E. Osuna, R. Freund, and F. Girosi, “Support vector ma-
chines: Training and applications,” A.I. Memo AIM-1602, MIT
A.L Lab, 1996.

E. Osuna, R. Freund, and F. Girosi, “An improved training
algorithm for support vector machines,” in Neural Networks
for Signal Processing VII — Proceedings of the 1997 IEEE
Workshop, J. Principe, L. Gile, N. Morgan, and E. Wilson,
Eds., New York, 1997, pp. 276 — 285, IEEE.

T. Joachims, “Making large-scale SVM learning practical,”
in Advances in Kernel Methods — Support Vector Learning,
B. Scholkopf, C.J.C. Burges, and A.J. Smola, Eds., Cambridge,
MA, 1999, pp. 169-184, MIT Press.

J. Platt, “Fast training of support vector machines using se-
quential minimal optimization,” in Advances in Kernel Meth-
ods — Support Vector Learning, B. Scholkopf, C.J.C. Burges,
and A.J. Smola, Eds., Cambridge, MA, 1999, pp. 185-208, MIT
Press.

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K.
Murthy, “Improvements to Platt’s SMO algorithm for SVM
classifier design,” Tech. Rep. CD-99-14, National University of
Singapore, 1999, http://guppy.mpe.nus.edu.sg/ “mpessk.
T.-T. Frief, N. Cristianini, and C. Campbell., “The kernel
adatron algorithm: A fast and simple learning procedure for
support vector machines.,” in Proc. ICML’98, J. Shavlik, Ed.
1998, pp. 188-196, Morgan Kaufmann Publishers.

J.K. Anlauf and M. Biehl, “The adatron: an adaptive per-
ceptron algorithm,” Furophys. Letters, vol. 10, pp. 687 — 692,
1989.

P.S. Bradley, U.M Fayyad, and O.L Mangasarian, “Mathe-
matical programming for data mining: Formulations and chal-
lenges,” Journal of Computing, 1998.
“http://www.kernel-machines.org,” A collection of literature,
software and web pointers dealing with SVM and Gaussian pro-
cesses.

R.A. Fisher, “The use of multiple measurements in taxonomic
problems,” Annals of Eugenics, vol. 7, pp. 179-188, 1936.

K. Fukunaga, Introduction to Statistical Pattern Recognition,
Academic Press, San Diego, 2nd edition, 1990.

J.H. Friedman, “Regularized discriminant analysis,” Journal
of the American Statistical Association, vol. 84, no. 405, pp.
165-175, 1989.

T.J. Hastie, A. Buja, and R.J. Tibshirani, “Penalized discrim-
inant analysis,” Annals of Statistics, 1995.

S. Mika, G. Rétsch, and K.-R. Miiller, “A mathematical pro-
gramming approach to the Kernel Fisher algorithm,” in Ad-
vances in Neural Information Processing Systems 13, 2001, to
appear.

S. Mika, A.J. Smola, and B. Schélkopf, “An improved train-
ing algorithm for kernel fisher discriminants,” in Proceedings
AISTATS 2001. 2001, Morgan Kaufmann, to appear.

M.E. Tipping, “The relevance vector machine,” in Advances
in Neural Information Processing Systems 12, S.A. Solla, T.K.
Leen, and K.-R. Miiller, Eds. 2000, pp. 652-658, MIT Press.
K.P. Bennett, A. Demiriz, and J. Shawe-Taylor, “A column
generation algorithm for boosting,” in Prooceedings, 17th
ICML, P. Langley, Ed., San Francisco, 2000, pp. 65-72, Morgan
Kaufmann.

R.E. Schapire, “The strength of weak learnability,” Machine
Learning, vol. 5, no. 2, pp. 197-227, 1990.

R.E. Schapire, Y. Freund, P.L. Bartlett, and W.S. Lee, “Boost-
ing the margin: a new explanation for the effectiveness of voting
methods,” in Proc. 14th International Conference on Machine
Learning. 1997, pp. 322-330, Morgan Kaufmann.

R.E. Schapire, “A brief introduction to boosting,” in Proceed-
ings of the Sizteenth International Joint Conference on Artifi-
cial Intelligence, 1999.

