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Abstract. Systems for inducing concept descriptions from examples are valuable
tools for assisting in the task of knowledge acquisition for expert systems. This
paper presents a description and empirical evaluation of a new induction system,
CN2, designed for the efficient induction of simple, comprehensible production rules
in domains where problems of poor description language and/or noise may be present.
Implementations of the CN2, ID3, and AQ algorithms are compared on three medical
classification tasks.

1. Introduction
In the task of constructing expert systems, methods for inducing concept de-

scriptions from examples have proved useful in easing the bottleneck of knowl-
edge acquisition (Mowforth, 1986). Two families of systems, based on the ID3
(Quinlan, 1983) and AQ (Michalski, 1969) algorithms, have been especially
successful. These basic algorithms assume no noise in the domain, searching
for a concept description that classifies training data perfectly. However, ap-
plication to real-world domains requires methods for handling noisy data. In
particular, one needs mechanisms that do not overfit the induced concept de-
scription to the data, and this requires relaxing the constraint that the induced
description must classify the training data perfectly.

Fortunately, the ID3 algorithm lends itself to such modification by the na-
ture of its general-to-specific search. Tree-pruning techniques (e.g., Quinlan,
1987a; Niblett, 1987), used for example in C4 (Quinlan, Compton, Horn, &
Lazarus, 1987) and ASSISTANT (Kononenko, Bratko, & Roskar, 1984), have
proved effective against overfitting. However, the AQ algorithm's dependence
on specific training examples during search makes it less easy to modify. Ex-
isting implementations, such as AQll (Michalski & Larson, 1983) and AQ15
(Michalski, Mozetic, Hong, & Lavrac, 1986), leave the basic AQ algorithm
intact and handle noise with pre-processing and post-processing techniques.
Our objective in designing CN2 was to modify the AQ algorithm itself in
ways that removed this dependence on specific examples and increased the
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space of rules searched. This lets one apply statistical techniques, analogous
to those used for tree pruning, in the generation of if-then rules, leading to a
simpler induction algorithm.

One can identify several requirements that learning systems should meet if
they are to prove useful in a variety of real-world situations:

• Accurate classification. The induced rules should be able to classify new
examples accurately, even in the presence of noise.

• Simple rules. For the sake of comprehensibility, the induced rules should
be as short as possible. However, when noise is present, overfitting can
lead to long rules. Thus, to induce short rules, one must usually relax
the requirement that the induced rules be consistent with all the training
data. The choice of how much to relax this requirement involves a trade-off
between accuracy and simplicity (Iba, Wogulis, & Langley, 1988).

• Efficient rule generation. If one expects to use large example sets, it is
important that the algorithm scales up to complex situations. In practice,
the time taken for rule generation should be linear in the size of the
example set.

With these requirements in mind, this paper presents a description and empir-
ical evaluation of CN2, a new induction algorithm. This system combines the
efficiency and ability to cope with noisy data of ID3 with the if-then rule form
and flexible search strategy of the AQ family. The representation for rules
output by CN2 is an ordered set of if-then rules, also known as a decision
list (Rivest, 1987). CN2 uses a heuristic function to terminate search during
rule construction, based on an estimate of the noise present in the data. This
results in rules that may not classify all the training examples correctly, but
that perform well on new data.

In the following section we describe CN2 and three other systems used for
our comparative study. In Section 3 we consider the time complexity of the
various algorithms and in Section 4 we compare their performance on three
medical diagnosis tasks. We also compare the performance of ASSISTANT and
CN2 on two synthetic tasks. In Section 5 we discuss the significance of our
results, and we follow this with some suggestions for future work in Section 6.

2. CN2 and related algorithms
CN2 incorporates ideas from both Michalski's (1969) AQ and Quinlan's

(1983) ID3 algorithms. Thus we begin by describing Kononenko et al.'s (1984)
ASSISTANT, a variant of ID3, and AQR, the authors' reconstruction of Michal-
ski's method. After this, we present CN2 and discuss its relationship to these
systems. We also describe a simple Bayesian classifier, which provides a refer-
ence for the performance of the other algorithms. We characterize each system
along three dimensions:

• the representation language for the induced knowledge;
• the performance engine for executing the rules; and
• the learning algorithm and its associated search heuristics.
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In all of our experiments, the example description language consisted of at-
tributes, attribute values, and user-specified classes. This language was the
same for each algorithm.

2.1 ASSISTANT

The ASSISTANT algorithm (Kononenko et al., 1984) is a descendant of Quin-
lan's ID3 (1983), and incorporates a tree-pruning mechanism for handling
noisy data.

2.1.1 Concept description and interpretation in ASSISTANT
ASSISTANT represents acquired knowledge in the form of decision trees. An

internal node of a tree specifies a test of an attribute, with each outgoing
branch corresponding to a possible result of this test. Leaf nodes represent the
classification to be assigned to an example.

To classify a new example, a path from the root of the decision tree to a
leaf node is traced. At each internal node reached, one follows the branch
corresponding to the value of the attribute tested at that node. The class at
the leaf node represents the class prediction for that example.

2.1.2 The ASSISTANT learning algorithm
ASSISTANT induces a decision tree by repeatedly specializing leaf nodes of an

initially single-node tree. The specialization operation involves replacing a leaf
node with an attribute test, and adding new leaves to that node corresponding
to the possible results of that test. Heuristics determine the attribute on which
to test and when to stop specialization. Table 1 summarizes this algorithm.

2.1.3 Heuristic functions in ASSISTANT
ASSISTANT uses an entropy measure to guide the growth of the decision

tree, as described by Quinlan (1983). This corresponds to the function IDM
in Table 1. In addition, the algorithm can apply a tree-cutoff method based
on an estimate of maximal classification precision. This technique estimates
whether additional branching would reduce classification accuracy and, if so,
terminates search (there are no user-controlled parameters in this calculation).
This cutoff criterion corresponds to the function TE in Table 1. If ASSISTANT
is to generate an 'unpruned' tree, the termination criterion TE(E) is satisfied
if all the examples E have the same class value,

2.2 AQR

AQR is an induction system that uses the basic AQ algorithm (Michalski,
1969) to generate a set of classification rules. Many systems use this algorithm
in a more sophisticated manner than AQR to improve predictive accuracy and
rule simplicity; e.g., AQ11 (Michalski & Larson, 1983) uses a more complex
method of rule interpretation that involves degrees of confirmation. AQR is a
reconstruction of a straightforward AQ-based system.



