Delta Rule

 

b)

Pattern

Target

Weight Vector

Net

Output

DW

1001

0

0 0 0 0

0

0

0 0 0 0

0001

0

0 0 0 0

0

0

0 0 0 0

0111

1

0 0 0 0

0

0

0_0.1_0.1_0.1

1111

1

0_0.1_0.1_0.1

0.3

1

0 0 0 0

1001

0

0_0.1_0.1_0.1

0.1

1

-0.1_0_0_-0.1

0001

0

-0.1_0.1_0.1_0

0

0

0 0 0 0

0111

1

-0.1_0.1_0.1_0

0.2

1

0 0 0 0

1111

1

-0.1_0.1_0.1_0

0.1

1

0 0 0 0

1001

0

-0.1_0.1_0.1_0

-0.1

0

0 0 0 0

 

c)

Pattern

Target

Weight Vector

Net

Output

DW

0001

0

0 0 0 0

0

0

 0 0 0 0

0101

1

0 0 0 0

0

0

0 _0.1_0_0 .1

1111

0

0 _0.1_0_0 .1

0.2

1

-0.1_-0.1_-0.1_-0.1

0001

0

-0.1_0_-0.1_0

0

0

 0 0 0 0

0101

1

-0.1_0_-0.1_0

0

0

0 _0.1_0_0 .1

1111

0

-0.1_0.1_-0.1_0.1

0

0

0 0 0 0

0001

0

-0.1_0.1_-0.1_0.1

0.1

1

0 0 0_-0.1

0101

1

-0.1_0.1_-0.1_0

0.1

1

0 0 0 0

1111

0

-0.1_0.1_-0.1_0

-0.1

0

0 0 0 0

0001

0

-0.1_0.1_-0.1_0

0

0

0 0 0 0

 

Backprop

 

A2)

Learning Rate

1

 

Input to 5 (O5)

0

 

Input to 6 (O6)

1

 

Target

0

 

W5,2

1

 

W5,3

1

 

W6,2

1

 

W6,3

1

 

W7,2

1

 

W7,3

1

 

W2,1

1

 

W3,1

1

 

W4,1

1

 

Net of node 2

0*1 + 1*1 + 1

2

Net of node 3

0*1 + 1*1 + 1

2

Output of node 2

1/(1+EXP(-2))

0.880797

Output of node 3

1/(1+EXP(-2))

0.880797

Net of node 1

0.880797*1 + 0.880797*1 + 1

2.761594

Output of node 1

1/(1+EXP(-2.761594))

0.940565

d1

(0 - 0.940565) * 0.940565 * (1-0.940565)

-0.05258

d2

-0.05258 * 1 * 0.880797 * (1-0.880797)

-0.00552

d3

-0.05258 * 1 * 0.880797 * (1-0.880797)

-0.00552

DW5,2

1*0*-0.00552

0

DW5,3

1*0*-0.00552

0

DW6,2

1*1*-0.00552

-0.00552

DW6,3

1*1*-0.00552

-0.00552

DW7,2

1*1*-0.00552

-0.00552

DW7,3

1*1*-0.00552

-0.00552

DW2,1

1*0.880797*-0.05258

-0.04631

DW3,1

1*0.880797*-0.05258

-0.04631

DW4,1

1*1*-0.05258

-0.05258

W5,2

1+0

1

W5,3

1+0

1

W6,2

1+-0.00552

0.994479

W6,3

1+-0.00552

0.994479

W7,2

1+-0.00552

0.994479

W7,3

1+-0.00552

0.994479

W2,1

1+-0.04631

0.953688

W3,1

1+-0.04631

0.953688

W4,1

1+-0.05258

0.947420

 

 

B)

Learning Rate

1

 

Input to 5 (O5)

1

 

Input to 6 (O6)

0

 

Target

0

 

W5,2

0

 

W5,3

0.2

 

W6,2

-0.3

 

W6,3

1.2

 

W7,2

0

 

W7,3

-0.3

 

W2,1

0.5

 

W3,1

-0.6

 

W4,1

0.1

 

Net of node 2

1*0 + 0*-0.3 + 0

0

Net of node 3

1*0.2 + 0*1.2 + -0.3

-0.1

Output of node 2

1/(1+EXP(-0))

0.5

Output of node 3

1/(1+EXP(0.1))

0.475021

Net of node 1

0.5*0.5 + 0.475021*-0.6 + 0.1

0.064988

Output of node 1

1/(1+EXP(-0.064988))

0.516241

d1

(0 - 0.516241) * 0.516241 * (1-0.516241)

-0.12892

d2

-0.12892 * 0.5 * 0.5 * (1-0.5)

-0.01612

d3

-0.12892 * -0.6 * 0.475021 * (1-0.475021)

0.01929

DW5,2

1*1-0.01612

-0.01612

DW5,3

1*1*0.01929

0.01929

DW6,2

1*0*-0.01612

0

DW6,3

1*0*0.01929

0

DW7,2

1*1*-0.01612

-0.01612

DW7,3

1*1*0.01929

0.01929

DW2,1

1*0.5*-0.12892

-0.06446

DW3,1

1*0.475021*-0.12892

-0.06124

DW4,1

1*1*-0.12892

-0.12892

W5,2

0+-0.01612

-0.01612

W5,3

0.2+0.01929

0.21929

W6,2

-0.3+0

-0.3

W6,3

1.2+0

1.2

W7,2

0+-0.01612

-0.01612

W7,3

-0.3+0.01929

-0.28071

W2,1

0.5+-0.06446

0.435538

W3,1

-0.6+-0.06124

-0.66124

W4,1

0.1+-0.12892

-0.02892