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i Introduction

tyidence about the architccwre of the brain and the potential of the new VLS! techinelogy have led o a
resurgence of interest in “connectivnist” systems (Hinton & Anderson, 1981 Feldman & Dallard, 1932) that
store their long term knowledge as the strengths of the connections between simple neuron-liXe processing
clenients. These networks are clearly suited to tasks like vision that can be performed cfficiently in parallet
networks which have physical connections i just the places where processes need to communicate. For
problems like surface interpolation from sparse depth data (Grimsoen, 19315 Terzopoulos, 1984) where the
necessary decision units and communication paths can be determined in advance. It is reladvely casy to sce
how to make good use of massive parailelism. The more difficult problem is to discover parallcl organizations
that do not require so much problem-dependent information to be built inte the architecture of the network.

Ideaily, such a system would adapt a given stucture of processors and communication paths 0 whatever

problem it was faced with.

This paper presents a type of parallet constraint satisfaction network which we call a “Boltzmann Machine™
that is capable of learning the undcrlying constraints that characterize a domiain simply by being shown
examples from the domain. The nctwerk modifies the strengths of {ts connections so as to construct an
internal generative model that produccs examples with the smne probability distribution as the examples it is
shown. Then, when shown any particular cxample, the network can “interpret” it by finding values of the
variables in the internai mode! that would generate the example. When shown a partial cxampie, the network
can complcte it by ﬁnding internal variable values that generate the paitial example and using them to
generate the remainder. At present, we have an interesting mathematical result that guaranices that a certain
learning procedure will build internal representations which allow the connection strengths o capture the
underlying constraints that are imptiicit in a large ensemble of exumples taken from a domain. We also have

simulations that show that the theory works for some simple cases, but the current versicn of the learning

algorithm is very slow.

The scarch for general principics that allow parallel networks to learn the structure of their environment has
often begun with the assumption that networks are randomly wired. This seems (o us to be just as wrong as
the view that all knowlédgc is innate. If there are connectivity structures that arc geed for partcular tasks that
the network will have to perform, it is much more efficient to build these in at the start. However, not all

tasks can be foreseen, and even for ones that can, fine-tuning may still be helpful.

Another common belicf is that a general connectionist learning ruie would make sequential “rule-based”
models unnecessary. We believe that this view stems from a misunderstanding of the need for multiple {evels

of description of large systems, which can be usefuily viewed as cither parailel or serial depending on the
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7 ' Boltzmann Machines

grain of the apalysis. Most of the key issues and quoestions that bave been studied in the context of sequential
models do not magically disappear in connectionist models, [t is still necessary to perform searches for good
solutions e probiems or good interpretagons of pcrccptu;ﬂ input. and to create comples internal
representations. Ultimately it will be necessary to bridge the gap betwecn hardware-oriented connectionist
descriptions and the more abstract symbol maripulation models that have proved o be an extremely

powerful and pervasive way of describing human inferation processing {Newell & Simon, 1972).

2 The Boltzmann Machine

The Boltzmann x\f[e;chine is a parallel computational erganization that is well suited t0 constraing satisfaction
tasks involving large numbers of “weak™ constraints, Constraint-satisfaction scarchcé {c.g. Waltz, 1975,
Winston, 1984) normally use “strong”™ constraints that muwst be satisfied by any selution. [n problem domains
such as games and puzzles, for example, the goal criteria often have this character, so suong constraints are
the rule.d In some problem domains, such as finding the most plausible interpretation of an image, many of
the criteria are not all-or-none, and frequently even the best possible solution viplates some constraints
(Hintor, 1977). A variatinn that {s more appropriate for such domains uses weak constraints that incur a cost
when violated. The quality of a solution is then determined by the total cost of Wl the constrsints that it
viclates. In a perceptual interpretation task, for example, this total cost should reflect tie implausibility of the

interpreration,

The machine is composed of primitive computing clements called wadts that are conaeeted o cach other by
Bidivectional finks. A unit is abways in oue of two states, o or off, and it adopts these states as a probabilistic
function of the states of its neighboring units and the weigles on its links to them. The weighes can take on
real values of either sign. A unit being on or off s taken to mean that the system currently accepts or rajects
some clemental hypothesis about the the domain. The weighit on a link represents a weak pairwise constraint
between two hypotheses. A positive weight indicates that the two hypotheses tend to support one another; if
one is currently accepted, acceptng the other should be more likely, Conversely, a nezatve weight suggesis,
other things being equal, that the two hypotheses should not both be accepted. Link weights are svinmerric,

ltaving the same strength in both directions {Hinton & Sejnowski, 1983).2

l}iut sce (Berliner & Ackley, 1982 for argument that. oven in such domains, strong constraints must be used only where absolutely
nccessary for legal play, and in particular must not propagate into Lie deiermination of good play.

chqumng the waigzhts to be symmwelne may scem (o restrict the constraints that can be represented. Although a constainl on boolean
vanables 4 and B such as "4 == & with a penalty of 2 points for viclation™ is obvicusly symmetnc in A and 3. 4= 8 with 2 penalty of 2
poinis for violation™ appears 1o be fundamentally asvmmetric. Neverheless, tus constraint ean be represented by the combination of 2
constraint on o alone and a symmaetnc pairwvise constraint as lollows: “Lose 2 pornts if A & true” and "Win I pownts if beth 4 and # are

"
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endal The resulting structure-is related to a sysiem deseribed by Hopfield (1982), and as in his systein, cach global
s00d state of the network can be assigned 2 single nwmber called the “energy™ of that state. With the right
L_Lm_al assumptions, the Individual units can be made 10 act 50 as W ninimize the globul energy. 1f sume of LhC units
wont are externally forced or “clamped” inte particular states to represent a particular inpul. the system will then
el find the minimum caergy configuration that 1$ compatible with that input. The energy of a configuration can
be interpreted as the extent o which that combination of hypotheses violates the constraints implicit in the
problem domain, so in minimizing encrgy the system evolves towards “interpretations” of that input that
increasingly satisfy the constraints of the problem domaia.
acrion
L9735, The energy of a global configuration is defined as
‘mains
:is are E=— Z Wy 858+ Z 85 (1
any of i</ i
raints where wy is the strength of connection between unis fand Jj, 5;is 1 if unit / is on and 0 otherwise, and 4, is a
2 cost threshold.
that -it
of the 2.1 Minimizing energy
A simple algorithm for finding a combination of truth values that is a foca! minimum s 10 switch each
hypothesis inio whichever of its two states viclds the lower total encrgy siven the current states of the other
ner by hvpotheses. If hardware units make their decisions asynchronously, and if transmission tmeys wre negligible,
“listie then e sysiein alwavs sertles into o local energy minimum (Hopfield. 1982), Because the connections are
ixe on symmetric, the difference betwesn the encrgy of the whole system with the 47 hypothesis rejected and its
rajects energy with the &7 hypothesis accepted can be determined locally by the 47" unit, and this “encrgy gap” is
astraint just '
ther; if
[22ess, Al = Z WS =0 {(2)
T i
LI,
Therefore. the rule for minimizing the energy contributed by a unit is w adopt the on state if its total input
from the other units and from outside the system exceeds its threshold. This is the familiar rule for binary
threshold units.
volutely ‘The threshold terms can be ¢liminated from Eqs. (1) and (2) by making the following observation: the effect
of &; on the global energy or on the energy gap of an individual unit is identical 10 the effect of a fink with
{ooic?rzt strength ~@; between unit 7 and a special unit that is by definition always held in the on state. This “true
Lq g:‘a unic” need have no physical reality, but it simplifies the computations by allowing e threshield of a unit to ve
=4 Hare

treated in the same manner as the links. The vaiue —4, is called the bias of unit & If a permanently active

“lrue unit” is assumed © be part of every nerwork, then Egs. (1) and (2) can be writien as:
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4
E= —Zw;js,-sj (3
i<
ABp= ) wasy _ (4
!

2.2 Using noise to escape from iocal minima

The simple, deterministic algorithm suffers from the standard weakness of gradient descent methods: [t gets
stuck in Jocel minima that are not globally optimai. This is not a problem in Hepfield's system because the
locai energy minima of his network are used to store “items”: If the system is started near some local
minimum, the desired behavior is to fall into that minimum, not to find the global minimum. For constraint

satisfaction tasks, however, the system must try to escape from local minima in order to find the configuration

that is the global minimum given the current input.