264 P. CLARK AND T. NIBLETT

Table 1. The core of the ASSISTANT algorithm.

Let E be a set of classified examples.
Let A be a set of attributes for describing examples.
Let TE(E) be a termination criterion.
Let IDM(Ai,E) be an evaluation function, where Ai 6 A.

Procedure Assistant (E)
If E satisfies the termination criterion TE(E) ,
Then return a leaf node for TREE, labelled with

the most common class of examples in E.
Else let Abest € A be the attribute with the

largest value of the function IDM(Abest,E).
For each value Vj of attribute Abest,

Generate subtrees using ASSISTANT(Ej),
where Ej are those examples in E with
value Vj for attribute Abest.

Return a node labelled as a test on attribute Abest
with these subtrees attached.

2.2.1 Concept description and interpretation in AQR
AQR induces a set of decision rules, one for each class. Each rule is of the

form 'if <cover> then predict <class>', where <cover> is a Boolean combi-
nation of attribute tests as we now describe. The basic test on an attribute
is called a selector. For instance, (Cloudy = yes), (Weather = wet V stormy),
and (Temperature > 60} are all selectors. AQR allows tests in the set {=
,<,>,T^}. A conjunction of selectors is called a complex, and a disjunct of
complexes is called a cover. We say that an expression (a selector, complex,
or cover) covers an example if the expression is true of the example. Thus,
the empty complex (a conjunct of zero attribute tests) covers all examples and
the empty cover (a disjunct of zero complexes) covers no examples. A cover
is stored along with an associated class value, representing the most common
class of training examples that it covers.

In AQR, a new example is classified by finding which of the induced rules
have their conditions satisfied by the example. If the example satisfies only one
rule, then one assigns the class predicted by that rule to the example. If the
example satisfies more than one rule, then one predicts the most common class
of training examples that were covered by those rules. If the example is not
covered by any rule, then it is assigned by default to the class that occurred
most frequently in the training examples.

2.2.2 The AQR learning algorithm
The AQ rule-generation algorithm has been described elsewhere (Michalski

& Larson, 1983; Michalski & Chilausky, 1980; O'Rorke, 1982), and the AQR
system is an instance of this general algorithm. AQR generates a decision rule
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Table 2. The AQR algorithm for generating a class cover.

Let POS be a set of positive examples of class C.
Let NEG be a set of negative examples of class C.

Procedure AQR(POS, NEG)
Let COVER be the empty cover.
While COVER does not cover all examples in POS,

Select a SEED (a positive example not covered by COVER) .
Let STAR be STAR (SEED, NEG) (a set of complexes that

cover SEED but that cover no examples in NEG).
Let BEST be the best complex in STAR

according to user-defined criteria.
Add BEST as an extra disjunct to COVER.

Return COVER.

Procedure STAR(SEED, NEG)
Let STAR be the set containing the empty complex.
While any complex in STAR covers some negative examples in NEG,

Select a negative example Eneg covered by a complex in STAR.
Specialize complexes in STAR to exclude Eneg by:

Let EXTENSION be all selectors that cover SEED but not Eneg.
Let STAR be the set {x Ay|x € STAR,y 6 EXTENSION}.
Remove all complexes in STAR subsumed by other complexes.

Repeat until size of STAR < max star (a user-defined maximum):
Remove the Worst complex from STAR.

Return STAR.

for each class in turn. Having chosen a class on which to focus, it forms a
disjunct of complexes (the cover) to serve as the condition of the rule for that
class. This process occurs in stages; each stage generates a single complex,
and then removes the examples it covers from the training set. This step is
repeated until enough complexes have been found to cover all the examples of
the chosen class. The entire process is repeated for each class in turn. Table 2
summarizes the AQR algorithm.

2.2.3 Heuristic functions in AQR
The particular heuristic functions used by the AQ algorithm are implemen-

tation dependent. The heuristic used by AQR to choose the best complex is
"maximize the number of positive examples covered." The heuristic used to
trim the partial star during generation of a complex is "maximize the sum of
positive examples covered and negative examples excluded." In the case of
a tie for either heuristic, the system prefers complexes with fewer selectors.
Seeds are chosen at random and negative examples nearest to the seed are
picked first, where distance is the number of attributes with different values in
the seed and negative example. In the case of contradictions (i.e., if the seed
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and negative example have identical attribute values) the negative example is
ignored and a different one is chosen, since the complex cannot be specialized
to exclude it but still include the seed.

2.3 The CN2 algorithm
Now that we have reviewed ASSISTANT and AQR, we can turn to CN2, a

new algorithm that combines aspects of both methods. We begin by describing
how the general approach arises naturally from consideration of the decision-
tree and AQ algorithms and then consider its details.

2.3.1. Relation to ID3 and AQ
ID3 can be easily adapted to handle noisy data by virtue of its top-down

approach to tree generation. During induction, all possible attribute tests are
considered when 'growing' a leaf node in the tree, and entropy is used to select
the best one to place at that node. Overfitting of decision trees can thus be
avoided by halting tree growth when no more significant information can be
gained. We wish to apply a similar method to the induction of if-then rules.

The AQ algorithm, when generating a complex, also performs a general-
to-specific search for the best complex. However, the method only considers
specializations that exclude some particular covered negative example from
the complex while ensuring some particular 'seed' positive example remains
covered, iterating until all negative examples are excluded. As a result, AQ
searches only the space of complexes that are completely consistent with the
training data. The basic algorithm employs a beam search, which can be
viewed as several hill-climbing searches in parallel.