N. Duffy and D.P. Helmbold, “Potential boosters?,” in Ad-
vances in Neural Information Processing Systems 12, S.A.
Solla, T.K. Leen, and K.-R. Miiller, Eds. 2000, pp. 258-264,
MIT Press.

“http://www.boosting.org,” A collection of references, soft-

Athena Scientific,

MULLER ET. AL.: AN INTRODUCTION TO KERNEL-BASED LEARNING ALGORITHMS

[100]
[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

ware and web pointers concerned with Boosting and ensemble
learning methods.

R.E. Schapire, The Desig and Analysis of Efficient Learning
Algorithms, Ph.D. thesis, MIT Press, 1992.

M. Kearns and L. Valiant, “Cryptographic limitations on learn-
ing Boolean formulae and finite automata,” Journal of the
ACM, vol. 41, no. 1, pp. 67-95, Jan. 1994.

L.G. Valiant, “A theory of the learnable,” Communications of
the ACM, vol. 27, no. 11, pp. 1134-1142, Nov. 1984.

L. Breiman, “Arcing the edge,” Technical Report 486, Statistics
Department, University of California, June 1997.

G. Ritsch, T. Onoda, and K.-R. Miiller, “Soft margins for
AdaBoost,” Machine Learning, vol. 42, no. 3, pp. 287-320,
Mar. 2001, also NeuroCOLT Technical Report NC-TR-1998-
021.

N. Duffy and D.P. Helmbold, “A geometric approach to lever-
aging weak learners,” in Computational Learning Theory: jth
European Conference (EuroCOLT ’99), P. Fischer and H. U.
Simon, Eds., Mar. 1999, pp. 18-33, Long version to appear in
TCS.

L. Mason, J. Baxter, P.L. Bartlett, and M. Frean, “Func-
tional gradient techniques for combining hypotheses,” in Ad-
vances in Large Margin Classifiers, A.J. Smola, P.L. Bartlett,
B. Schoélkopf, and D. Schuurmans, Eds., pp. 221-247. MIT
Press, Cambridge, MA, 2000.

L. Breiman, “Prediction games and arcing algorithms,” Techni-
cal Report 504, Statistics Department, University of California,
December 1997.

G. Ritsch, B. Scholkopf, A.J. Smola, S. Mika, T. Onoda,
and K.-R. Miiller, “Robust ensemble learning,” in Ad-
vances in Large Margin Classifiers, A.J. Smola, P.L. Bartlett,
B. Scholkopf, and D. Schuurmans, Eds., pp. 207-219. MIT
Press, Cambridge, MA, 2000.

O.L. Mangasarian, “Arbitrary-norm separating plane,” Oper-
ation Research Letters, vol. 24, no. 1, pp. 15-23, 1999.

G. Rétsch, M. Warmuth, S. Mika, T. Onoda, S. Lemm, and
K.-R. Miiller, “Barrier boosting,” in Proc. COLT, Stanford,
Feb. 2000, pp. 170-179, Morgan Kaufmann.

G. Rétsch, A. Demiriz, and K. Bennett, “Sparse regression en-
sembles in infinite and finite hypothesis spaces,” NeuroCOLT2
Technical Report 85, Royal Holloway College, London, Septem-
ber 2000, Machine Learning, to appear.

G. Ritsch, B. Scholkopf, S. Mika, and K.-R. Miiller, “SVM and
Boosting: One class,” Tech. Rep. 119, GMD FIRST, Berlin,
November 2000.

R.O. Duda and P.E. Hart, Pattern classification and scene
analysis, John Wiley & Sons, 1973.

B. Schoélkopf, R.C. Williamson, A.J. Smola, J. Shawe-Taylor,
and J.C. Platt, “Support vector method for novelty detection,”
in Advances in Neural Information Processing Systems 12, S.A.
Solla, T.K. Leen, and K.-R. Miiller, Eds. 2000, pp. 582-588,
MIT Press.

D. Tax and R. Duin, “Data domain description by support
vectors,” in Proc. ESANN, M. Verleysen, Ed., Brussels, 1999,
pp- 251-256, D. Facto Press.

K.I. Diamantaras and S.Y. Kung, Principal Component Neural
Networks, Wiley, New York, 1996.