A simple way to get out of local minima is 0 occasionally allow jumps to configurations of higher energy. An
algorithm with this property was introduced by Metropelis et al. {1953) to study average properties of
thermodynamic systems (Binder, 1978) and has recently been applied to problems of constraint satisfaction
(Kirkpatrick, Gelatt, & Vecchi, 1983). We adept a form of the Metropolis algorithm that is suitable for

parallel computation: If the energy gap between the on and off states of the k™ unit is AE, then regardless of

the previous state set s, = 1 with probability

.y ‘
Pi= (1+ -3/ T (-

—

where T is a parameter that acts like temperature (see

o 2 4 5 8
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3 The decision rule in Eg. {5) is the same as that for a particle which has two energy states. A systemt of such
particles in contact with a heag bath ata given temperature will eventually reach thermal equilibrium and the

probability of finding the system in any global state will then obey a Boltzmann distribution. Similarly, a

“ neework of unis obeving this decision rule will eventually reach “thermal equilibrium™ ard the relative
probability of two global states will follow the Boltzmann distribution:
P (E. -
ist It gets F;— =¢~EamEplT _ : (6)
zause the ‘ o " ,
where P, is the probability of being in the o™ global state, and £, is the energy of that state.
yme local .
-castraint The Boltzmann distibution has some beautiful mathematcal propertics and it is intimately related to
iguration infurmation theory. In particular, the difference in the log probabilities of two global states is just their
energy difference (at a temperature of 1). The simplicity of this relatienship and the fact that the equilibrium
distributoen is independent of the path followed in reaching equilibrium are what make Boltzrmann machines
gy An interesting,
perties of
dsfaction AL low (emperatures there is a strong bias in favor of states with low energy, but the time required to reach
luble for equilibrium may be long. AL higher temperatures the bias is not so favorable but equilibrium is reached
rarcless of faster. A gocd way to beat this trade-off is to start at a high temperature and gradually reduce it. This
corresponds 1 anneaiing a physical system (Kirkpatrick et. al. 1983)." At high temperatures, the network will
ignore small encrgy differences and will a;ﬁproﬂch cquiiibrium rapidly. In doing so it will perform a scarch of
( ihe coarse overall structure of the space of global states, and will find 1 good minimum at that coarse level. As
the temperature is lowered. it will begin to respond to smaller encrgy differences and will tind one of the
better minima within the coarsc-scale minimum it discovercd at high temperature, Kirkpatrick et. al. have
- shown that this way of searching the coarse structure before the fine is very effective for combinatorial
- problems like graph partitioning, and we believe it will also prove useful when uying to satisfy multiple weak
constraints, syen though it will clearly fail in cases where the best solution corresponds to a minimum that is
deep. narrow and isolated.
3 Alearning algorithm
Perhaps the most interesting aspect of the Beltzmann Machine formulation is that it icads o a domain-
indepencant fearning algoritam that modifies the connection strengths between units in such a way that the
—-ﬂé"‘"’ whole network develops an internal mode! which captures the underlying structure of its environment. There

n2s heen a long history of failure in the search for such algorithms (Newell. 1982), and many people

(particularly in Artificial Intelligence) now believe that no such elgorithms exist.  The major technical

stumblinz ¢ whi . L . . .
twmbling bleek which prevenied the generalization of simple learning algerithms to more complex networks
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Hir
was this: To be capable of interesting computations, a nctwork must contain non-linear elements that are not
dircctly constrained by the input. and when such a network does the wrong thing it appears w be impossible e
1o decide which of the many connection steengths is at faule. This “credit-assignment” probiem was what led i
to the demise of Perceptrons (Rosenblatt, 1961; Minsky & Papert, 1963). The percepiron convergence he
thenrem guarantees that the weights of a single layer of decision units can be trained, but it could not be e
generalized to networks of such units when the task did net dircetly specify how 1o use all the units in the e
netwerk, u
. We
This version of the credit-assignment problem can be solved within the Boeltzmann Machine formulation. By
using the right stochastic decision ruie, and by running the network until it reaches “thermal equilibrium™ at e
sume finite temperature, we achicve a mathematicaily simple relationship between the probability of a global :e“
state and its energy, For a network that s running freely without any input from the cnvironment, this - _
relationship is given by Eq. (6). Because the energy is a /inear function of the weights (Eq. 1} this leads to a -
remarkably simple relationship between the log probabilities of global states and the individual connection e
strengths: L
Onfy = l.. [s853= pf] N o
G Wy 7oy s
W
where s/ is the state of the # unitin the o global state (o 5:.“51.“ is 1 only if units 7 and j arc both on in state pre
a). and pf is just the probability of finding the two units i and j on at the same time when the system s at n o
equilibrium, goe
Given Eq. (7). it is possibie o manipulate the log probabilities of global states. If the eavirenment directly AR
specifies the required probabilities £, for each global state a, there s a straightforward way of converging on cnt
a sot of weights that achieve those probabilitics, provided any such set exists (Sce Hinton & Sejnowski, 1933a
for detatls). However, this is not a particularly interesting kind of learning because the system has to be given
the required probabilitics of complete global states. This means that the central question of what internal
representation should be usced has already been decided by the environment. The interesting problem arises wi
when the environment implicitly contins high-order ceonstraints and the neowork must choose internal en
representations that allow these constraints to be expressed efficiendy. et
(K.
3.1 Modeling the underiying structure of an environment dist
The units of a Boitzmann Machine partition inte two functional éroup& a non-empty set of visible units and a
possibly empty sct of hidden units. The visible units are the interface between the newwork and the T
environment; during training all the visible units are clamped into specific states by the enviromnent: when des
testing for completion ability any subset of the visible units may be clamped. The hidden units, if any, are Crf\
re
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re not
_ never clamped by the envirpnment and can be used to “explain”™ underlying constraings in the ensemble of
ibie input vectors that cannot be represented by pairwise constraints ameng the visible units, A hidden unit would
rat fed e needed. for exampte, if the environment demanded that the states of three visible units should have even
aenee parity — a regularity that cannot be eaforced by pairwisce interactions alone, Using hidden units to represent
ﬁm ” morn complex hypotheses about the states of the visible units, such higher-order constraints among the visible
o e units can be reduced to first and sccond-order constraings among the whole set of units.
We assume that cach of the environmental input vectors persists for leng enough to ailow the network
E “By appreach thermal equilibrium, and we ignere any structure that may exist in the sequence of environmental
Im; A vectors. The structure of an environment can then be specificd by giving the probability distribution over all
:bl‘)h:_d ¥ states of e v visibie units. The network will be sald to have a perfect model of the environinent if it
[ s achieves exactly the same probability distribution over these 2" states when it is running freely ac thermal
- {,0 : equilibrium with all units unclamped so there is no environmental input.
~ection
Unless the number of hidden units is exponentially large compared to the number of visible uriirs, it will be
(7) impossibie 10 achieve a perfect model because even If the network is totally connectzd the (v+ 2= 1){v+ h)/2
weights and (v A) biases among the v visible and / hidden units wili be insufficient w model the 27
I state probabilities of the states of the visible units specified by the covironment. However, if thers are regularities
715 at in the environment, and if the necwork uses its hidden units to capture these regularities, it may achicve a
good match tothe environmental probabilities. |
directly An information-theerctic measure of the diserepancy berween the actwork's internal medel and the
sz oen cnvironment is
933a |
o given G= Z y PV
aternal e P/“ ) ©
narises where A(V,) is the probability of the o« state of the visible units when their states are detertnined by the
soernal cmvironment. and P(F,) is the corresponding probability whien the network is running fresly with no

environmental input.  The G metric, scmetimes called the asymmetric divergence or information gain
(Kullback. 1959; Renyi, 1962), is a measure of the distance from the distribution given by the P{V,) to the

distribution given by the P(} ). Gis zero if and only if the distributions are identical; otherwise it is positive,

sand a

-4 the The em P/ Va) depends on the weights, and so G can be altered by changing them, To perform gradient

hen descentin G it is necessary to know the partial derivative of G with respeet o cach individual weight. In most
o ar cross-coupled non-lincar networks it is very hard to derive this quantity, but because of the simple

rela 1onships that hold at thermal equilibrium, the partial derivative of G is straightforward te derive for our
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Hint.
nctworks. The probabilitics of global stztes are determined by their energics (Eq. 6) and the energies are 3.0
determined by the weights (Eq. 1). Using these equations the pardal derivative of 7 (see the appendix) is: Ther
wll
aaufj z“lr— (py = #y) ©) whic:
simr
where pj; is the average probability of two units both being in the on state when the environment is clamping
the states of the visible units, and pj, as in Eq. (7), is the corresponding probability when the environmental A pr.
input is not present and the network is running freely. (Both these probabilities must be measured at oocas
equilibrum). Note the simiiarity between this equation and Eq. (7), which shows how changing a weight is e
affeets the log probability of a single state, | —_—
ann<.
To minimize G. it is therefore sufficient to observe p; and pi, when the network is at thermal equilibrium, ard
to change cach weight by an amount proporticnal to the difference between these two probabilities: The .
Aw;j=e(p;—pf) (10) aris2
occu
- where e scales the size of euch weizght change. . Vgt
thosz
A surprising feature of this rule is that it vses only locally arailable ivformation. The change in a weight
depends enly on the behavior of the twe units it connects, even though e change optimizes a giobal One -
measure, and rhe best value for each weight depends on the values of all the other weights, 1f there are no This
hidden units. it can be shown that Gespace is concave {when viewed from above) so that simple gradient rever:
descent will ner get wapped at poor local minima. With hidden uaits, however, there can bc local minima —
that correspond to different ways of using the hidden units to represent the hisher-order conszraints that are enars
inplicit in the probability distribution of environmental vectors. Some technigues for handling these more ' It wo
complex G-spacces are discussed in the next section, preve
Once ¢ has been minimized the network will have captured as well as possible the regularitics in the The -
enviromment, and these regularities will be enforced when perferming completien. An alternadive view is Lhat meth
the network, in minimizing G, is finding the set of weights that is most likely to have gencrated the set of incrar
environmental vectors. ft can be shown that mdximiziug this likelihood is mathiematically equivalent 1o advan
minimizing G (Peter Brown, personal communication). deriv:
largz
value
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3.2 Cantrolling the learning

Chere are a number of free parameters and possible variations in the learning afgorithm preseated above. As
well as the size of &, which determines the size of cach step taken for gradicnt descent, the lengths of time over
which py; and oy are ostimated have a significant impact on the learning process. The values employed fur the
simulations presented here were sclected primarily on the basis of empirical observations.

A practical sysiem which esimates py; and pfj will necessarily have some noise in the estimates, leading to
sccasional “uphill sieps™ in the value of G. Since hidden units in a network can create local minima in G, this
s not necessarily a liabitity, The effest of the noise in the estimates can be reduced, if desired, by using a

smail value for ¢ or by collecting statistics for a longer time, and so it i3 relatively easy to implement an

snnealing scarch for the minimum of G.