For the CN2 algorithm, we have retained the beam search method of the
AQ algorithm but removed its dependence on specific examples during search
and extended its search space to include rules that do not perform perfectly
on the training data. This is achieved by broadening the specialization process
to examine all specializations of a complex, in much the same way that ID3
considers all attribute tests when growing a node in the tree. Indeed, with a
beam width of one the CN2 algorithm behaves equivalently to ID3 growing a
single tree branch. This top-down search for complexes lets one apply a cutoff
method similar to decision-tree pruning to halt specialization when no further
specializations are statistically significant.

Finally, we note that CN2 produces an ordered list of if-then rules, rather
than an unordered set like that generated by AQ-based systems. Both repre-
sentations have their respective advantages and disadvantages for comprehen-
sibility. Order-independent rules require some additional mechanism to resolve
any rule conflicts that may occur, thus detracting from a strict logical inter-
pretation of the rules. Ordered rules also sacrifice in comprehensibility, in that
the interpretation of a single rule is dependent on the other rules that precede
it in the list.1

10ne can make CN2 produce unordered if-then rules by appropriately changing the eval-
uation function; e.g., one can use the same evaluation function as AQR, then generate a rule
set for each class in turn.
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2.3.2 Concept description and interpretation in CN2
Rules induced by CN2 each have the form 'if <complex> then predict

<class>', where <complex> has the same definition as for AQR, namely a
conjunction of attribute tests. This ordered rule representation is a version of
what Rivest (1987) has termed decision lists. The last rule in CN2's list is a
'default rule', which simply predicts the most commonly occurring class in the
training data for all new examples.

To use the induced rules to classify new examples, CN2 tries each rule in
order until one is found whose conditions are satisfied by the example being
classified. The class prediction of this rule is then assigned as the class of the
example. Thus, the ordering of the rules is important. If no induced rules
are satisfied, the final default rule assigns the most common class to the new
example.

2.3.3 The CN2 learning algorithm
Table 3 presents a summary of the CN2 algorithm. This works in an iterative

fashion, each iteration searching for a complex that covers a large number of
examples of a single class C and few of other classes. The complex must be
both predictive and reliable, as determined by CN2's evaluation functions.
Having found a good complex, the algorithm removes those examples it covers
from the training set and adds the rule 'if <complex> then predict C' to the
end of the rule list. This process iterates until no more satisfactory complexes
can be found.

The system searches for complexes by carrying out a pruned general-to-
specific search. At each stage in the search, CN2 retains a size-limited set or
star S of 'best complexes found so far'. The system examines only special-
izations of this set, carrying out a beam search of the space of complexes. A
complex is specialized by either adding a new conjunctive term or removing a
disjunctive element in one of its selectors. Each complex can be specialized in
several ways, and CN2 generates and evaluates all such specializations. The
star is trimmed after completion of this step by removing its lowest ranking
elements as measured by an evaluation function that we will describe shortly.

Our implementation of the specialization step is to repeatedly intersect2
the set of all possible selectors with the current star, eliminating all the null
and unchanged elements in the resulting set of complexes. (A null complex
is one that contains a pair of incompatible selectors, e.g., big = y A big = n.)
CN2 deals with continuous attributes in a manner similar to ASSISTANT - by
dividing the range of values of each attribute into discrete subranges. Tests on
such attributes examine whether a value is greater or less (or equal) than the
values at subrange boundaries. The complete range of values and size of each
subrange is provided by the user.

2The intersection of set A with set B is the set {x A y|x e A, y 6 B}. For example, {a A
b, aAc, bf\d] intersected with {a,b, c, d} is { a f e , aAfcAc, aA&Ad, aAc, aAcAd, bAd, &AcAd}. If
we now remove unchanged elements in this set, we obtain {aAiAc, aAbAd, aAcAd, 6AcAd}.
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Table 3. The CN2 induction algorithm.

Let E be a set of classified examples.
Let SELECTORS be the set of all possible selectors.

Procedure CN2(E)
Let RULE-LIST be the empty list.
Repeat until BEST.CPX is nil or E is empty:

Let BEST.CPX be Find-Best.Complex(E).
If BEST.CPX is not nil,
Then let E' be the examples covered by BEST.CPX.

Remove from E the examples E' covered by BEST.CPX.
Let C be the most common class of examples in E'.
Add the rule 'If BEST.CPX then the class is C'

to the end of RULE-LIST.
Return RULE-LIST.

Procedure Find-Best.Complex(E)
Let STAR be the set containing the empty complex.
Let BEST.CPX be nil.
While STAR is not empty,

Specialize all complexes in STAR as follows:
Let NEWSTAR be the set {x A y|x 6 STAR, y € SELECTORS}.
Remove all complexes in NEWSTAR that are either in STAR (i.e.,

the unspecialized ones) or null (e.g., big = y A big = n).
For every complex Ci in NEWSTAR:

If Ci is statistically significant and better than
BEST.CPX by user-defined criteria when tested on E,

Then replace the current value of BEST.CPX by Ci.
Repeat until size of NEWSTAR < user-defined maximum:

Remove the worst complex from NEWSTAR.
Let STAR be NEWSTAR.

Return BEST.CPX.

For dealing with unknown attribute values, CN2 uses the simple method of
replacing unknown values with the most commonly occurring value for that
attribute in the training data. In the case of numeric attributes, it uses the
midvalue of the most commonly occurring subrange.

2.3.4 Heuristics in CN2
The CN2 algorithm must make two heuristic decisions during the learning

process, and it employs two evaluation functions to aid in these decisions. First
it must assess the quality of complexes, determining if a new complex should
replace the 'best complex' found so far and also which complexes in the star
5 to discard if the maximum size is exceeded. Computing this involves first
finding the set E' of examples which a complex covers (i.e., which satisfy all of
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its selectors) and the probability distribution P = (p1,.. .pn) of examples in
E' among classes (where n is the number of classes represented in the training
data). CN2 then uses the information-theoretic entropy measure

to evaluate complex quality (the lower the entropy the better the complex).
This function thus prefers complexes covering a large number of examples of a
single class and few examples of other classes, and hence such complexes score
well on the training data when used to predict the majority class covered.