A.J. Smola and B. Schélkopf, “Sparse greedy matrix approxi-
mation for machine learning,” in Proc. ICML’00, P. Langley,
Ed., San Francisco, 2000, pp. 911-918, Morgan Kaufmann.

M. Tipping, “Sparse kernel principal component analysis,” in
Advances in Neural Information Processing Systems 13. 2001,
MIT-Press, to appear.

A.J. Smola, O.L. Mangasarian, and B. Scholkopf, “Sparse ker-
nel feature analysis,” Tech. Rep. 99-04, University of Wiscon-
sin, Data Mining Institute, Madison, 1999.

B. Schélkopf, K.-R. Miiller, and A.J. Smola, “Lernen mit Ker-
nen,” Informatik Forschung und Entwicklung, vol. 14, pp. 154
— 163, 1999.

R. Rosipal, M. Girolami, and L. Trejo, “Kernel PCA feature
extraction of event-related potentials for human signal detec-
tion performance,” in Proceedings of Intl. Conf. on Artificial
Neural Networks in Medicine and Biology, Malmgren, Borga,
and Niklasson, Eds., 2000, pp. 321-326.

B. Scholkopf, C.J.C. Burges, and V.N. Vapnik, “Extracting
support data for a given task,” in Proceedings, First Inter-
national Conference on Knowledge Discovery & Data Mining,

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

201

U. M. Fayyad and R. Uthurusamy, Eds. AAAI Press, Menlo
Park, CA, 1995.

J. Kwok, “Integrating the evidence framework and the sup-
port vector machine,” in Proc. ESANN’99, M. Verleysen, Ed.,
Brussels, 1999, pp. 177-182.

B. Scholkopf, J. Shawe-Taylor, and A.J. Smola R.C.
Williamson, “Kernel dependent support vector error bounds,”
in Proceedings of ICANN’99, D. Willshaw and A. Murray, Eds.
1999, vol. 1, pp. 103-108, IEE Press.

K. Tsuda, “Optimal hyperplane classifier based on entropy
number bound,” in Proceedings of ICANN’99, D. Willshaw
and A. Murray, Eds. 1999, vol. 1, pp. 419-424, IEE Press.
J.K. Martin and D.S. Hirschberg, “Small sample statisics for
classification error rates I: Error rate measurements,” Tech.
Rep. 96-21, Department of Information and Computer Science,
UC Irvine, 1996.

B. Efron and R.J. Tibshirani, An Introduction to the Bootstrap,
Chapman and Hall, New York, 1994.

B. Efron and R.J. Tibshirani, “Improvements on cross-
validation: the .632+4 bootstrap method,” J. Amer. Statist. As-
soc, vol. 92, pp. 548-560, 1997.

V.N. Vapnik and O. Chapelle, “Bounds on error expectation
for support vector machines,” Neural Computation, vol. 12, no.
9, Sept. 2000.

G. Rétsch, “Ensemble learning methods for classification,”
M.S. thesis, Dep. of Computer Science, University of Potsdam,
Apr. 1998, In German.

J. Weston, “LOO-Support Vector Machines,” in Proceedings
of IJCNN’99, A.J. Smola, P.L. Bartlett, B. Scholkopf, and
D. Schuurmans, Eds., 1999.

J. Weston and R. Herbrich, “Adaptive margin support vec-
tor machines,” in Advances in Large Margin Classifiers, A.J.
Smola, P.L. Bartlett, B. Scholkopf, and D. Schuurmans, Eds.,
Cambridge, MA, 2000, pp. 281-296, MIT Press.

B. Schélkopf, P.Y. Simard, A.J. Smola, and V.N. Vapnik,
“Prior knowledge in support vector kernels,” in Adwvances
in Neural Information Processing Systems 10, M. Jordan,
M. Kearns, and S. Solla, Eds., Cambridge, MA, 1998, pp. 640—
646, MIT Press.

Y.A. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E.
Howard, W. Hubbard, and L.J. Jackel, “Backpropagation ap-
plied to handwritten zip code recognition,” Neural Computa-
tion, vol. 1, pp. 541 — 551, 1989.