The objective function G is a metric that specifies how well two probability distributions maich. Problems
arise if an environment specifies that only a small subset of the possible patterns over the visible units ever
occur. By default, the unmentioned patterns must cccur with probability zero, and the only way a Boizmann
\lachine running at a non-2¢re emperature can guarantec that certain configurations never occur is to give

those configuradions infinitely high energy, which requires infinitely large weights.

One way 1o avoid this implicit demand for infinite weights is to occasicnally provide “noisy” input vectors.
This can be done by filtering the “correct” input vectors through a process that has a small probability of
reversing cach of the bits. These noisy vectors are then clamped on the visible units. If the noise is small. the
croct vactos will dominate the stadstics, but every vector will have somic chance of seeurting and so infinite
eneraies will not be needed. This "neisy clamping” tccimiquc was used for all the examples prescnted here.
[t works quite well, but we are not entirely satsfied with it and have been investigating other methods of

preventing the weights from growing wo large when only a few of the possible input vectors ever occur.

he simulations presented in the next section employed a modification of the obvious steepest descent
method implied by Eq. (10%. Instend of changing w; by an amount proportional o py = pf5, it is simply
incrementad by a fixed “weight-step™ if p;>pf; and decremented by the same amount if py<py. The
advantage of this method over steepest descent is that it can cope with wide variations in the first and sccond
derivazives of G. It can make significant progress on dimensions where G changes gently without taking very

large diverzent steps on dimensions where G falls rapidly and then rises rapidly again. Therc is no suitable

value for the e in Eq. (10) in such cases. Any value large enough to allow progress along the gently stoping
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floor of a ravine will cause divergent oscillations up and down the steep sides of the ravine.?

4 The encoder problem

The “encoder problem™ (suggested to us by Sanjaya Addanki) is a sim;ﬁic abstraction of the recurring sk of
communicating information among various components of a parallel network. We have used idiis probiem 10
test out the learning algorithm because it is clear what the optimal solution s like and it is non-trivial
discover it. Two groups of visible units, designated V| and V), represent two systems that wish to
communicate their states. Each group has v units. [n the simple formulation we consider here, each group
has only one unit on at a time, so there are only v different states of each group. V', and ¥, are not conrected
directly but both are connected to a group of 4 hidden units f, with h<vso H may act as a limited capacity
bottieneck through which information about the states of ¥} and V; must be squeczed. Since all simulations
began with ali weights set to zero, finding a solution to such a problem requires that the two visible groups

come to agree upon the meanings of a set of codes without any a priori conventions for communication

through A.

To permit perfeet communication between the visible groups, it must be the case thar 22 log,v.. We
investigated minimal cases in which 4= log, v, and cases when / was somewhat larger tian logy v In all
cases. the environment for the network consisted of v equiprobable vectors of length 2v which specified that
one unit in ¥, and the corresponding unit in ¥; should be on together with all other units off. Fach svisinle
ereup is completely connected internaily and each is completely connceted to #. but the units in & are not

connecied to each other.

Decause of the severe speed limitation of simulation on a sequential machine. amd because the learning
requires many annealings. we have primarily cxperimented with small versions of the encoder problem. For
example, Figure 2 shows a good solution to a “4-2-47 encoder problem in which v=4 and A=20 The
interconncetions berween the visible zroups and H have developed a binary coding — cach visible unit causes
a different pattern of on and off states in the units of A, and corresponding uniss in }and V) support
identical pauerns in H. Note how the bias of the second unit of ¥, and ¥, is pusitive to compensate for the

fact that the code which represents that unit has all the A units turned off.

}Thc problem of finding a suiable value for e disappears il one performs a line search for the ‘owest value of & along the current
direction of stcepest descent, but line searches are inapplicable in this case. Onty the local gradient 1 avatlable.
second derivative that ean be used (o pick consenative values of & (
are currently under investigation,

There are bounds on the
Mark Derthick, personal conmunication), ans methods of this kind

Hu
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Figure 2: A solution to an encoder problem. The link weights are displayed using a recursive
notation. Each unit is represented by a shaded [-shaped box; from top to bottom the rows of
boxes represent groups ¥,, H, and ¥,. Within each box, the black or white rectangles show the
strengths of that unit's connections to the cother units, The size of 2 rectangle indicates the
magnitude of the weight; white rectangles represent positive weights and black rectangles
represent negative weights. Within the box representing a unit, the relative position of a rectangle
indicates which other unit is involved in the conncction. For cxample, the large white rectangle
in the third unit along in the top row represents a positive ¢onnection to the first unit in the
second row. All connections between units appear twice in the diagram, once in the box for gach
of the two units being connected. For example, the connection described above aiso appears in
the first box of the sccond row of units, but it occupies a different relative position within this
box. To give an idea of the scate of the weights, this connection has a weight of 26. [n the
position that would correspond to a unit connecting to itscif (the second position in the top row
of the second unit in the top row. for example), the bias is displayed.

4.1 The 4.2-4 encoder

The experiments on networks with v = 4 and 2 = 2 were performed using the following learning cycle:

L. Estimation ofpg Fach environmental vector in turn was clamped over the visible units. For each
environmental vector, the network was allowed to rcach cquilibrium twice. Statistics about how
often pairs of units were both on 1ogether were gathered at equilibrium. To prevent the weights
&Om growing too large we used the "noisy” clamping technique described in Section 3.2. Each on
bitof a clamped vector was set to off with a probability of 0.15 and cach off bit was set to on with a
probabitity of 0.05.

L Estimation of pj;: The network was completely unclamped and allowed to reach cquilibrium at a
temperature of 10 Statistics about co-occurrences were then gathered for as many annealings as
were used to ectimate Pije
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3. Updating the weigius: All weights in the network were incremented or decremented by a fixed
weight-step of 2. with the sign of the increment being determined by the sign of py = pi.

When a settling to cquilibrium was required, all the unclamped units were randomized with equal probability
on or off (cerrespunding to raising the temperature to infinity), and then the network was allowed to run for
the following tmes at the foilowing temperatures; [2@20, 2@ 15, 2@12, 4@10.* After this annealing
schedule it was assumed that the network had reached equilibrium, and statistics were collected at a

temperature of 10 for 10 units of time.

We observed thiree main phases in the search for the global minimum of G, and found that the occurrence of
these phases was relatively insensitive to the precise parameters used. The first phase beging with all the
wcights set 1o zero, and is characterized by the development of negative weights threughout most of the
network, implementing two winner-take-all networks that model the simplest aspect of the environmental
structure — only one unit in each visible group is normally active at a time. In a 4-2-4 encoder, for example,
the number of pessible patterns over the visible units is 28 By implementing a winner-take-ail nctwerk
among each group of four this can be reduced to 4 x 4 low energy patterns. Only the final reduction from 2°
o 22 low energy patterns requires the hidden units ta be used for communicating between the two visible,

groups. Figure Ja shows a 4-2-4 encoder network after 4 learning cycles.

Although the hidden units are exploited for inhibition in the first phase, the lateral inhibition task can be
handled by the connections within the visible groups along¢. In the second phase, the hidden units begin to
develop positive weights to some of the units in the visible groups, and they tend to maintain swinmetry
between the sign and approximate magnitude of a connection o a unit in ¥, and the corresponding unit in ¥,
The second phase finishes when every hidden unit has significant conaection weights to cach unit fn ¥, and
analogous weights to cach unit in Vi, and most of the different codes are being uscd, but there are some codes

that are used more than once and some not at all. Figure 3b shows the same network after 60 learning cycles.

Occasionally alf the codes are being used at the ¢nd of the second phase in which case the problem is solved.
Usually, however, there is a third and longest phase during which the lcarning algorithm socts out the
remaining conflicts and finds a global minimum. There are two basic mechanisins involved in the sorting out
process. Consider the conflict between the 1% and 4 units in Figure 3b, which arc both employing the code
{—.,+>. When the system is running without environmental input, the two unis will be on together quite
frequently. Consequently, p/, will be higher than p, , because the environmental input tends to prevent the

two units from being on together. Hence the learning algerithm keeps decreasing the weight of the

4 A . . . . ‘ ‘ .
Onc unit of dme is detined as the ime regquired for cach unit te be given, on average. one chance to change s state. This means that
if there are 7 unclamped unus, 3 time perind of 1 involves 7 mndom probes in which some unit is given a chance to change its state.

Hir

cor
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connection between the first and fourth units in cach group, and they come to inhibit cach other strongly.
(This cffect explains the variations in inhibitory weights in Figure 2. Visible units with similar codes are the
ones that inhibit cach other strongly.) Visible units thus compete for “tervitory” in the space of possible
codes, and this repulsion effect causcs codes to migrate away from similar neighbors. In additen to the
repulsion effect, we observed another process that tends to cventually bring the unused codes adjacent (in
rerrms of hamming distance) to codes that are involved in a conflic. The mechanics of this process are

somewhat subtle and we do not take the dme to expand on them here.
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re 3 Two phases in the development of the perfect binary encoding shown in Figure 2. The
wel hﬁ ¢ shown (A) after 4 learning trials and (B) after 60 learning trials.
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The third phase finishes when all the codes are being used, and the weights then tend to increase so that the
solution locks in and remains stable against the fluctuations caused by random variations in the cooceurrence

statistics. (Figure 2 is the same network shown in Figure 3, after 120 learning cycles.)

In 250 different tests of the 4-2-4 encoder, it always found one of the glebal minima, and once there it

remained there. The median time required to discover four different codes was 110 learning cycles, The

icngest time was 1310 learning cycles.

4.2 The 4-3-4 encader
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Rﬂ
!!!!
l.;.
!

= ==

=3 = F 3 5 S

Hﬁ
i

Figure 4. A 4-3-4 encoder that has developed optimally spaced codes.

