b)
Pattern |
Target |
Weight Vector |
Net |
Output |
DW |
1001 |
0 |
0 0 0 0 |
0 |
0 |
0 0 0 0 |
0001 |
0 |
0 0 0 0 |
0 |
0 |
0 0 0 0 |
0111 |
1 |
0 0 0 0 |
0 |
0 |
0_0.1_0.1_0.1 |
1111 |
1 |
0_0.1_0.1_0.1 |
0.3 |
1 |
0 0 0 0 |
1001 |
0 |
0_0.1_0.1_0.1 |
0.1 |
1 |
-0.1_0_0_-0.1 |
0001 |
0 |
-0.1_0.1_0.1_0 |
0 |
0 |
0 0 0 0 |
0111 |
1 |
-0.1_0.1_0.1_0 |
0.2 |
1 |
0 0 0 0 |
1111 |
1 |
-0.1_0.1_0.1_0 |
0.1 |
1 |
0 0 0 0 |
1001 |
0 |
-0.1_0.1_0.1_0 |
-0.1 |
0 |
0 0 0 0 |
c)
Pattern |
Target |
Weight Vector |
Net |
Output |
DW |
0001 |
0 |
0 0 0 0 |
0 |
0 |
0 0 0 0 |
0101 |
1 |
0 0 0 0 |
0 |
0 |
0 _0.1_0_0 .1 |
1111 |
0 |
0 _0.1_0_0 .1 |
0.2 |
1 |
-0.1_-0.1_-0.1_-0.1 |
0001 |
0 |
-0.1_0_-0.1_0 |
0 |
0 |
0 0 0 0 |
0101 |
1 |
-0.1_0_-0.1_0 |
0 |
0 |
0 _0.1_0_0 .1 |
1111 |
0 |
-0.1_0.1_-0.1_0.1 |
0 |
0 |
0 0 0 0 |
0001 |
0 |
-0.1_0.1_-0.1_0.1 |
0.1 |
1 |
0 0 0_-0.1 |
0101 |
1 |
-0.1_0.1_-0.1_0 |
0.1 |
1 |
0 0 0 0 |
1111 |
0 |
-0.1_0.1_-0.1_0 |
-0.1 |
0 |
0 0 0 0 |
0001 |
0 |
-0.1_0.1_-0.1_0 |
0 |
0 |
0 0 0 0 |
A2)
Learning Rate |
1 |
|
Input to 5 (O5) |
0 |
|
Input to 6 (O6) |
1 |
|
Target |
0 |
|
W5,2 |
1 |
|
W5,3 |
1 |
|
W6,2 |
1 |
|
W6,3 |
1 |
|
W7,2 |
1 |
|
W7,3 |
1 |
|
W2,1 |
1 |
|
W3,1 |
1 |
|
W4,1 |
1 |
|
Net of node 2 |
0*1 + 1*1 + 1 |
2 |
Net of node 3 |
0*1 + 1*1 + 1 |
2 |
Output of node 2 |
1/(1+EXP(-2)) |
0.880797 |
Output of node 3 |
1/(1+EXP(-2)) |
0.880797 |
Net of node 1 |
0.880797*1 + 0.880797*1 + 1 |
2.761594 |
Output of node 1 |
1/(1+EXP(-2.761594)) |
0.940565 |
d1 |
(0 - 0.940565) * 0.940565 * (1-0.940565) |
-0.05258 |
d2 |
-0.05258 * 1 * 0.880797 * (1-0.880797) |
-0.00552 |
d3 |
-0.05258 * 1 * 0.880797 * (1-0.880797) |
-0.00552 |
DW5,2 |
1*0*-0.00552 |
0 |
DW5,3 |
1*0*-0.00552 |
0 |
DW6,2 |
1*1*-0.00552 |
-0.00552 |
DW6,3 |
1*1*-0.00552 |
-0.00552 |
DW7,2 |
1*1*-0.00552 |
-0.00552 |
DW7,3 |
1*1*-0.00552 |
-0.00552 |
DW2,1 |
1*0.880797*-0.05258 |
-0.04631 |
DW3,1 |
1*0.880797*-0.05258 |
-0.04631 |
DW4,1 |
1*1*-0.05258 |
-0.05258 |
W5,2 |
1+0 |
1 |
W5,3 |
1+0 |
1 |
W6,2 |
1+-0.00552 |
0.994479 |
W6,3 |
1+-0.00552 |
0.994479 |
W7,2 |
1+-0.00552 |
0.994479 |
W7,3 |
1+-0.00552 |
0.994479 |
W2,1 |
1+-0.04631 |
0.953688 |
W3,1 |
1+-0.04631 |
0.953688 |
W4,1 |
1+-0.05258 |
0.947420 |
B)
Learning Rate |
1 |
|
Input to 5 (O5) |
1 |
|
Input to 6 (O6) |
0 |
|
Target |
0 |
|
W5,2 |
0 |
|
W5,3 |
0.2 |
|
W6,2 |
-0.3 |
|
W6,3 |
1.2 |
|
W7,2 |
0 |
|
W7,3 |
-0.3 |
|
W2,1 |
0.5 |
|
W3,1 |
-0.6 |
|
W4,1 |
0.1 |
|
Net of node 2 |
1*0 + 0*-0.3 + 0 |
0 |
Net of node 3 |
1*0.2 + 0*1.2 + -0.3 |
-0.1 |
Output of node 2 |
1/(1+EXP(-0)) |
0.5 |
Output of node 3 |
1/(1+EXP(0.1)) |
0.475021 |
Net of node 1 |
0.5*0.5 + 0.475021*-0.6 + 0.1 |
0.064988 |
Output of node 1 |
1/(1+EXP(-0.064988)) |
0.516241 |
d1 |
(0 - 0.516241) * 0.516241 * (1-0.516241) |
-0.12892 |
d2 |
-0.12892 * 0.5 * 0.5 * (1-0.5) |
-0.01612 |
d3 |
-0.12892 * -0.6 * 0.475021 * (1-0.475021) |
0.01929 |
DW5,2 |
1*1-0.01612 |
-0.01612 |
DW5,3 |
1*1*0.01929 |
0.01929 |
DW6,2 |
1*0*-0.01612 |
0 |
DW6,3 |
1*0*0.01929 |
0 |
DW7,2 |
1*1*-0.01612 |
-0.01612 |
DW7,3 |
1*1*0.01929 |
0.01929 |
DW2,1 |
1*0.5*-0.12892 |
-0.06446 |
DW3,1 |
1*0.475021*-0.12892 |
-0.06124 |
DW4,1 |
1*1*-0.12892 |
-0.12892 |
W5,2 |
0+-0.01612 |
-0.01612 |
W5,3 |
0.2+0.01929 |
0.21929 |
W6,2 |
-0.3+0 |
-0.3 |
W6,3 |
1.2+0 |
1.2 |
W7,2 |
0+-0.01612 |
-0.01612 |
W7,3 |
-0.3+0.01929 |
-0.28071 |
W2,1 |
0.5+-0.06446 |
0.435538 |
W3,1 |
-0.6+-0.06124 |
-0.66124 |
W4,1 |
0.1+-0.12892 |
-0.02892 |