L. Bottou, C. Cortes, J.S. Denker, H. Drucker, I. Guyon, L.D.
Jackel, Y.A. LeCun, U.A. Miiller, E. Sackinger, P.Y. Simard,
and V.N. Vapnik, “Comparison of classifier methods: a case
study in handwritten digit recognition,” in Proceedings of
the 12th International Conference on Pattern Recognition and
Neural Networks, Jerusalem. 1994, pp. 77 — 87, IEEE Com-
puter Society Press.

Y.A. LeCun, L.D. Jackel, L. Bottou, A. Brunot, C. Cortes,
J.S. Denker, H. Drucker, I. Guyon, U.A. Miiller, E. Sackinger,
P.Y. Simard, and V.N. Vapnik, “Comparison of learning al-
gorithms for handwritten digit recognition,” in Proceedings
ICANN’95 — International Conference on Artificial Neural
Networks, F. Fogelman-Soulié and P. Gallinari, Eds., Nanterre,
France, 1995, vol. II, pp. 53 — 60, EC2.

P.Y. Simard, Y.A. LeCun, and J.S. Denker, “Efficient pattern
recognition using a new transformation distance,” in Advances
in Neural Information Processing Systems 5, S. J. Hanson,
J. D. Cowan, and C. L. Giles, Eds., San Mateo, CA, 1993,
pp- 50-58, Morgan Kaufmann.

P.Y. Simard, Y.A. LeCun, J.S. Denker, and B. Victorri, “Trans-
formation invariance in pattern recognition — tangent distance
and tangent propagation,” in Neural Networks: Tricks of the
Trade, G. Orr and K.-R. Miiller, Eds. 1998, vol. 1524, pp. 239-
274, Springer LNCS.

H. Drucker, R. Schapire, and P.Y. Simard, “Boosting perfor-
mance in neural networks,” International Journal of Pattern
Recognition and Artificial Intelligence, vol. 7, pp. 705 — 719,
1993.

W.R. Pearson, T. Wood, Z. Zhang, and W. Miller, “Compar-
ison of DNA Sequences with Protein Sequences,” Genomics,
vol. 46, no. 1, pp. 24-36, Nov. 1997.

C. Iseli, C.V. Jongeneel, and P. Bucher, “ESTScan: a pro-
gram for detecting, evaluating, and reconstructing potential
coding regions in EST sequences,” in ISMB’99, T. Lengauer,
R. Schneider, P. Bork, D. Brutlag, J. Glasgow, H.-W. Mewes,

202

and R. Zimmer, Eds., Menlo Park, California 94025, Aug. 1999,
pp- 138-148, AAAI Press.

A.G. Pedersen and H. Nielsen, “Neural Network Prediction
of Translation Initiation Sites in Eukaryotes: Perspectives for
EST and Genome analysis,” in ISMB’97, 1997, vol. 5, pp.
226-233.

S.L. Salzberg, “A method for identifying splice sites and trans-
lational start sites in eukaryotic mRNA,” Computational Ap-
plied Bioscience, vol. 13, no. 4, pp. 365-376, 1997.

University of California Irvine,
“http://www.ics.uci.edu/"mlearn,” UCI-Benchmark repos-
itory — a huge collection of artificial and real-world data
sets.

[140]

[141]

[142]

[143] University of Toronto, “http://www.cs.utoronto.ca/"delve/
data/datasets.html,” DELVE-Benchmark repository — a col-
lection of artificial and real-world data sets.

[144] “ftp://ftp.ncc.up.pt/pub/statlog,” Benchmark repository
used for the STATLOG competition.

“http://ida.first.gmd.de/ raetsch/data/benchmarks.htm,”
IDA Benchmark repository used in several Boosting, KFD and
SVM papers.

S. Dumais, “Using SVMs for text categorization,” IEEE Intel-
ligent Systems, vol. 13(4), 1998, In: M.A. Hearst, B. Scho6lkopf,
S. Dumais, E. Osuna, and J. Platt: Trends and Controversies
— Support Vector Machines.

E. Osuna, R. Freund, and F. Girosi, “Training support vector
machines: An application to face detection,” in Proceedings
CVPR’97, 1997.