A variation on the binary encoder problem is to give A more units than are absolutely necessary for encuding
the patterns in ¥, and ¥,. A simple example is the 4-3-4 encoder which was run with the same parameers as
the 4-2-4 encoder. In this case the learning algorithm quickly finds four different codes. Then it always goes
on to modify the codes so that they are optimaily spaced out and no pair differ by only a single bit, as shown

in Figure 4. The median time to find four well-spaced codes was 270 learning ¢cycles and the maximum time

in 200 tr1als was 1090.

4.3 The 8-3-8 encoder

With v=8 and A=13 it tock many more learning cycles to find all 8 three-bit codes. We' did 20 simulations,
running each for 4000 learning cycles using the same parameters as for the 4-2-4 case (but with a probability
of 0.02 of reversing each gff unit during noisy clamping). The algorithin found all 8 codes in 16 out of 20
simulations and found 7 codes in the rest. The median time to find 7 codes was 210 learning cycles and the

median time to find all 8 was 1570 cycles.
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‘The difficulty of finding all 8 codes is not surprising since the fracticn of the weight space that counts as a
solution is much smaller than in the 4-2-4 case. Sets of weights that use 7 of the 8 dilferent codes are found
fairly rapidly and they constitute local minima which are far more numcrous than the global minima and have
almost as good a value of G. In this type of G-space, the learning algorithm must be carcfully tuned to achicve
a global minimum, and even then it is very slow, We belicve that the G-spaces for which the algorithm is
well-suited are ones where there are a great many possible solutions and it is not essential to get the very best
one. For large nctworks to learn in a reasenable time, it may be necessary to have enough units and weights
and a liberal enough specification of the task so that no single unit or weight is essental. The next example

ilustrates the advantages of having some spare capacity.

4.4 The 40-10-4Q encoder

A somewhat larger example is the 40-10-40 encoder. The 10 units in A is almost twice the theoretical
minimum, but A stll acts as a limited bandwidth bottleneck. The learning algorithm works weil on this
problem. Figure 5 displays the resulting network. Figure 6 shows its performance when given a pattern in ¥
and required to settle to the corresponding pattern in ¥, Each learning cycle involved annealing once with
each of the 40 environmental vectors clamped, and the same number of times without clamping. The codes
that the network selected to represent the patterns in ¥ and ¥, were ail separated by a hamming distance of at

least 2, which is very unlikely to happen by chance. As a est, we compared the weights of the connections

‘berween visible and hidden units. Each visible unit has 10 weights connecting it to the hidden units, and to

avoid errors, the 10 dirnensional weight vectors for two different visible units should not be wo similar. The
cosine of the angle between two vectors was used as a measure of simmilarity. and no two codes had a similarity
greater than 0.73, whereas many pairs had similarities of 0.3 or higher when the same weights were randomly

rearranged to provide a centrol group for comparison.

To achieve good performance on the completion tests, it was necessary to usc a very gentle anncaling schedule
during testing. The schedule spent twice as long at each wemperature and went down to half dic final
wemperature of the schedule used during learning. As the annealing was made faster, the error rate increased,
thus giving a very natural speed/accuracy trade-off, We have not pursued this issue any further, but it may
prove fruitful because some of the better current modeis of the speed/accuracy trade-off in human reaction
tme experiments involve the idea of a biased random walk (Ratcliff 1978) and the annealing search gives rise

te similar underlying mathematics.



16

a H
th O
O O

Correct completions in 400 trials
- ~4 N [V [A]
O t Q n (8]
O 0 0 O O

n
]

wQ

cn
WC
on
rer

ol

5 Rep

So far, v
The ind!
kinds of
essentia;

{(Feldma

overa lz

Figure 30 A 40-10-40 euncoder network, The center column is group H, and the left und rigite
four cofumns are groups ) and ¥, activity



shines Hinton. SéjnOWSki,.& Ackley i7

400

350¢

300}

250

200L

150}

Correct completions in 400 trials

100t

50}

300 400 500 600 700 800 800 {000 1100 1200
Number of learning cycles

Figure 6: Compiletion accuracy of a'40-10-40 encoder during learning. The network was tested
by clamping the states of the units in ¥, and letting the remainder of the network reach
equilibrium. [f just the correct unit was on in V,, the tést was successful. This.was repeated 10
times for cach of the 40 units in V. For the first 300 learning cycles the network was run without
connecting up the hidden units. This ensured that each group of 40 visible units develeped
enough lateral inhibiton to implement an effective winner-take-all network. The hidden units
were then connected up and for the next 500 learning cycles we used “noisy” clamping, switching
on bits 10 off with a probability of 0.1 and off'bits to va with a probability of 0.0025. After this we
removed (e noise and this explains the sharp rise in performance after 800 cycles. The final
performance asymptotes at 98.6% correct.

S Representation in parallel networks

S0 far, we have avoided the issue of how complex coneepts would be represented in a Boltzmann machine.
The individual units stand for “hypetheses™, but what is the relationship between these hypotheses and the
%inds of concepts for which we have words? Some workers suggest that a concept should be represented inan

essentially “local™ fashion: the activation of one or a few computing units is the representation for a concept

{Feldman & Ballard, 1982), while others view concepts as “distributed” entities: a particular pattern of activity
ov . . .
vera large group of units represents a concept, and different concepts correspond to afternative patterns of

CUVily over the same group of units (Hinton, 1981a).
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One of the better arguments in favor of local representations is their inherent medularity. Knowledge about
relationships between concepts is localized in specific connections and is therefore casy to add. remove, and
modify. if some rcasonable scheme for forming hardware conncctions can be found (Feldman, 1981;
Fahlman, 1980). With distributed representations, however, the knowledge is diffuse. This is goed for
tolerance to local hardware damage, but it appears to make the design of modules to perform specific

functions much harder. [t is particularly difficult to sce how new distributed representations of concepts

could originate spontancousty.

In a Boltzmann machine, a distributed represcntation corresponds to an energy minimum, and so the problem
of creating a good collection of distributed representations is cquivalent to the problem of creating a good
“energy landscape.” The learning algorithm we have presented is capable of soiving this problem, and it
thercfore makes distributed representations considerably more plausible. The diffuseness of any one piece of
knowledge is no longer a sericus objection, becmsc the mathematical simplicity of the Boltzmann distribution
makes it possible to manipulate all the diffuse local weights in a coherent way on the basis of purely local

information. The formation of a simple set of distributed representations is iliustrated by the encoder

problems.

5.1 Cammunicating information between modules

The encoder problem examples also suggest a tnethod for communicating symbols between various
components of a parallel computational newwork,  Feldman & Ballard (1982) present sketches of two
impiementations for this task, using the example of the transmission of the concept “wormy apple”™ from
where it is recognized in the perceptual sysiem to where the phrase “wormy apple” cdn be generated by the
specch svstem, They argue that there appear to be ooly two ways that this could be accomplished. In the first
method. the perceprual information is encoded into a sct of symbols that are then transmitted as messages to
the speech system. where they are decoded inte a form suitable for utterance. In this case. there would be a
ser of gancral-purpoese cominunication lines, analogous to a bus in a convenuonal computer, that -.#ould he
used 15 e medium for all such messages from the visual system to the speech system. Feldman & Hallard
describe tie problems with such a system as:

¢ Complex messages would presumably have to be transmitted sequentially over the
communications fines. '

o Both sender and receiver would have to learn the common code for each new concept.
e The methed seems biclogically implausible as a mechanism for the brain.

The alternative implementation they suggest requires an individual. dedicated hardware pathway for cach

concept that is communicated from the perceptual system to the speech system. The idea is that the
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simultancous activation of “apple™ and “worm” in the perceptual system can be transmitted over private links
(o their counterparts in the speech system. The critical issucs for such an implementation are having the
necessary connections available between coneepts, and being able to establish new conncction pathways as
new concepts are learned in the two systems, The main point of this approach is that the links between the

computing units carry simple, non-symbolic informaltion such as a single activation level.

The benavior of the Boltzmann machine when presented with an cncoder problem demonstrates a way of
communicating concepts that largely combines the best of the two implcmentations mentioned above. Like
the second appreach, the c&mpu{ing units are small, the links carry a simple numeric value, and the
computational and connection requirements are within the range of biological plausibility. Like the first
approach, the architccture is such that many different concepls can be transmitted vver the same
communication lines, allowing for effective use of limited connections. The learning of new codes 0

represent new concepts emerges automatically as a cooperative process from the G-minimization learning

algorithm.

6 The Shifter Problem

The enccder example is a good test case for the learning algorithm because it is clear how the hidden units
must be used. However, the encoder example is very untypical in an important way: the orly rcason the
hidden units are nceded at ail is that the visible units do not have the appropriate direct connections. For
most interesting tasks, hidden units are needed even if cach visible unit is connected to every other because
the surn of a lot of pairwise interactions is incapable of capturing any higher-order statistical structure that

exists in the ensemble of paterns which the environment clamps on the visible units.

A simple example which can only be solved by capturing the higher-order structure is the shifter problem.
The visible unizs are divided into three groups. Group ¥ is a one-dimensional array of 3 units cach of which
is clamped on or off at random with a probability of 9.3 of being an. Group ¥; also contains 8 units and their
states are determined hy shifting and copying the states of the uniis in group ¥, The only shifts altowed are
one to the left, one to the right, or no shift. Wrap-around is used so that when there is a right shift, the state of
the right-most unit in ¥, determines the state of the left-most unit in ¥,. The three shifts are chosen at
random with equal probabilities. Group ¥ contains three units to represent the three possibie shifts, so atany

one time one of them is clamped on and the others are clamped off,

The problem is to “recognize” the shift — i.e. to complete a partial input vector in which the states of ¥, and
¥, are clamped but the units in ¥, are left free. It is fairly easy to sce why this problem cannot possibly be

salved by just adding together a lot of pairwise interactions between units in V), Vi and V. If vou know that
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units into feature detectors.of this kind, and whether it will generate a set of detectors that work well together
cather than duplicating the same detector. The set of weights that minimizey (7 defines the optinal set of

detectors but it is ot at all obvious what these detectors are, nor is it obvious that the learning algorithun is

capable of finding them.

