
Abstract

A machine learning approach was taken to create
an AI to play Rack-O. We initially started with a
learner that would play randomly against itself and
save the moves it used when it won a game in a
good amount of time. We then moved to creating
more intelligent AIs using different methods such
as temporal difference and Q-Learning.Our new
AIs performed significantly better and were able to
beat human players.

1 Introduction

Rack-O is a game that involves two or more players wherein
they draw cards and place them in a rack. The object of the
game is to place the cards in ascending order. A player ini-
tially draws cards from a shuffled deck and places them in a
rack starting from the bottom and proceeding upwards. This
results in a rack that has the cards out of order. The cards
each have a unique number on them and are labeled 1-N
where N is the maximum card value, usually 40 to 60. Each
rack usually has 10 slots but more or fewer slots can be
used. Players take turns drawing from either the deck or the
top of the discard pile. The top card of the discard pile is
visible to all players. Once a player has drawn a card, he or
she uses it to replace a card in his or her rack. The card that
is replaced is placed on the top of the discard pile. If the
player does not wish to use the card he or she drew, he or
she can discard it. The game ends when one player has a
rack where all the cards are in ascending order from bottom
to top.

1.1 Motivation

We thought that a machine learner could easily record its
moves, have them scored by some score metric, and learn to
use the best moves in future games. With enough scored
moves as training data, the machine learner could become
quite intelligent. We decided to start with a game where the
racks had five slots and the cards were numbered 1 through
30. This would reduce the problem enough that our data
instances would not be too big, but the problem was still big
enough to be learnable by a machine learner.

2 Methods and Data

2.1 Data Sources

Our original plan was to create an AI that played randomly
against itself for a multitude of games. When the learner
would win, it would save its moves as good moves and
score them based on how many moves it took to win. Fewer
moves, which would indicate more intelligent move choices,
would result in a higher score. If the losing player was close
to having a winning rack, his rack would also be scored,
although not as well. This would become our initial training
data.

Once enough random games had been played, the high-
est-scoring training data would be run through a backpropa-
gation learner. The now learning AI would continue playing
games against the AI and would continue to score its new
moves. This would result in a type of bootstrapping learning
model.

Once we created this Random-Then-Bootstrapping AI,
we played it against a simple random player. Our AI player
would consistently beat the random player. However, when
played against a human player, our AI almost never won.

2.2 Data Instances

We needed two data sets. First, we needed a data set for
deciding whether to draw from the deck or from the discard
pile. Second, we needed a data set to help decided where to
place the card in the rack (or whether to discard the drawn
card because it would not be beneficial in any slot of the
rack).

The drawing data instances initially contained the play-
er’s current rack, the probabilities of drawing a card higher
than the card in each slot in the rack, the probabilities of
drawing a card lower than the card in each slot of the stack,
and the current card at the top of the discard pile. The output
value was whether to draw from the draw pile or from the
discard pile. The play data instances contained the current
rack and the card drawn. The output value indicated the slot
the drawn card should be placed in or to discard the drawn
card.

We used these features in our data sets because we hoped
they would be enough information in order to make a good

A Machine Learning Approach to Playing Rack-O

Chris McNeill, John Nuttal, Isaac Nygaard
CS 478, Winter 2014

Department of Computer Science
Brigham Young University

decision. The probabilities were calculated using cards in
the current player’s rack and cards that had been seen by the
player. For example, if the card in slot 1 was a 10, the base
probability of a card lower would be 9/(number of cards in
the deck). If the player knew that cards 2 and 5 had already
been used, then the probability would drop to (9-2)/(number
of cards in the deck).

slot1_pLower Probability of drawing a card lower

than the current card in slot 1.

.67

slot1_pHigher Probability of drawing a card higher

than the current card in slot 1.

.00

slot2_pLower Same as above for slot 2. .02

slot2_pHigher Same as above for slot 2. .58

slot3_pLower Same as above for slot 3. .11

slot3_pHigher Same as above for slot 3. .38

slot4_pLower Same as above for slot 4. .52

slot4_pHigher Same as above for slot 4. .31

slot5_pLower Same as above for slot 5. .56

slot5_pHigher Same as above for slot 5. .29

slot1 Card in slot 1. 29

slot2 Card in slot 2. 4

slot3 Card in slot 3. 8

slot4 Card in slot 4. 19

slot5 Card in slot 5. 17

discard Card at the top of the discard pile. 23

drawDiscard Output class T=draw from discard. F=

draw from deck.