B. Bradshaw, B. Scholkopf, and J. Platt, “Kernel methods for
extracting local image semantics,” unpublished manuscript,
private communication, 2000.

J. Weston, A. Gammerman, M. Stitson, V.N. Vapnik, V. Vovk,
and C. Watkins, “Support vector density estimation,” in
Advances in Kernel Methods — Support Vector Learning,
B. Schélkopf, C.J.C. Burges, and A.J. Smola, Eds., pp. 293 —
305. MIT Press, Cambridge, MA, 1999.

C.J.C. Burges, “Simplified support vector decision rules,” in
Proc. ICML’96, L. Saitta, Ed., San Mateo, CA, 1996, pp. 71—
77, Morgan Kaufmann.

S. Romdhani, S. Gong, and A. Psarrou, “A multiview nonlin-
ear active shape model using kernel PCA,” in Proceedings of
BMVC, Nottingham, UK, 1999, pp. 483-492.

R. Rosipal, M. Girolami, and L. Trejo, “Kernel PCA for feature
extraction and de—noising in non-linear regression,” submitted,
see http://www.researchindex.com, Jan. 2000.

[145)

[146]

[147]
[148]

[149]

[150]
[151]

[152]

Klaus-Robert Miiller received the Diplom
degree in mathematical physics 1989 and the
Ph.D. in theoretical computer science in 1992,
both from University of Karlsruhe, Germany.
From 1992 to 1994 he worked as a Postdoc-
toral fellow at GMD FIRST, in Berlin where
he started to built up the intelligent data anal-
ysis (IDA) group. From 1994 to 1995 he was
a European Community STP Research Fellow
/m; & at University of Tokyo in Prof. Amari’s Lab.

From 1995 on he is department head of the IDA
group at GMD FIRST in Berlin and since 1999 he holds a joint asso-
ciate Professor position of GMD and University of Potsdam. He has
been lecturing at Humboldt University, Technical University Berlin
and University of Potsdam. In 1999 he received the annual national
prize for pattern recognition (Olympus Prize) awarded by the Ger-
man pattern recognition sociesy DAGM. He serves in the editorial
board of Computational Statistics, IEEE Transactions on Biomedi-
cal Engineering and in program and organization committees of var-
ious international conferences. His research areas include statistical
physics and statistical learning theory for neural networks, support
vector machines and ensemble learning techniques. His present in-
terests are expanded to time-series analysis, blind source separation
techniques and to statistical denoising methods for the analysis of
biomedical data.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH, 2001

Sebastian Mika is a doctoral student at
GMD FIRST (IDA), Berlin. He received the
Diplom in computer science from the Techni-
cal University of Berlin in 1998. His scientific
interests are in the fields of Machine Learning
and Kernel methods.

Gunnar Rétsch is a doctoral student at
GMD FIRST (IDA), Berlin. He received the
Diplom in computer science from the Univer-
sity of Potsdam (Germany) in 1998, along with
the prize for the best student of the faculty of
Natural Sciences. His scientific interests are in
the fields of Boosting and Kernel methods.

Koji Tsuda is a researcher at Electrotechni-

cal Laboratory, Tsukuba, Japan. From 2000
to 2001 he was a visiting researcher at GMD
FIRST (IDA), Berlin. He received a Doctor of
Engineering in information science from Kyoto
University in 1998. His scientific interests are
in the fields of Machine learning and Kernel
methods.

Bernhard Schoélkopf received an M.Sc. in
mathematics and the Lionel Cooper Memo-
rial Prize from the University of London in
1992, followed in 1994 by the Diplom in
physics from the Eberhard-Karls-Universitat,
Tiibingen, with a thesis written at the
Max-Planck-Institute for biological cybernet-
ics. Three years later, he obtained a Ph.D.
in computer science from the Technical Uni-
versity Berlin. His thesis on Support Vector
Learning won the annual dissertation prize of
the German Association for Computer Science (GI) 1997. He has
worked at AT&T Bell Labs (with V. Vapnik), at GMD FIRST (IDA),
Berlin, at the Australian National University and Microsoft Research
Cambridge (UK); currently he is with Barnhill Technologies. He
has taught at the Humboldt University and the Technical University
Berlin. His scientific interests include machine learning and percep-
tion.