The entropy function was used in preference to a simple 'percentage cor-
rect' measure, such as taking max(P), for two reasons. First, entropy will
distinguish probability distributions such as P = (0.7,0.1,0.1,0.1) and P =
(0.7,0.3,0,0) in favor of the latter, whereas max(P) will not. This is desirable,
since there exist more ways of specializing the latter to a complex identifying
only one class. If the examples of the majority class are excluded by special-
ization, the distributions become P = (0,0.33,0.33,0.33) and P = (0,1,0,0),
respectively. Second, the entropy measure tends to direct the search in the
direction of more significant rules; empirically, rules of low entropy also tend
to have high significance.

The second evaluation function tests whether a complex is significant. By
this we mean a complex that locates a regularity unlikely to have occurred by
chance, and thus reflects a genuine correlation between attribute values and
classes. To assess significance, CN2 compares the observed distribution among
classes of examples satisfying the complex with the expected distribution that
would result if the complex selected examples randomly. Some differences in
these distributions will result from random variation. The issue is whether
the observed differences are too great to be accounted for purely by chance.
If so, CN2 assumes that the complex reflects a genuine correlation between
attributes and classes.

To test significance, the system uses the likelihood ratio statistic (Kalbfleish,
1979). This is given by

where the distribution F — (/1,..., fn) is the observed frequency distribution
of examples among classes satisfying a given complex and E = (e1 , . . . ,en) is
the expected frequency distribution of the same number of examples under
the assumption that the complex selects examples randomly. This is taken
as the N = ^3 ft covered examples distributed among classes with the same
probability as that of examples in the entire training set. This statistic provides
an information-theoretic measure of the (noncommutative) distance between
the two distributions.3 Under suitable assumptions, one can show that this
statistic is distributed approximately as x2 with n — 1 degrees of freedom.

3We assume that F is continuous with respect to E; i.e., that the fi are zero when the
ei are zero.
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This provides a measure of indicates significance - the lower the score, the
more likely that the apparent regularity is due to chance.

Thus these two functions - entropy and significance — serve to determine
whether complexes found during search are both 'good' (have high accuracy
when predicting the majority class covered) and 'reliable' (the high accuracy on
training data is not just due to chance). CN2 uses these functions to repeatedly
search for the 'best' complex that also passes some minimum threshold of
reliability until no more reliable complexes can be found.

2.4 A Bayesian classifier
To establish a reference point, we also implemented a simple Bayesian clas-

sifier and compared its behavior to that of the other algorithms.

2.4.1 Bayesian concept description and interpretation
This classifier represents its 'decision rule' as a matrix of probabilities P(Vj \Ck)

specifying the probability of occurrence of each attribute value given each class.
To classify a new example, one applies Bayes' theorem4

where the summation is over the n classes and p(Ci\ /\Vj) denotes the proba-
bility that the example is of class (Ci given Vj. One calculates this probability
for every class, and then selects the class with the highest probability. The
term p(Ck) is estimated from the distribution of the training examples among
classes. If one assumes independence of attributes, p(f\Vj\Ck) can be calcu-
lated using

and the values p(vj\Ck) from the probability matrix. Note that, unlike the
other algorithms we have discussed, our implementation of the Bayesian clas-
sifier must examine the values of all attributes when making a prediction.

We should note that there also exist more sophisticated applications of the
Bayes' rule in which the attribute tests are ordered (Wald, 1947). Such a
sequential technique adds the contribution of each test to a total; when this
score exceeds a threshold, the algorithm exits with a class prediction. Such an
interpretation may be more comprehensible to a user than the approach we
have used, as well as limiting the tests required for classification.

2.4.2 The Bayesian learning algorithm
The Bayesian learning method constructs the matrix P(Vj \ Ck) from the train-

ing examples by examining the frequency of values in each class. One can com-
pute this matrix either incrementally, incorporating one instance at a time, or
nonincrementally, using all data at the outset.

4The /\ symbol for conjunction, ^ Vj denoting a conjunct of attribute values all occurring
in an example.
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2.4.3 Bayesian heuristics
Sometimes a value of zero is calculated from the training data for some

elements of the p(vj\Ck) matrix. Like all elements of the matrix, this num-
ber is subject to error due to the finite training data available. However, as
classification of new examples involves multiplying elements together, a zero
element can have drastic effect, nullifying the effect of all other probabilities in
the multiplication. To avoid this, we assume that zero elements in the matrix
would, given more data, converge on a small, non-zero value and hence replace
the zeros with some appropriate estimate. In our implementation a value of
p(Ck] x (1/N) was used, where N is the number of training examples. The
factor 1/N represents the increasing certainty that this element must have an
almost-zero value with increasing size of training data.

2.5 The default rule

Finally, we examined a fifth 'algorithm' that simply assigns the most com-
monly occurring class to all new examples, with no reference to their attributes
at all. As we will see in Section 4, this simple procedure produced comparable
performance to that of the other algorithms in one of the domains, and thus
provided another useful reference point.

3. Time complexity of the algorithms
The ASSISTANT, AQR and CN2 algorithms all search a very large space of

concept descriptions, and all use heuristics to guide this search. Furthermore,
all three algorithms attempt to produce structures that are both consistent
with the training examples and as compact as possible. In the design of such
algorithms, there is a tradeoff between execution speed and the size of the
induced structures. In each case, the exhaustive search for a smallest set of
structures, although desirable, is computationally infeasible.

A major application of these algorithms is to extract useful information from
very large databases, perhaps with millions of examples. With this in mind, it
is worth examining the complexity of each algorithm. To be practical for very
large problems, their behavior should be linear, or at least near-linear, in the
number of examples and attributes.