Figure 7 shows the result of running a variation of the standard learning algorithm. Of the 24 hidden units, 5
seemn to be doing very little but the remainder are sensible looking detectors and most of them have become
spatially localised. Onc type of detector which oceurs several times consists of two large negative weights, one
above the other, flanked by smaller excitatory weights on each side. This is a more discriminating detector of
no-shift than simply having two positive weights, one abave the other. It is interesting to note that the various
ineances of this feature type all have different lucations in ¥, and V), even though the hidden units are not

connected to cach other. The pressure for the feature detectors to be different from each other comes from

the gradient of G, rather than from the kind of lateral inhibition among the feature detcctors that is used in

“competitive learning” paradigms (Rumethart & Zipser, 1984; Fukushima, 1980).

The shifter problem is encouraging because it is a clear example of the kind of learning of higher-order

structure that was beyond perceptrons, but it also illustrates several weaknesses in the current approach ©

learning:

1. The weights are fairly clearly not optimal because of the § hidden units that appear to do notiiing
useful, and further learning did not fix this. Also, the performance is not as zoud as it could be.
When the states of the units in ¥} and ¥, are clamped and the neovork is anneated gently w half
the finat temperature used during learning, the shift units quite frequentiy adopt the wrong states.
If the number of on units in ¥, s 1, 2, 3, 4. 5, 6. 7 the percentage of correctiv recognized shifis is
509 719 1% 86% $9% 82% 66% respectively, The wide vartution in the number of active units in
¥, naturally makes the task harder to learn than if a constant proportion of e units were active.

2 When the “standard”” version of the learning algorithm described above was applied to the shifter
probicm there was a pronounced wendency for some of the kidden units to develop weights that
causcd them o be permanently off. This “suictde™ effectis hard to recover from because if a unit
is always off. its co-uccurence stutistics will alwuys be the same (zero) in both the clamped and the
free-running phases, and 5o the estimated derivative of G with respect to any of its weights will be
zero. Seme of the reasons for the suicide effect are discussed by Derthick (1984}, To avoid it we
used a variation of the learning algorithm that was suggested and tested by Barak Pearlmutter,
This variation is described in Section 6.1,

_The learning was very siow. [t required 9000 learning cycles each of which involved reaching
equilibrium 20 times with clamped iaput vectors and the same number of times without any
clamping. The speed of learning is discussed further in Section 7.

()
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6.1 Keeping the weights small

The lcarning algorithm presupposes that the network reaches thermal cquilibrium. and it uses the co-
pccurence statistics measured at equilibrium to create an energy landscape that models dhe structure of the
ensembie of vectors produced by the environment. Unfortunately there is nothing in the learning algorithm
to prevent it from creating an energy landscape that contains large energy barriers which prevent the network
from reaching cquilibrium. If this happens, the network may perform badly. and more importantly, the
statistics that are collected will not be cquilibrium statistics so there is no guarantee that the changes in the

weights will improve G.

One way to avoid the large weights that tend to make it hard to achieve equilibrium is to keep ail the weights

small. A simpic way of doing this is to redefine the quantity to be minimized as:
G+ Y (w)
i

where 4 is a cocfficient that determines the relative impertance of minimizing G and keeping the weights
small. The effect of the extra term is to make all the weights decay towards zero by an amount proportional to
their current magnitude. This ensures that large weights which are not inpertaat for achieving 2 low value of

G tend to shrink. For the shifter exampie shown in Figure 7 the value of /1 was 0.0003.

7 The speed of learning

The examnples presented here ook a long time to learn even though they are very small-scaie. ihe time taken
is not just a consequence of using serial machines w simulate paralla netwocks. Even in o truly paralicl
machine® the learning would be slow because the gradient descent requires 4 great many anncalings with

different input vectors. This slowness raises several questions:

1. How does the learning time scale with the size of the problem?

7. Can the learning algorithm be generalized to exhibit the kind of “onc-shot” leaming in which a
persor is told a fact once and then remembers it for a long time?

3. How much faster is the learning when the connectivity of the network and the initial values of the
weights are approximatcly correct for the task at hand (as they might be for pars of the visual or
motor systemn that have had time to evoive an appropriate architecture)?

4. Do goed solutions generally have a particular statistical structure?  If so. it may be possibie to
impose strong a priori domain-independent constraints on the values of the weights or the
connectivity that will constrain the search for a good set of weights 10 3 subspace. For example, it

5.-\ truly parallc! machine requires the anncaling process o be tolerant of time delays. When one unut mzkes s decision it witl be
“unaware af the states of other units that changed very recently, and this owst not prevent the network 5 em reaching cquilibrium, See

Section L1 for a discussion of time delays.
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may be that for many problems a layered network with lateral inhibition within a layer and
excitation between lavers is a geod solution. If so, the scarch can be confined o this subspace of

the weight space,

We do not yet have good answers to any of these questions, but some comments on “one-shot” learning and

on the way learning-time scaies with the size of the problem may be helpful.

7.1 One-shot learning versus regularity detection

In the shifter problem there are 19 visible units and heace 2 passible vectors that can be clamped on the |
visible units, Of these, only 3 x 28 actually occur, This is far too many for each pattern to be learned as an
independent fact. The only way to learn the task is to capture the relatively low-order underlving regularities,
and this i3 what the hidden units do. It is not surprising that the learning is slow. To reach the weights shown
in Figure 7 required 20 x 9000 samples, but this does not seem all that excessive when the problem is

expressed as learning a particular subset of 768 out of half a million patterns. A lot of samples must be taken _

before this subset is revealed.

It is hard for people to realise the difficuity of the task because Figure 7 is laid out in such a way that our
existing notions of spatial locality make it easy o express the task. If the visible uniis were randomly
reordered, the learning algorithm would do just as well because it starts from scratch. but people would find
the task much harder. When it creates localised feature detectors among the hidden units, the learning

algorithm is actually constructing spadal locality,

Learning a single new fact that can be expressed in terms of familiar concepts is very ditferent from learning
from scratch, pariicularly if the fact is one which is plausible given the existing kavwledze that the system has.
In the Boltzinann machine, the existing knowledge is an energy landscape. and to learn a new fact is © create
a new energy minimum. For a plausible fact this means taking a state which had an energy somewhat higher
than the energy of the known facts and lowering its energy, For successful one-shot learning it is important
that creating this new minimum does not disturb the existing minima too much. If we use lecal
represcntations in which one unit is dedicated to each fact, only the connections to this unil aced to be
modificd, and so it is obvious that a new fact can be incorpofntcd without incerfering with existing facts. [Fwe
use distributed representations it is less obvious, because each weight will be involved in many minima, and

so changing the weights to lower one minimum will interfere with many others.

The following reasoning shows that the interference effect can be made very small by using patterns of

activity in which the fraction, £ of the units which arc on at any once time is small. To keep the mathematics

simple we assume a version of the learning algorithm that performs gradient descent by changing cach weight
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by e{py — pjj). We also assume that all the global states which cecur have the same fraction of o bits. This
means that the total number of pairs of on units remains constant.  Hence, the mean values of pi and pf;

averaged over all connections must be the same and so the total of all the weights must remain constant.

Suppose that the units in the network are totally connected.? Suppose also that a set of global states are used
t estimate py before changing the weighs. Now consider the effect of adding a single additional global state,
a, to this set. This will have two effects:

1. The weishts between units which are both on in « will get a bigger increment than before. Define

§ to be the size of this increase ia the increment.

2. To keep the sum of the weights constant, the remaining weights must have a reduction of
Fi8/(1 = Y in their expected increment.

So the global state « will have its energy lowered by N§ where N is the number of pairs of on units in 2 global
state. A global state, 8, that is randomly related to a wiil have about Nf? of its weights incremented by §
more than before and the remainder incremented by £°8/(1 — £7) less than before. The net offect of the
occurence of a on the cnergy of 8 will therefurs be about 0. and this effect will be composed of two
contlicting effects each of which is only about f? of the change in the energy of a. So provided << 1 there
will be very little unwanted mansfer of learning. Only patterns which are sigaificantly similar w « will have
tieir energies significantly effected, and this is just what is aced to achieve generalization. Hence, onc-shot

learning is possible without significantly disrupting the existing knowledge.

7.2 How the learning-time scales
The question of hew the learning tdme depends on the size of the problem is very important, but icis also very
complex because many other factors have 10 be scaled at the same tme and it s not at all obvicus how they

should be scaled. The factors inciude:

L. The rato of hidden to visible units.
2. The number of connections per unit.
3. The number of constraints in which cach visible unit is invelved.

¢. The order of the underlying constraints; If the constraints among the visible units become higher
order as the problem gets bigger, the problem may get much harder.

3. The compatibility of the constraints: [f Jifferent constraints typically contlict with one another,
the problem may become much harder as its size increases because many constraints must be

e use of sparse connectivity docs not affect the argument
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traded off against cach cother and this means that the system will tuke a long time to reach
equilibrium and wilt only perform well if the various weak constraints have just the right relative
strengihs.  If, on the other hand. the constraints typically agree with cach other the global
minimum will be over-determined.”. It will be possible to reach cquilibriwm rapidly. and the
lcarning algorithm will only need w find a subsct of the constraints In order to achieve good
performance. '

The encoder problem iliustrates some of these points about scaling. The 8-3-8 encoder takes much longer to
achieve § different codes than the 4-2-4 wkes o achieve 4 different codes. However, the 40-10-40 encoder

achieves almost perfect performance in fewer annealings than the 3-3-8 encoder.

