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Abatract

The ability to make an appropriate "inductive leap" when generalizing
from a small set of training instances is possible only under a priori biases
for choosing an appropriate generalization out of the many possible,
Understanding the origins and justification of such biases is eritical to
further progress in the field of machine learning. The notion of an UNbiased
learner is defined, then the notion of bias, its usefulness, and some classes
of justifiable biases are considered.
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1 Introduction

Learning involves the ability to generalize from past experience in
order to deal with new situations that are "related to" this experience. The
inductive leap needed to deal with new situations seems to be possible only
under certain biases for choosing one generalization of the situation over
another. .This paper ' defines precisely the notion of bias in generalization
problems, then shows that biases are necessary for the inductive leap.
Classes of justifiable biases are considered, and the relationship between
bias and domain-independence is considered.

We restrict the scope of this discussion to the problem of
generalizing from training instances, defined as follows:

The Generalization Problem
iven:
1. Language of instances.
2. Language of generalizations.
3, Matching predicate for matching generalizations
to instances.
4, Sets of positive and negative training instances,
Determine:

Generalization{s) consistent with the training instances.

As a concrete example of the above generalization problem, consider
the task addressed by Winston's program for learning classes of block
structures [Winston, 1975]. Here, the language of instances is the
representation used to describe example block structures. The language of
generalizations is the language in which learned concepts (e.g., arch, tower)
are described. The matching predicate specifies whether a given
generalization applies to a given instance (e.g., whether the inferred
description of an arch is satisfied by a specific block structure),

This paper addresses a deep diffjculty with the generalization problem
as defined above: If consistency with the training instances is taken as the
sole determiner of appropriate generalizations, then a program can never make
the inductive leap necessary to classify instances beyond those it has
observed. Only if the program has other socurces of information, or biases for
choosing one generalization over the other, can it non-arbitrarily classify
instances beyond those in the training set.

In this paper, we use the term bilas to refer to any basis for choosing
one generalization over another, other thap strict consistency with the
observed training jinstances,
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2 What is an UNbiased Generaliger?

If generalization is the problem of guessing the class of instances to
wnich the positive training instances belong, then an unbiased generalizer is
cne that makes no a priori assumptions about which classes of instances are
most 1likely, but bases all its choices on the observed data. Two common
sources of bias in existing learning systems are (1) the generalization
language is not capable of expressing all possible classes of inatances, and
(2) the generalization procedure that searches through the space of
expressible generalizations is itself biased.

2.1 Ap Unbiased Geperalization Language

In considering bias in the generalization language, it is useful to
view each generalization as denoting the set of instances that it matches., 1In
figure 1, for example, g! and g2 are two generalizations expressible in some
generallzation language, and each matches a different subset of the instances.

Relative to a given language of instances, an unbiased generalization
language is then one which allows describing every possible subset of these
instances. In short, an unbiased generalization language corresponds to the
power set of the given instance language.

The impact of wusing a biased generalization language i3 c¢lear: each
subset of instances for which there is nc expressible generalization is a
coneept that could be presented to the program, but which the program will be
unable to describe and therefore unable —to learn. If it is possible to know
ahead of time that certain subsets of instances are irrelevant, then it may be
useful to leave these ocut of the generalization language, in order to simplify
the learning problem. For example, generalization languages that allow only
conjunctions of constraints on features of the instance (e.g.,
[(Winston, 1975], [Buchanan, 1978]) introduce a strong bias of this kind, which
reduces considerably the complexity of the generalization problem.

The strength of the bias introduced by generalization languages
restricted to conjunctive constraints on features, is illustrated by a simple
example. Consider an instance language of binary feature vectors containing 5
features, and a generalization language that allows constraining each feature
value to be 1, 0, or "don't,care". Some simple arithmetic shows that only
about one out of every 107 subsets of instances is expressible in the
generalizaiion language! This proportion worsens quickly as the number of
features and the number of allowed values per feature increases.

2.2 Apn Upbiased Geperalization Procedure

The generalization procedure searches for expressible generalizations
that denote sets of instances, each of which inecludes all of the positive but
none of the negative training instances. Of course, there may be many such
generalizations, In figure 1, for instance, if the observed positive
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instances are contained in the intersection of the instance sets of &1 and g2,
and the observed negative instances are outside both sets, then poth gt and g2
are consistent with the observed instances.

An unbiased generalization procedure is one which shows no preference
for one expressible generalization over another, except on the basis of
consistency with the training instances.

Following [Mitchell, 19771, we define the version 3pace relative to a
particular generalization language, and a given set of training instances, as
the set of all expressible generalizations consistent with the training
instances. Then an unbiased generalization procedure must cocmpute the veraion
space relative to the observed training instances, and the provided
generalization language. Such a generalization procedure 18 described in
{Mitchell, 1978], and has been implemented as part of the Meta-DENDRAL program
{ Buchanan, 1978].

in order to consider the consequences of an unbiased generalization
procedure, it is necessary to consider how a computed version space can be
used to classify subsequent instances as either positive or negative. An
unbiased classification method classifies the new instance a3 a positive
ipnstance if and only if every generalization in the version space matches it.
The instance 1is classified as a negative instance if and only 1if po
generalization in the version space matches it. If some, but not all, of the
generalizations in the version space match the instance, then the insatance
cannot be classified with certainty. The program could, however, give an
estimated classification based upon the proportion of generalizations within

the version space, that match and do not match the instance.