Since the overall complexity of each algorithm is domain-dependent, we in-
stead provide upper bounds for the critical components of the algorithms. For
example, we do not consider the complexity of the cutoff procedure used by
ASSISTANT. In our treatment, we will use e to denote the size of the example
set, a to stand for the number of attributes, and s to represent the maximum
star size (for CN2 and AQR). We also assume that each attribute is binary
valued and that there are two classes.5

5One might also consider the complexity as a function of the number of distinct attribute
values and classes. We have not done this in our analysis.
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3.1 Time complexity of ASSISTANT
The critical component in ASSISTANT is the process of selecting a test at-

tribute on which to branch. Each such choice involves the following operations:
1. For each attribute, example counts are put in an array, indexed by class

and attribute. This takes time O(e-a);
2. The entropy function is calculated for each attribute, taking time O(a);
3. Once the best attribute is found, the examples are divided into two sets;6

this takes time O(e).
Therefore, the overall time for a single attribute choice is O(a.e). The time
taken to construct the complete tree depends very much on the structure of the
tree. It seems reasonable to use the first figure only for comparative purposes,
as argued above. Thus the amount of time taken by ASSISTANT for the basic
attribute selection operation is a linear function of the number of examples,
when the number of classes and attributes are held constant.

We should note that extensions to this algorithm that use real-valued at-
tributes such as ACLS (Paterson & Niblett, 1982), must sort the examples by
attribute value at the first stage. This increases the overall time bound to
O(a . eloge).

3.2 Time complexity of CN2

The basic operation in CN2 is the specialization of the complexes in the
current star. The number of single-selector complexes without disjuncts is 2a.
The number of intermediate complexes generated is at most a-s, and the time
taken to evaluate an example against a complex is bounded by O(a). Three
steps are required for this specialization operation:
1. Multiplying each complex in the star by the set of single selector rules;

this takes time O(a .s ) ;
2. Evaluation of each complex, taking time O(s.e.a);
3. Sorting the complexes by value and then trimming the star, which takes

time O(a.s log(a.s)) .
Therefore, the overall time for a single specialization step is bounded by
O(a.s(e + log (a . s ) ) ) . As with ASSISTANT, the time required is a linear function
of the number of examples. If we restrict the size of the star to one, the time
required has the same order as for ASSISTANT. In general, experience indicates
that the time constants involved are somewhat less for ASSISTANT and other
variants on ID3 than for CN2.

3.3 Time complexity of AQR
In AQR, the basic operation is the specialization of complexes in a star.

This operation is similar to that of CN2, except that one only generates spe-

6With appropriate data structures, it may be possible to do much of this work in the
first stage, but this does not affect the complexity class. Similarly, one can include any
termination test that is linear in the number of examples.
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cializations that cause a negative example to be uncovered by complexes in
AQR's star. We show the complexity of this operation is the same as that of
CN2. For each negative example, the following steps are performed:
1. A negative example is found by iterating through the negative set. We

assume that the number of negative examples is not less than some fixed
fraction of the entire example set. This takes time O(e.s);

2. The set of selectors that distinguish the negative example from the seed
are found; this takes time O(a);

3. Each complex in the star is specialized by intersection with this set of
selectors, taking time O(a.s);

4. The resulting complexes are evaluated, which takes time O(a .s .e ) ;
5. The complexes are sorted and the star trimmed, taking time O(a.s log(a.s)).

Thus, for each negative example the time is bounded by O(a.s(e + log(a.s))).
This is the same figure as obtained for CN2. Observe that the number of
iterations of this process (making the star disjoint from a negative example) is
bounded by the number of attributes, not by the number of examples.

In practice, although the order of time taken by the algorithms for this par-
ticular operation of producing a new star is the same, CN2 is faster overall
than AQR. This is because the number of iterations of this operation is lower
in CN2 than in AQR, since CN2 may halt specialization of a complex before
it performs perfectly on the training examples. Also, CN2 may halt the en-
tire search for rules before all the training examples are covered if no further
statistically significant rules can be found.

3.4 Time complexity of the Bayesian classifier

The time complexity of the Bayes' classifier for generating a probability
matrix is O(a.e) , where a is the number of attributes and e the number of
examples. This learning algorithm was substantially faster than the other
algorithms because the run time is independent of the decision 'rule' generated.
In addition, this basic operation is performed only once, unlike the above
algorithms in which the basic operation is repeatedly applied.

3.5 Summary and actual run times

We have shown that the time complexity of the basic learning step for all
the algorithms tested is linear in the number of examples, with O(a • e) for
ASSISTANT and the Bayes' classifier and O(a • e • s) for AQR and CN2. This
is an essential requirement for any algorithm that must work with very large
data sets.

However, the time complexity of the entire induction process, requiring iter-
ation of the basic learning steps, is also important. With ideal noise-tolerant
algorithms, given a certain minimum number of examples, concept descrip-
tions representing only the genuine regularities in the data should be induced.
Additional examples should not cause the concept description to grow further
and become overfitted, hence in this ideal case the above figures also represent
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the time complexity of the overall learning task. When this ideal is not met, as
when one seeks a concept description that classifies the training data perfectly,
the complexity increases. In such cases, CN2 would at worst induce e rules
of length a, giving an overall time complexity of O(a2 • e2 • s) (Chan, 1988).
ASSISTANT sorts a total of e examples among a attributes for each level of the
tree, giving an overall time complexity of O ( a 2 . e ) as the tree depth is bounded
by a. The worst-case time complexity for AQR is similar to that for CN2.

The actual run times are revealing, although it is difficult to make quantita-
tive comparisons due to differences in implementation language and method.
Run times for each algorithm were obtained for the lymphography domain
(Section 4.2.1) using a four-megabyte Sun 3/75. ASSISTANT, implemented in
about 5000 lines of Pascal, took one minute run time. CN2 and AQR, each
implemented in about 400 lines of Prolog and with a value of fifteen for maxs-
tar, took 15 and 170 minutes runtime respectively. The Bayesian classifier,
implemented in 150 lines of Prolog, took a few seconds to calculate its prob-
ability matrix. Although it is difficult to draw conclusions from the absolute
run times, it is our opinion that the ordering of these run times (Bayes fastest,
followed by ASSISTANT, CN2 and AQR) is a fair reflection of the relative
computation involved in using the algorithms. More detailed empirical com-
parisons of time and memory requirements of ID3 and the AQ-based system
AQ11P have been conducted by O'Rorke (1982) and Jackson (1985) in the
domain of chess end games.