There are an exponential number of valid constraints that the hidden units can capture in the encoder
problem. These constraints have the form: If the active unit in ¥ is in subsct 3, then the active unit in ¥,
must be in the equivalent subset within V). If the subset, S, is small the hidden unit will rarely be active and
so it will convey little information on average. The best solution is for each hidden unit to dedicate itself o
representing a different subset of about half the alternatives. The subsets should be chosen so that when a
unit in ¥} is activated, the represented subsets that contain the unit ave sufficient to encode which unit it is.
For the 4-2-4 and 8-3-8 cases this can oaly be done by choosing orthogenal subsets cach of which contains
exactly hail the aliernatives. For the 40-10-40 cuse there is much more freedom in choosing the particuiar

constraints that the hidden units should represent, and that is why the learning is reladyvely easier.

7.3 Degeneracy and tha speed of learning
The small examples presented here require each and every visible unit 1o behave correctly. This may he
unreasonabie for larger problems. [t may well be sufficient to have rather broad. degenerate energy minina

in which many of the visible units are not strongly constrained to be on or off. In large networks it will

* probably be much easier to construct and modify these degenerate minima than (0 construct decp narrow

minima in which the state of every unit is crucial, Narrow decp minima require large weights because

changing the states of a few units must make a big change in the cnergy. Broad minima can be made degp

without any of the weiglits being large.

A further interesting property of broad minima is that they suggest a way in which one concept can be
differentiated into several more refined ones. By varying the weights between units that are net firmly on or
off within a minimum it is possible to medify the shape of the floor of the minimum and thus to differentiate

one large minimum into severai closcly related minima which are only separated by small energy barners.

The problem of labeling a line-drawing in computer vision has s property. Simple drawings without shadows are ofien highly
ambiguous. More complex drawing with shadows cun be caster 1o label becatise nore constraints conspire together to rule out all but he

correct labeling {Waltz, 1575)
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This kind of differentiation could be used w mode! what happens when a concept like “dog™ gets refined into

.

two more specific concepts like “big nasty dog” and “little nice dog.” The small barricrs between cuncepts
within the same general class should make it casy for the network to “side-track™ to a neighboring, similar

concept when the current concept does net quite match the data, as suggested by Minsky {1975).

When a neural model does not work as weall as was hoped, it is not uncommon for its creators to claim that if
only they had a really big network everything would be fine. Despite this unfortunate tendency, we feel that
the degencracy of large broad minima may be very important for the speed of learning and the case of scarch,

and so large networks may be essential because degeneracy cffects disappear in very small networks.

8 Reducing higher-order constraints

An important way of distinguishing betwcsn constraints is by their “order.,” A first-order constraint involves
only a single variable; a system consisting of only first-order constrainss is trivial, since the constraiats can be
cons;idcred independently. Second-order constraints, invoiving two variables, are the simplest constraints that
can require a combinateric search. Constraints which necessarily involve more than two variables will be
called “*higher-order,” When no swrong constraints are involved, weak higher-order constraints among three
or more given variables can always be approximated by introducing further variables and using only weak
first and second-order constraints among the larger set of variables. This means that a general architecture for
solving problems involving weak constraints need only impleinent ﬁ-rst and sccond-order constraints directly,

provided it can automatically rcduce hizher-order constraints to lower-order oues among a larger sct of

variables.

Seoime weak constraiats on a set of variables that appear to be higher-order can be expressed as cotlections of
. first and second-order constraints without any cxtra variables. Consider, for example. the constraint on »
buoléan variables “[f exactly one variable is truc. win one point, otherwise lose at least one point™. This
appears to an aM-order constraint, but it can actually be expressed by the following collection of first- and
second-order constraints: For each variable “Win one point if the variable is true™. and for cach pair of

variables “Lose two puints if the variables are both true”.

On the other hand, some third-order constraints cannot be reduced to first- and second-order ones without

introducing extra variabies. The prototy pical example of such a constraint is the exclusive-OR tunction: €
should be wue if A is true or £ s true. but not both. The difficulty is that enly the combination of the states of
A and B constrains the state of C: the sate of A or B alone says nothing about the state of C. Scction 3.1

discusses this key example at length and demonstrates how the additon of an exira variable makes the

reduction 1o sccond-order possible.
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[n gcncral, there may ‘be an exponcntially large number of higher-order constraints among a given sct of
-

variabics. A practical system will have only a limited number of extra variables at its disposal for doing the
ceduction to second order, so it musi make.compromises in sclecting the best reduction. Determining which
higher-order constraints to reduce, and what to reduce them to, is a central problem for efficient constraint-
hased knowledge representation. The genceral purpose learning algorithm presented in Section 3 can be
viewed as an automatic method of reducing higher-order constraints amoeng a set of variables t¢ sccond-order
constraints among a larger set. One can view the set of states of the visible units on which the machine is
wrained as a single, very high-order, disjunctive constraint. To perform search efficiently, the machine must
reduce this constraint to a large set of first and second-order constraints, and to do this it must typically use

extra “hidden™ units that are not mentioned in the task specification.

8.1 An example

The approach and the key issues can be made clearer by considering in some detail a very simple example,
Suppose an environment consisted of the following equiprobable vectors: {<0,0.0><0,L.1><1.0,1><1,1,0>}. In
this case, there is an obvious rule that characterizes the set: the third element is tie exclusive-GR of the first
two. That is not the onaly such rule; it could also be phrased as the second being the exclusive-OR of the (irst
and the third, or as the set of all triples of bits with even parity. The difference between these rules is in how
the instances of the problem are specified. For the {irst rule, an instaﬁcc would provide consirainis on the
first and second elements, and in finding a solution state that satisfied those constraings, the svsiem could
naturally be viewed as comptiting the exclusive-OR of the first two clements and representing the result in the
third. With the third rule. any one or two of the elements might be constrained by an instance. and the system

could be viewed as finding an even parity triple that satisfics the constraings of the instance.

This examnple is simple because the set of solution states is so small that a learning system of any significant
size could simply produce an internat list of the solution states and enumerate them to find a solution state
that fits any particular partial pattern. Interesting constraint satisfaction problems are rarely so cmﬁpact. To
‘carn 0 be an effective problem-solver. a systern must have the ability to extract rules from a presentation of

solution states; to extract regularitics that tend to characterize membership in the set of solution states.

On the other hand, this example is non-trivial for one important reasgn. The state of any one ¢lement, by
itself. provides no infornation about whether any other element should be one or zero. For each pair of
clements, the sclution set contains all four combinations of ones and zeros. 1t is for precisely this reason that
Perceptrons were unable to compute the exclusive-OR function (Rosenblatt, 1961; Minsky & Papert, 1963).

A single-level decision unit is unable to capture the distinguishing feature of all characterizations of this

solution sct: the states of two of the units, wken toygether, determines the third.
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For the same reason, 2 Boltzmann Machine with only three interconnected units is unable to represent this
solution set. Flypothesizing that the first clement is a 1, by iself, does not constrain hypotheses about the
second or the third sufficiently to solve the problem. However, notice the following decomposition of the set
of solution states: S, ={<0,00><0,1,1><1.0.1>}.5;={<L.LLO>}. S alone is a partial description of the
inclusive-OR function, and for that set there are constraints between pairs of units.¥ The hypothesis that the
first unit is a 1 constrains the third unit also to be a one, and analogously for the sccond unit. S, can be
represented by linking the first and second units to the third with positive weights, and providing the third

unit with a negative bias, so that in absence of input from either of the other units, the third unit will tend to

be off,

The network will now cerrectly find the clements of S, but fails on ;. preferring <1,1,1> over the correct
state. By adding a hidden unit, however, this preference can be overridden. The hidden unit is given positive
weights to the first two units, a negative weight to the third unit, and a bias low enough that both of the first
two units must be on for the hidden unit to be likely to come on. The magnitudes of the weights are chosen

so that the negative weight between the hidden unit and the third unit overrides the positive weights between

the third unit and the first two. Figure 8 shows the resulting network.

Figure 8: A Boltzmann Machine that computes the exclusive-OR functicn

[t is worth emphasizing that connections ia a Boltzmann Machine are synmetric; inside the machine there is
no concept of “input lines” or “output lines.” For example, it can cause confusion to think of the hidden unit
in the exclusive-OR nctwork as taking the states of the first two units as “input”, and affecting the state of the
third unit as “output.” There is no preferred direction of causal flow through a Boltzimann Machine, there aré

only states and energics assoctated with those states. Units function as “inputs™ when they are clamped by the

S'I‘her*:- are other decompositions which work equally well.
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environment and therefore cannot be changed by the network, and they function as “outputs” when they are
not clamped, so with the pattern completion appreach that we use in this paper, different instances of the

same problem can completely redefine the notions of input and output.

The cxclusive-OR example is a very simple iilastration of a very hard general problem that a learning system
must face: the task of discovering and representing the higher-order regularities of the solution set, those that
do not manifest Lhcm1seives as constraints on individual units or constraints between pairs of visible units.
Hidden units are not directly constrained by the instances in a solution set and are thus available for reducing
these higher-order constraints. Based on the environment and the structure of the network, a learning

algorithm must discover distinctions that are helpful for solving the problem, as was the distinction between

S, and §, above.