3 The Futility of Removing Blases

For a generalization system to be unbiased - for it to consider
equally all pdssible subsets of instances as the possible jdentity of the
class being learned - it must employ an unbiased generalization language, and
compute the version space relative to that language and the presented training
instances.

Although removing all biages from a generalization system may 3eem to
be a desirable goal, in fact the result is nearly useless. An unbiased
learning system's ability to classify new instances is no better than 1if it
simply stored all the training instances and performed a 1ookup when asked to
classify a subsequent instance.

To see that this is the case, consider the procedure described above
for using the computed version space to c¢laasify new instances. For an
unbiased generalization language, Gthe nev instance will match every
generalization consistent with the observed instances if and only if it is
jdentical to one of the observed positive instances. similarly, to be
classified as a negative instance, the new instance must be identical to one
of the observed negalive instances., Furthermore, any instance that has not
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yet appeared as a training instance will match exactly half the
gereralizations in the version space. 'As a result, even the scheme described
above for estimating the classification will fail to produce useful results,

In retrospect, it is net surprising that an unbiased generalization
system cannot make classifications of instances other than the training
instances. An unbiased system 1is one whose inferences logically follow from
the training instances, whereas classifications of new instances do not
logically follow from the classifications of the training instances,

b Useful Classes of Biases

There is an important conclusion to the above discussion: If totally
unbiased generalization systems are incapable of making the inductive 1leap to
characterize new instances, then the power of a generalization system follows
directly from its biases - from decisions based on eriteria other than
consistency with the training instances. Therefcore, progress toward
understanding learning mechanisms depends upon understanding the sources of,
and justification for, various biases. This section ¢lassifies certain kinds
of biases thal have been used by learning programs.

Factual knowledge of the domain. In learning generalizations for a
particular purpose, it may be .pessible te limit the generalizations
considered, by appealing to knowledge about the task domain. The Meta-DENDRAL
program [Buchanan, 1978] forms general rules that characterize moleculzar bonds
that fragmeni in a mass spectirometer, Here, general knowledge of the domain,
such as "double bends rarely break", can be used to constrain the search for
appropriate gerneraiizations. Similarly, in a program that learns the rules of
baseball [Scloway, 1978], general knowledge about competitive games constrains
the number of generalizations considered. This kind of prior knowledge can
provide a strong, justifiable constraint on the generalizations considered.
In such a case, the goal of the generalization system becomes "determine
generaljizations consistent with the training instances, apnd with other known
facts abouf the task domaip".

Intended use of the learned generalizations. Knowledge of the intended

use of learned generalizations can provide a strong bias for learning. As a
simple example, if the intended use of the learned generalizations involves a
much higher c¢ost for incorrect positive than for incorrect negative
classifications, then the learning program should prefer more specific
generalizations over more general alternatives that are consistent with the
same training data.

Knowledge about the socurce of training data. Knowledge about the
source of the training instances can also provide a useful constraint on
learning. For instance, in learning from a human teacher, we seem to take
advantage of many assumptions about the existence of an organized curriculum
to constrain ocur search for appropriate generalizations, In an organized
curriculum, our attention is carefully focussed on particular features of
instances, in a way that removes ambiguity about which of the possible
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generalizations is most appropriate. The use of this kind of knowledge to
constrain generalization ijs currently under -study inp both CAL and machine
learning research. For example, [Smith, D., 1980] and (smith, R., 19801,
address issues auych as shared assumptions petween the teacher and learner,
what constitutes 2 good curriculum, and how the atudent's generalization
strategy can take advantage of cues in the curriculum.

Biag,Lgﬂagg_gimpligitx_agg generallity. One bias that humans seem O
use is a bias toward simple, general explanations. Some learning programs
also incorporate this bias. For example, the RULEGEN portion of the Meta-
DENDRAL program asarches through the space of possible generalizations.
beginning with the most general possible, and considering more specific
generalizations only when the training data indicates that wmore general
explanations are unacceptable. This bias toward aimplicity and generallty has
been discussed in the philosophical literature, and its Justification has been
debated there.

Analogy with greviouslx learned genegalizgtions. 1f a system is
learning & collection of related concepts, Or generalizations, then a possible
constraint on generalizing' any one of them is Lo conaider successful s
generalizations of others. For example, consider the task of learning 1
structural descriptions of blocks-world objects, such as "arch", ntower™, etc.
After learning several concepts, the jearned descriptions may reveal that \
certain features are more significant for describing this class of concepts
than are others. For example, if the generalization language contained
features such as nshape", neolor®, and nage" of each block in the structure,
the system may notice that ngge" 18 rarely a relevant feature for
characterizing structural classes, and may develop & pias in faver of other
features. The justification for this jearned bias must ©bDe based upon some i
presuned gimilarity in the intended usae of the concepts being learned.

5  gonclusions

Unbiased generalization programs that use consistency with the
¢raining instances as their only 3ource of information, cannot outperform
programs that use rote learning. additional jipformation ©OF piases are
therafore eritical to the ability to classify instances that are notb identical |
to the training instances. This fact has significant implications for :
research on machine learning.

1f biases and initial knowledge are at the peart of the ability to
generalize beyond observed data, then efforts to study machine learning must
focus on the gombined use of prior knowledge, biases, and observation in
guiding the 1earning process. 1t would be wise to make the piases and their
use in controlling learning just as explicit as past research has made the
observations and their use.
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Figure 1. Relationships among Instances and Generalizations

(This figure was missing from the original publication and added in 1990.)
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