4. Experiments with the algorithms
Other aspects of the systems' behaviors lend themselves more to experimen-

tal study than analysis. Below we describe the dependent measures used in
our experiments with the algorithms. After this, we describe the results of our
studies with three natural domains and two artificial domains.

4.1 Dependent measures
In addition to computational complexity, we are interested in two other

aspects of the algorithms' behaviors - classificational accuracy and syntactic
complexity of the acquired structure. This twofold evaluation is motivated by
considering these systems as knowledge-acquisition tools for expert systems.
A useful system should induce rules that are accurate, so that they perform
well, and comprehensible, so that they can be validated by an expert and used
for explanation.

We measure each algorithm's classification accuracy by splitting the data
into a training set and a test set, presenting the algorithm with the training set
to induce a concept description and then measuring the percentage of correct
predictions made by that concept description on the test set. Quinlan (1983,
1987a) and others have taken a similar approach to measuring accuracy.

Cross-algorithm comparisons of the complexity of concept descriptions are
difficult due to the differences in representation and the degree of subjectivity
involved in judging complexity. Thus, we will only compare the gross fea-
tures of the knowledge structures induced by the different algorithms. For
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ASSISTANT'S decision trees, we measure complexity by the number of nodes
(including leaves) in the tree. For CN2 and AQR, we measure complexity by
the number of selectors in the final rule list and rule set respectively. These
measures reveal the gross features of the induced decision rules. More detailed
measures of rule complexity have been made by O'Rorke (1982) but are not
used here. We assign a complexity of one to the default rule, based on its
equivalence to a decision tree with a single node.

Assessing the complexity of a Bayesian description is more difficult. One
could count the number of elements in the p(Vj \Ck) matrix. Thus, for a domain
with n classes and a attributes, each with an average of v possible values, the
complexity would be a x v x n. However, such a measure is independent of
the training examples, and it ignores features of the matrix that may make
it more comprehensible (e.g., a few elements may be very large and the rest
small). Still, lacking any better measure, we provide the size of the matrix as
a rough guide.

4.2 Experiments on natural domains
The above algorithms were tested on three sets of medical data, which we

will describe shortly. These data were obtained from the Institute of Oncology
at the University Medical Center in Ljubljana, Yugoslavia (Kononenko et al.,
1984). In each test, 70% of the training examples were selected at random
from the entire data set, and the remaining 30% of the data were used for
testing. The algorithms were all run on the same training data and their
induced knowledge structures tested using the same test data. Five such tests
were performed for each of the three domains, and the results were averaged.
These data are thus identical to those used to test AQ15 in Michalski et al.
(1986), though the particular random 70% and 30% samples are different. Both
CN2 and AQR were given a value of 15 for maxstar in all runs.

4.2.1 Three medical domains
Table 4 summarizes the characteristics of the three medical domains used

in the experiments. The first of these involved lymphography. For patients
with suspected cancer, it is important for physicians to distinguish between
patients that are healthy and those with metastases or malignant lymphoma.
Patient data relating to this task were collected from Ljubljana's Oncology
Institute. These data were consistent; i.e., examples of any two classes were
always different. All the tested algorithms produced fairly simple and accurate
rules. Unlike the other two domains, this data set was not submitted to a
detailed checking after its original compilation by the Medical Center, and
thus may contain errors in attribute values.

The second domain involved predicting whether patients who have under-
gone breast cancer operations will experience recurrence of the illness within
five years of the operation. The recurrence rate is about 30%, and hence such
prognosis is important for determining post-operational treatment. These data
were verified after collection, and thus are likely to be relatively free of errors.
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Table 4. Description of the three medical domains.

DOMAIN
PROPERTY

NUMBER OF ATTRIBUTES

LYMPHO-
GRAPHY

18

BREAST
CANCER

9

PRIMARY
TUMOR

17
VALUES PER ATTRIBUTE

MINIMUM
MAXIMUM
AVERAGE

NUMBER OF CLASSES
NUMBER OF EXAMPLES
DISTRIBUTION OF

EXAMPLES AMONG
THE CLASSES

2
8
3.3
4

148
2, 81, 61, 4

2
5
2.8
2

286
85, 201

2
3
2.2

22
339

84, 20, 9, 14, 39,
1, 14, 6, 0, 2, 28,
16, 7, 24, 2, 1,
10, 29, 6, 2, 1, 24

The final medical domain focused on predicting the location of a primary
tumor. Physicians distinguish between 22 possible locations, predicted from
data such as age, hystologic type of carcinoma, and possible locations of de-
tected metastases; this is also important in determining treatment of patients.
These data were inconsistent; i.e., examples of different classes existed with
identical attribute values. They were verified after collection, and thus are
likely to be relatively error-free. The set of attributes is relatively incomplete,
and thus not sufficient to induce high-quality rules.

4-2.2 Results with natural domains
Table 5 presents the results for each algorithm on these domains, averaged

over five runs. In each case, we present the average accuracy on the test data
and the average complexity of the resulting knowledge structures. CN2 was
tested using three values of significance threshold and ASSISTANT was run with
and without pruning. The other systems have no such user-variable parameters

The table contains some interesting regularities. The most important is
that the algorithms designed to reduce problems caused by noisy data achieve
a lower complexity without damaging their predictive accuracy. For example,
in the lymphography domain, the version of CN2 with the highest threshold
achieved the same classification accuracy as the other algorithms by inducing
(on average) only eight rules, each containing 1.6 selectors. The tree-pruning
version of ASSISTANT produced similar results.

Both systems apply a similar technique to reducing complexity, namely
sometimes halting specialization of concept descriptions before they classify
the training examples perfectly. As a result, ASSISTANT and CN2 avoid over-
fitting their decision trees and rules to the training data. This contrasts with
the AQR algorithm, which specializes its rule set until it achieves as nearly
complete consistency with the training data as possible, resulting in an over-
fitted rule set. Table 6 illustrates this effect by comparing accuracy on the
training and test data.
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T See discussion in Section 4.1 about difficulties in measuring the complexity of
Bayesian classifiers.