9 Bayesian inference

Bayesian inference suggesws a general paradigm for perceptual interpretation problems. Suppose the
probability assbciated_ with one unit represents the probability that a particular hypothesis, A, is correct.
Suppose, also, that the “true” state of another unit is used to represent the existence of some evidence, e

Bayes theorem prescribes a way of updating the probability of the hypothesis () given the existence of new

evidence &

L
=1/ [1+e \ pB) pCelR)

where % is the negation of h.

The Bayes rule has the same form as the decisicn rule in (5} if we identify the probability of the unit with the

probability of the hypothesis. The bias of the unit implements the a priori likelihcod rate and the weight

implements the effect of the evidence provided by' the state of the other unit (assuming the temperature is

fixed at 1):
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Bayesian inference with one picce of evidence can therefore be implemented by units of the type we have
been considering. There are, however, several difficultics with this simple formulation.
: This equs
1. It provides no way for the negation of the evidence e to affect the probability of 4. ,
correct er:
2. Tt does nat lead to symmetrical weights when two units affect each other since plehy/ pldh) is more cor-
generally not_equal to p(He)/ plhle). has the fo
3. Although it can easily be generalized to cases where there are many independent pieces of
evidence, it is much harder to generalize to cases wherc the pieces of evidence not independent of Systerns
each other. This assy:
. . . ) ) oo exper
A diagrammatic representation of the way to solve the first difficulty is shown in Figure 9. _—r
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Figure 9: How to implement the required effect of an off unit. The effect of ¢is implemented by the factor
putting it into the bias term for A, and by subtracting an equal amount from the weighting eorithe
coefficient from e, so that when e is in the true state the effect of the bias term on A is cancelled aigonithic
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Weotal = Whe =™ Wiz

(e Ah)[1—p(e) — p(h) + ple A k)]

1P p(
[p(e) - pe A )l {p(A) = p(e A h)]

This equaticn is symmetrical in e and A, 50 in solving the problem of how to make the negation of ¢ have the
correct offect on A we have also solved the second problem —— the required weights are now symmetrical. The
more complicated weight in the resultant equation does not alier the fact that the probability of a hypothesis

has the form of the Boltzmann distribution for a unit with (wo energy states.

Systems which use Bayesiar inference often make the assumption that pieces of evidence are independeant.
This assumption is motivated by the belief that it would be tco difficuit to discover all the dependencies and
100 expensive t store them even if they were known. Unfortunately, the independence assumption is hard to
justify and it is typically a poor approximation in systems with many mutualiy interdependent hypotheses.
This has led people working in the domain of medical diagnosis, tor example, to reject Bayesian statistics in
faver of more discrete, symbolic systems that use underlying causal models. Recenily, however, Charniak
(1983) has argued that the two approaches can be reconeiled. Ttis possible to use Bayestan statistics and to do
much better than the independence assumption by using a relatively small set of additional “causal factors”
which capture the most significant non-independencies. These causal factors are analegous to our hidden
units because they are not part of the definition of the task — which is to relaté diseascs to symptoms — but

they arc useful because they allow the higher-order structure of the relationships to be expressed.

The analogy can be taken further. Any practical medical diagnosis system that attempted te extend the
aoplicability of Bayesian statistics by using underlying causal factors would probably get the appropriate-
factors from medical experts. [t is tempting, however, to ask if there is an automatic procedure for deriving .
the factors from the data, or for fine-tuning the factors provided by experts. This is just what our learning
algorithm does. Given some hidden units, it adjusts the strengths of their connections to the visible units and

to each other so as to turn them into a useful set of “causal factors.”

To summarize: The independence assumption keeps things simple, but it is likely to be wrong ‘or complex
probiems. The fuil sct of inter-dependencies (higher-order statistics) s much too large 1o acquire or o store.

A good compromise is to focus on the most significant violations of independence and to use extra “causal”
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factors to express them, The hidden units of a Boltzmann machine are just like these causal factors, and the

learning algorithin can discover cffective ways of using them.

10 Sequences

There is a serious obstacle which appears to prevent Boltzmann machines from modeling sequential symbal
processing: At thermal equilibrium, there are no consisternt sequences, and so a Beltzmann machine of the
kind we have described is unabic to produce sequential behavior, 1t can only respond to environmental

changes, it cannot generate internal sequences,

It is tempting, when confronted with this problem to abandon the symmetry assumption and to use
asymmetrical weights to encede sequential behavior. Sequences then correspond to continuous paths through
phase-space. This is certainly a possibility (Hopfield, 1933), but it is incompatible with the central idea of
performing consiraint-satisfaction searches by relaxing to equilibrium under the influence of sustained input.9
[f systematic asymmetries are used to encode sequential information, the whole power of the scarch technique

and of the resultant learning algorithm is destroyed.

What is at issue here is not just a minor medification. Systems with symmetric weights form a very interesting
class of computaticnal device becausc their dynamics is zoverned by an energy function.*This is what makes
it pessibic to analyze their behavior and to use them for iterative constraint-satisfaction. They form an
important natural class precisely because they lack the ability to go through regular sequences. [n their
influential expioration of Perceptrnns. Minsky & Papert (1968: p 231) concluded that "Muitlayer machines
with loops cleurly cpen up all the quesdons of the general theory of automata,” This statement s veny
plausible but recen: developments suggest that it may be misleading because it igrores the sy mmetric case
and it scems t¢ have led to the general belief that it would be impossible to find an interesting generalization

of perceptrons. and in particular a generalized perceptron convergence thecrem for multi-layered networks.

An alternative to simply mixing in some asymmetric links in order to allow sequences is to separate out the
symmetric and asvmmetric components. A system could be composed of a number of internatly symmetric

modules that are asymmetrically connected to onc another. Each module could then perform constraint-

9[1 is. of course, possible to represent sequences in a symmetric Boltzmann machine, If several different groups of units are dedicated
to the diferent temporal preces of a sequence. the states of these groups can represent the “fillers™ of these temporal “slots.” and the
welghts can be set s0 as (o creale energy minima for particular combinations of temnparal slot filiers. It is then possidle to recali the rest of
a1 sequence from some fraction of it However. this ability to recreate 2 sfatic “spalial” represcniation of 4 sequence is quite different
7rom the ability to preceed through the scquence. It does not require any temparal regularity in the internal states of the machine.

‘OOne can easily write down a similar encrgy function for asyrmunetric nelworks, but this energy function docs not govern the behavior
of the network when the links are ziven their normal causal interpretation.
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satisfaction scarches, with tie asymmnetric inputs to the module acting as boundary cenditions that determine
the particular problem it has to solve at any momcent.  Given an architecture of this kind, it might be
appropriate to use very different kinds of deseription at different time-scales. In the short term, the modules
would perform paratlel iterative constraint-satisfaction searchies. In the longer term, the resuit of cach scarch

could be viewed as a single step in a strictly serial process, with each search setting up the boundary

conditiens for the next.

The idea of a coarse-graincd, scquential description that is implemented by a serics of parallel constraint-
satisfaction searches seems to fit quite well with the idea of a production system architecture in which all the

heavy computational work is done by a parallel “recogrition process™ that decides which rule best fits the

current state of working memory.

One of the major difficulties in implementing this kind of matching is to ensure that there is a consistent sct of
bindings between the variables in a rule and the constants and variables of the instances in working memory.
Discovering a consistent sct of bindings is called unification and it requires a rather flexible matching process.
Newell (1973) has suggested that this kind of flexible matching acts as a sequential botteneck in people.
Hinton (1981) describes a parallel network that is capable of performing the ecquivalent process in
objcct-recugnition.u This rervork has the interesting preperty that it can only settic on one match at a time.
The settling process performs a large parallel search among alternative “rules” and “bindings” but the oniy

way 1o ensure consistency of the bindings is to settie on a single match.

There are clearly many difficult problems in implementing production sysiems in a cotlection of Boltzmann
muachine modules, but we feel that this “discrete symbolic™ approach may be more fruittul than tying to
model sequences by continuous paths through stae space, and it may help to explain how a vellection of

massively parallcl rather noisy modules can behave like a machine that manipulates discrete symbolb

according to formal rules.

11 The relationship to the brain

One of the inain reasons for studving Beltzmann machines is that they bear some resemblances to brains. The
hope is that by studying a simpie and idealized machine that is in the same general class of computational
device as the brain, we can gain insizht into the principles that underlie biological computation (especially the

kinds of computation that occur in mammalian ncecortex). This is ciearly a vain hope if there are

In object recognition the probtem is to find the viewpoing: independent obicct-model that best fits the current collection of
viewnoint-dependent features. The objectmodels arc like aules and the viewer-centered foatures are like instances in werking memory.
The viewing transform that relates viewer-centered and object-centered foatures is like the set of variable bindings.
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irreconcilable differences between the cortex and Boltzmann machines that are crucial to the way Beltzmann

machines compute. In this section we discuss some of the most obvious differences.

11.1 Binary states and action potentials
Neurons arg compiex biochemical entities and the simple binary units studied here are not meant to be literal
models of cortical neurons. However, two of our key assumptions, that the binary units change state

asvnchronously and that they use a prebabilistic decision rule, scem closer to reality than a model with

synchronous, deterministic updating.

The energy gap for a binary unit has a rofe similar o that played by the membrane potential for a neuron:
-bOLh are the sum of the excitatory and fnhibitory inputs and both arc used to determine the output state,
However, neurons produce action potentials — brief spikes that propagate down axons — rather than binary
outputs. When an action potential reaches a synapse, the signal it produces in the poszsynaptié neuron rises o
a maximum and then exponentiaily decays with the time constant of the membrane (typically around 5 msec
for neurons in cercbral cortex). The effect of a single spike on the postsynaptic ceil body may be further

broadened by electrotonic transmission down the dendrite to the cell body.