The results also show that the Bayesian classifier does well, performing com-
parably to the more sophisticated algorithms in all three domains and giving
the highest accuracy in the lymphography domain. Table 6 shows that this
method regularly overfits the training data, but that its performance on the
test set is still good. Even more surprising is the behavior of the frequency-
based default rule, which outperforms ASSISTANT and the Bayes' method on
the breast cancer domain. This suggests that there are virtually no significant
correlations between attributes and classes in these data. This is reflected by
CN2's inability to find significant rules in this domain at 99% threshold, sug-
gesting that, in this domain at least, the significance test has been effective in
filtering out rules representing chance regularities.

In general, the differences in performance seem to be due less to the learning
algorithms than to the nature of the domains; for example the best classifica-
tion accuracy for lymphography was barely half as high as that for primary
tumor. This suggests the need for additional studies to examine the role of
domain regularity on learning.

4.3 Experiments on artificial domains

To better understand the effects of overfitting, we experimented with CN2
and ASSISTANT on two artificial domains that let us control the amount of
noise in the data.

4-S.I Two artificial domains
Both domains contained twelve attributes and 200 examples that were evenly

distributed between two classes. They differed only in the number of values
each attribute could take (two in the first domain and eight in the second).

Table 5. Accuracy and complexity of knowledge structures acquired by the algo-
rithms in three natural domains. (Complexity for the Bayes' classifier is
the size of the probability matrix.)

ALGORITHM

DEFAULT RULE
ASSISTANT

NO PRUNING
PRUNING

BAYES
AQR
CN2

90% THRESH.
95% THRESH.
99% THRESH.

LYMPHOGRAPHY
ACCUR.

56%

79%
78%
83%
76%

78%
81%
82%

COMP.

1
41
36

240t
76

24
22
12

BREAST CANCER
ACCUR.

71%

62%
68%
65%
72%

70%
70%
71%

COMP.
1

112
44

54ot
208

28
20
4

PRIMARY TUMOR
ACCUR.

26%

40%
42%
39%
35%

37%
36%
36%

COMP.
1

178
52

465^
562

33
42
19
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Table 6. Accuracy of the different algorithms on training and test data. The reported
version of ASSISTANT incorporated pruning and the version of CN2 used a
99% threshold.

ALGORITHM

DEFAULT RULE
ASSISTANT
BAYES
AQR
CN2

LYMPHOGRAPHY
TRAIN

54%
98%
89%

100%
91%

TEST

56%
78%
83%
76%
82%

BREAST CANCER
TRAIN

70%
85%
70%

100%
72%

TEST
71%
68%
65%
72%
71%

PRIMARY TUMOR
TRAIN
23%
53%
48%
75%
37%

TEST

26%
42%
39%
35%
36%

In both cases, the target concept for one class could be stated as a simple
conjunctive rule of the form 'if (a = v1) A • • • A (d = v1) then class X'. Both
algorithms can represent such a regularity compactly. The second class was
simply the negation of the first. Half of the data was used for training, half
for testing, and the results averaged over five trials.

For each domain, we varied the amount of noise in the training data and
measured the effect on complexity and on accuracy on the test data. Table 7
reports the results for the first artificial domain, with two values per attribute,
and Table 8 for the second, with eight values per attribute.

The percentage of noise added indicates the proportion of attribute values in
the training examples that have been randomized, where attributes chosen for
randomization have equal chance of taking any of the possible values for that
attribute. For the purposes of randomization, the class was treated simply as
an additional attribute in the example description. Note that no noise was
introduced into the test data.

4.3.2 Results with artificial domains
By experimenting with artificial domains, we can examine several features

of the algorithms relating to their ability to handle noise. First, we can see
the degradation of accuracy and simplicity of concept descriptions as noise
levels are increased. Second, for CN2, it is also interesting to examine how
the accuracy and simplicity of individual rules (as well as that of the rule set
as a whole) is affected by noise in the data.

The results reveal some surprising features about both CN2 and ASSIS-
TANT. Comparing classification accuracy alone, ASSISTANT performed better
than CN2 in these particular domains. However, comparing complexity of con-
cept description, CN2 produced simpler concept descriptions than ASSISTANT
except at high levels of noise in the first domain.

Ideally, as the level of noise approaches 100%, both algorithms should fail
to find any significant regularities in the data and thus converge on a concept
description of complexity one (for CN2's default rule alone or a single-node
decision tree). However for CN2, this occurred only in the second of the two
domains tested and did not occur in either domain for ASSISTANT. Indeed, in
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Table 7. Results in artificial domain Al, with 12 attributes and 2 values per attribute

NOISE
LEVEL

0%
2%
5%

10%
20%
40%
60%

100%

CN2 (99% THRESHOLD)
TOTAL
ACCUR.

95%
88%
88%
82%
73%
67%
56%
45%

NONDEF.T

ACCUR.
100%
99%
95%
95%
86%
76%
64%
49%

COMP.

3
5

10
15
20
25
26
28

ASSISTANT
UNPRUNED

ACCUR.
99%
96%
91%
86%
76%
65%
62%
46%

COMP.
8

16
32
45
60
74
75
85

PRUNED
ACCUR.

99%
98%
95%
91%
84%
76%
67%
43%

COMP.
8

11
16
24
27
23
23
12

T This refers to the accuracy of those CN2 rules found by search; i.e., excluding
the extra default rule ('everything is class X') at the end of the rule list. See
discussion in Section 4.3.2.

the second domain ASSISTANT'S tree-pruning mechanism did not prune the tree
at all. CN2's generation of rules in the first domain, even at 100% noise level,
probably results from a combination of the large number of rules searched (e.g.,
there are 12x11x10 = 1320 rules of length three in the space) and the high
coverage of these rules (each length three rule covers on average 100/23 — 12
examples). Enough rules are searched so that, even with 99% significance test,
some chance coverage of the 12 (average) examples will appear significant. This
did not occur in the second domain, as the coverage of rules was considerably
less; each length three rule covers on average 100/83 s 0.5 examples, too few
for the significance test to succeed.