The crergy gap represents the summed input from all the reeently active binary units. If the average time
between updates is identified with the average duradon of a postsynaptic potcatial then the binary pulse
between updates can be considered an approgimaiion w the postsynaptic potential. Although the shape of a
single binary pulse differs significantly from a postsynaptic potential, the sum of a large number of stochastic
pulscs is independent of the shape of the individual pulses and depends only on their amplitudes and
durations. Thus for large networks having the larze fan-ins typical of cerebral cortex {around 10.000) the

binary approximation may not be too bad.

11.2 Implementing temperature in neurons

“What significance could the probabilistic decision rule in Eq. (5) have for neurons, and in particular, what
does the temperature correspond to and how can it be controlled? The membrane potential of a neuron is
‘ graded, but if it exceeds a fairly sharp threshold an action potential is produced followed by a refractory
period lasung severai msee during which another action potential cannot be elicited.  If Gaussian noise is
added to the membrane potential, then even if the towal synaptic input is below threshold, there is a finite

probability that the membrane potential will reach threshold.

The amplitude of the Gauassian noise will determine the width of the sigmoidal probability distribution for the

neuren to fire during a short time interval, and it therefore plays the role of temperature in the model.
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Figure 10: Two superimposed curves. One is the sigmoid function of Figure 1. The other is the
cumulative area under a Gaussian, which gives the probability that the throshold of a unit will
be exceeded by the sum of its encrgy gap and some Gaussian noise with mean 0. if the standard
deviation of the Gaussian is chosen appropriatcly, the two curves acver differ by more than about

1%.
Surprisingly, a cumutative Gaussian is a very good approximation to the required probability distribution
(Figure 10). [nwacellular recordings from neurons show that there is stochastic variability in the membrane
potential of most neurons, in part due (© fluctuations in the transmitter released by presynaptic terminals,

Other sources of noise may also be prescat and could be concrolled by cellular mechanisms.

In the visuai cortex of primates single neurons respond to the same visual stimulus with different sequences of
action patentials on each trial (Seinowski, 1981). In order to measure a repeatable response the spike trains
arc typically averaged over 10 trials. The result. calicd the post-stimulus time histogram, gives the probability
for a spike to occur as a function of the time after the onset of the stimulus. However, this averising
procedure throws out alt information about e varance of the noise, so that there is no way to determine

whether the noise varies systematically during the response 0 the stimulus or perhaps on a longer time scale

white the stimulus is being attended.

Unlike the bulk of the brain, which is composed of many morphologically different nuclet, the cerebral cortex
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is relatively uniform in structure. Different areas of cerbral cortex are speciaiized for processing information
from different sensory medalities, such as visual cortex, auditory cortex, and somatescnsory cortex, and other
arcas are specialized for motor functions: however, all of these cortical arcas have a similar anatomical
organization and arc more similar to cach other in cytoarchitecture than they are to any other part of the
brain. Many problems in vision, specch recognition, associative recall. and motor control can be formulated
as scarches. The similarity between different areas of cercbral cortex suggests that the same kind of massively

paraliel searches inay be performed in many different cortical areas.

It may be difficult to arrange for all neurons in a network to have the same amplitude of noise. How sensitive

are our statistical results to the assumption that all binary units are making decisions at the same emperature?

The effect of variations in the temperature was tested in large-scale simulations of a problem reported in

{Sejnowski, Hinton, Kienker, & Schumacher, 1984). Random variations in the temperature from unit to unit
of up to 25% did net significantly affect the annealing and equilibrium solutions. The effect of variations in

temperature on icarning has not been studied,

11.3 Asymmetry and time-delays

In a Boltzmann Machine of the kind we have presented all connections are symmetrical. It is very unlikely
that this assumption is sirictly true of neureas in cerebral cortex. However, if the constraints of a problem are
inherently symmetrical and if the network on average approximates the required symmetrical conrecivity,
then random asymmetries in a large network will be reflected as an increase in the Gaussian noise in cuch
unit. Systernatic asymmetries may have other purposes. For example, sume interncurons are thought tu have
only nhibitory links to other ncurons, and these could serve as automatic gain controls to keep a network

within a narrow operating range of firing rates.

To sec why random asymmetry acts like gaussian noise, consider a symmetrical network in which pairs of
units are linked by two equal one-way conncctions, one in each dircction. Now. perform the following
cperation on all pairs of these one-way connections: Remove one of the connections and double the sirength
of the other. Provided the choice of which connection to remove is made randomly. this operation will not
alter the expected value of the input to a unit from the other units, On average, it will “see” half as many
other units, but with twice the weight. So if a unit has a large fan-in it will be able o make a good unbiased
estimate of what its total input would have been if the links had net been cut. However, the use of fower,

larger weights will increase the variance of the energy gap, and will thus act like added noise.

The idea that a large fan-in is nceded o reduce the effects of randem asymmetries has an interesting

consequence for artificially produced systems of tiis kind. There may be a trade-off between ssmmetry and

fan-in. [n systems like the brain where connections are grown it may be hard to cnsure symmetry, so a large
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fan-in may be essentiai (Cortical pyramidal cells typically receive between 10% and 10° input connections). In

artificial systems it may be hard to achieve very high lan-ins, but this may not be essential provided the

connections are symmetrical.

The analysis of the effects of tme-delays is somewhat more complex, but simuladons suggest that time-delays
act like added noise, and preliminary mathematical results {(Venkataraman Venkatasubramanian, personal

communication) show that this is truc to first order provided the fan-in is large and the individual weights are

small compared with the energy gaps.

The main difficuity in the treatment of both asymmetry and time-delays is that it is hard to know how they

will interact with the learning aigorithim. Tt is quite pessible, for example, that a network which starts with

random asymmetry will develop systematic asymmetry.

12 Conclusion

The application of statistical mechanics to constraint-satisfaction searches raiscs a greal many issues fiat we
have only mentioned in passing. Some of these issues arc discussed in greater detail clsewhere: Hinton and
Sejnowski {1983) describe the relation to more conventivnai relaxation technigues; Fahlinan, Hinton and
Sejnowski (1983) compare Boltzmann machines with some altetnative parallel schiemes, and discuss some of
the knowledge representation issues: Geman and Geman (1983) describe a very similar modet. developed

independently, and discuss its relationship to Markev random lields.

The two main idess that led to the Boltzmann Maching are that neise can help with scarch, and that
Bolizmann distributions make it possible to assign credit on the basis of foca/ information in a non-linear
network. 1eis interesting that a similar approach can be derived from entirely different considerations. While

investigating how to perform computation reliably with unreliable components, Yon Neumann was fed t the

following conclusion:

All of this will lead to theories {of computation] which are much less rigidly of an all-or-none
nature than past and present formal logic. They will be of a much less combinatorial, and much
more analytical, character. In fact. there-are numerous indications to make us believe that tis new
system of formal logic will move closer o another discipline which has been little linked in the
past with logic. This is thermodynamics. primarily in the form it was received from Beitmaan,
and is that part of theoretical physics which comes nearest in some of its aspects to manipulating
and measuring information.

— John Von Neumann, Ceflected Works Vol 3, pg 304
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Appendix: Derivation of the learning algorithm

When a network is frec-running at equilibrium the probability distribution over the visible
units is given by

S ¢ Eas/T
5
P'(Va)=D> P'(VaAHp) = T e BT (11)
a o

whera V,, is a vector of states of the visible units, Hp is a vector of states of the hidden units, and
E,p is the energy of the system in state Vo A Hg

aﬁ -_Zwij aﬂ o:,G

i<y
de~Fas/T 4
_ L wf af —Eap/T
Hence, ET -Ts‘- s; e "
i)

Dilferentiating (11} then yields

Ly e Ban/Tg2h 28 T emBoR/T LT o= Fau/T g} g2
or\vVe) _ T3 L i L

Bw;j - ZG_E*“/T . 2
. A'u Ze_E'\"'f‘T
Ap

ZP’ (Vi A Ha)sT? af’ ~ P'{Va) D> P'(Va A Hy)s; Aie *“}
8 Ap

Hl

This derivative is used to compute the gradient of the G-mmeasure
V )
G= Z PV, in 7
a

where P(V,) is the clamped probability distribution over the visible units and is independent of

wi;. So
- ¥ ) s
Owu P' 0wy
1 P(Va) A 6 ¢ et
- = a ~ VoA aj o f P A H' # #-
T 2 P (V) ?’{ e H
Now,
P(Va A H;) = P(HﬂiVQ)P(VG)v
P!V A Hj3) = P'(Hp[Va)P' (Va)s
and

P'(HsV.) = P(HlVa) (12)
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Equation (12) hLolds  because the probability. of a hidden state given somne visible state must be
the same in equilibrium whother the visible units were clamped in that state or arrived there by
free-tunning. Hence,

v
P'(Va A Hg) P{Va) = P(V, A Hg)
P'{Vs)
Also,
D P(V,)=1
Therefore,
oG 3 1[ =]
dw,, | TW9 TP
where
def ad a
bi; = ZP(VQ A Hﬁ).‘j‘- ﬁsjﬂ
ag
and

def
p; = ZP'(V,\ A H#)s:.\"‘s;"'
Ap

as given in (9).

The Boitzmann Machine learning algorithm can also be formulated as an input-ontput model.
The visible units are divided inte an input set [ and an output set O, and an envirouient specifies a
set of conditional probabiliries of the form P(Q;![,). During the “training” phase the environment
clamps both the input and output units, and p;;s are estimated. During the “testing” phase the
input units are clamped and the output units and hidden: units free-run, and pgjs are estimated.
The appropriate & measure in this case is

P(O3]1a)

=N Sl 07
G ‘_,_‘P(fa f\Og)ln P’(Oﬂllg)

afd

Similar mathematics apply in this formulation and 8G/3w,; is the same as before.