These behaviors as the noise level approaches 100% suggest that the thresh-
olding methods used in both CN2 and ASSISTANT need to be more sensitive to
the properties of the application domain. Research on improvements to CN2's
significance test (Chan, 1988) and ASSISTANT'S pruning mechanism (Cestnik,
Kononenko, & Bratko, 1987) is currently being conducted.

We also measured the accuracy of CN2's individual rules, as opposed to that
of the entire rule set. Tables 7 and 8 include columns for 'non-default accuracy',
which show the accuracy of CN2's rules excluding cases in which the default
rule fires. These suggest that the rule list consists of high-accuracy rules plus a
low-accuracy (50% in this domain) default rule at the end. This is a desirable
property of the rule list if it is to be used for helping an expert articulate his or
her knowledge, as each individual rule (apart from the default rule) represents
a strong regularity in the training data. The decision-tree equivalent would
involve examining the individual branches generated and their use in assisting
an expert. Quinlan (1987b) has recently conducted work along these lines.
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Table 8. Results in artificial domain A2, with 12 attributes and 8 values per attribute

NOISE
ADDED

0%
2%
5%

10%
20%
40%
60%

100%

CN2 (99% THRESHOLD)
TOTAL
ACCUR.

93%
83%
86%
80%
73%
68%
63%
50%

NONDEF.T

ACCUR.
98%
99%
94%
98%
88%
82%
90%
58%

COMP.

8
10
13
10
15
5
4
1

ASSISTANT
UNPRUNED

ACCUR.
99%
97%
96%
93%
85%
75%
66%
55%

COMP.
6

12
15
22
27
33
40
43

PRUNED
ACCUR.

99%
97%
96%
93%
85%
75%
66%
55%

COMP.
6

12
15
22
27
33
40
43

* This refers to the accuracy of those CN2 rules found by search; i.e., excluding
the extra default rule ('everything is class X') at the end of the rule list. See
discussion in Section 4.3.2.

5. Discussion
The results on the natural domains indicate that different methods of halt-

ing the rule specialization process, besides having the effect of reducing rule
complexity, do not greatly affect predictive accuracy. This effect has been re-
ported in a number of papers (Kononenko et al., 1984; Michalski et al., 1986;
Niblett & Bratko, 1987). Indeed, it may be that this effect will occur with any
technique, providing one does not exceed a certain maximum level of pruning.
If so, then one should prefer the algorithm that most closely estimates this
maximum level.

The results in Table 6 suggest that the 99% threshold for the CN2 algorithm
is appropriate for the three natural domains. The accuracy on training data
is close to that on test data, indicating that, in these domains at least, the al-
gorithm is not overfitting the data. Additionally, high accuracy is maintained,
indicating that the concept description is not underfitted either.

However, the results of the tests on the artificial domains, in particular the
tests with 100% noise, indicate that the current measure of significance used
by CN2 could be improved. As the noise level reaches 100%, the algorithm
should ideally find no rules. The fact that this only occurred in one of the
two artificial domains suggests that the significance measure should be more
sensitive to properties of the domain in question.

In many ways the comparisons with the AQR system are unfair, as the
AQ algorithm was never intended to deal alone with noisy data. It was in-
cluded in these experiments to examine the basic AQ algorithm's sensitivity
to noise. In practice it is rarely used on its own, instead being enhanced by a
number of pre- and post-generation techniques. Experiments with the AQ15
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system (Michalski et al., 1986) show that with post-pruning of the rules and
a probability-based or 'flexible matching' method for rule application, one can
achieve results similar to those of CN2 and ASSISTANT in terms of accuracy
and complexity.

The principal advantage of CN2 over AQR is that the former algorithm
supports a cutoff mechanism - it does not restrict its search to only those
rules that are consistent with the training data. CN2 demonstrates that one
can successfully control the search through the larger space of inconsistent rules
with the use of judiciously chosen search heuristics. Second, by including a
mechanism for handling noise in the algorithm itself, we have achieved a simple
method for generating noise tolerant if-then rules that is easy to reproduce and
analyze. In addition, interactive approaches to induction, in which the user
interacts with the system during and after rule generation, introduce additional
requirements, such as the need for good explanation facilities. In such cases,
the logical rule interpretation used by CN2 should have practical advantages
over the more complex probabilistic rule interpretation needed to apply order-
independent rules (such as those generated by AQR) in which conflicts may
occur.

Another result of interest is the high performance of the Bayesian classifier.
Although the independence assumption of the classifier may be unjustified in
the domains tested, it did not perform significantly worse in terms of accu-
racy than other algorithms, and it remains an open question as to how sen-
sitive Bayesian methods are to violated independence assumptions. Although
the probability matrices produced by the tested classifier are difficult to com-
prehend, the experiments suggest that variants of the Bayes' classifier which
produce more comprehensible decision procedures would be worthy of further
investigation.

6. Conclusions
In this paper we have demonstrated CN2, an induction algorithm that com-

bines the best features of the ID3 and AQ algorithms, allowing the application
of statistical methods similar to tree pruning in the generation of if-then rules.
The CN2 system is similar to ASSISTANT in its efficiency and ability to handle
noisy data, whereas it partially shares the representation language and flexible
search strategy of AQR. By incorporating a mechanism for handling noise into
the algorithm itself, a method for inducing if-then rules has been achieved that
is noise-tolerant, simple to analyze, and easy to reproduce.

The experiments we have conducted show that, in noisy domains, the CN2
algorithm has comparable performance to that of ASSISTANT. By inducing
concept descriptions based on if-then rules, CN2 provides a tool for assisting
in the construction of knowledge-based systems where one desires classifica-
tion procedures based on rules rather than decision trees. The most obvious
improvement to the algorithm, suggested by the results on artificial domains,
is an improvement to the significance measure used.
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