T

Table 1 – A sample draw data instance.

Table 2 – A sample play data instance.

2.3 Models

We chose a backpropagation model to learn this task. We
chose backpropagation because all of the features were real-
numbered values. We also chose backpropagation because
the training could be done separately from playing, the
weights could be saved once it had trained sufficiently, and
the weights could be loaded into a model for game play. It
would also be able to calculate moves quickly due to all the
training being done a priori.

Our backpropagation model was capable of deep learn-
ing. The neural net would play against another AI in a series
of games. When a predetermined number of epochs was
reached without improvement (normally 100), the neural net
would add another hidden layer and continue training. This
procedure continued until a sufficient win percentage was
reached.

3 Initial Results

We used several measurements when evaluating the perfor-
mance of our model. The first measurement was the number
of moves the AI needed in order to finish a game. Ideally,
the maximum number of moves would be the number of
slots in the rack. If the rack started out with each card need-
ing to be replaced, then each card should only need one
move to replace it. However, most racks start with at least
one card in a useable position so the average number of
moves over all games should be slightly less than the rack
size.

Another performance measurement was the percentage of
games won against a random player. Since the random play-
er just randomly draws from the deck or discard pile and
chooses a random slot for the drawn card, the player is es-
sentially performing a Bozo sort which should finish in n!
moves (where n is the number of slots in a rack). Any player
with a slightly smart heuristic should be able to beat the
random player.

The last performance measurement we used was the per-
centage of games won against another AI. This AI could be
another instance of the AI or a completely different AI that
does not rely on machine learning. This would be the true
test of our machine learning AI. We also used percentage of
games won against a human as a performance measurement
but not as much as the previous three.

We had our AI play 1 million games against another in-
stance of itself. At first, the two AIs were evenly matched in
win percentages. They initially took around 1200 moves to
finish a game. After 28 epochs, the first AI began to over-
take the second and the average number of moves to com-
plete a game dropped to 400. By the end (3333 epochs), one
instance of our AI had won 64% of the games and was fin-
ishing in 113 moves. While the improvement was impres-
sive, the number of moves per game was still not what we
were hoping for.

We added the deep learning capability to the AI. Overall
win percentage increased to 93% while the number of
moves per game stayed at about 117 after 1188 epochs.
When allowed to run longer (4230 epochs), the win percent-
age decreased to 85% but the number of moves per game
dropped to 36.

When played in a tournament between a temporal differ-
ence AI, an AI that maximized the length of the longest us-
able sequence in its rack, our AI, and a random player, our
AI won 54% of the games and had an average of 4.09
moves. However, a human could still beat our AI every
time.

4 Model and Feature Improvement

Unsatisfied that our AI could not compete against a human,
we began examining our model and seeing how we could
improve it. We implemented a fairly smart AI that we found
on the Internet dubbed “Kyle.” We decided to use this AI as
our benchmark. We then proceeded to try different learning
approaches.

slot1 Card in slot 1. 2

slot2 Card in slot 2. 22

slot3 Card in slot 3. 15

slot4 Card in slot 4. 23

slot5 Card in slot 5. 29

drawn The card that was drawn. 5

slot The slot where the drawn card will be placed. 1

= slot 1, 2 = slot 2, etc. 0 = discard.

2

4.1 Baltar and Q-Learning
We created a Reinforcement Learning model using Q-
Learning called “Baltar.” This model kept track of a set of
states, as well as a set of actions that can be performed for
each state. Each action had an expected reward associated
with it. All these rewards were initially zero.
Each turn, the reward function for the action taken on the
previous turn was updated. This was done through a Q-
Learning function, taking into account the highest reward
for any possible action from the current state and the num-
ber of times that the particular reward has been updated. In
order to explore the state space as much as possible, while
training, it chose whatever action it has chosen the fewest
number of times before.

Initially, when coding up Baltar for the first time, we
chose a simple metric for dividing the states so that it would
be able to explore the entire state space fairly quickly. For
each card in the rack, as well as the card from the discard
pile, we figured out whether it would be more likely to draw
a card above or below that one. This gave a small state
space of just 64 states for drawing and 64 states for playing.
We expected this to be able to do better than random, but
not by much. When we ran it, though, we were surprised by
the variability in results it displayed. The final trained mod-
els were consistent in the percentage of games they won
against random opponents, but there was a lot of variance
between the models. They varied anywhere from winning
only 2% of games against a random opponent to winning
80% of the time. To deal with this, after training a model,
Baltar played 2000 games against a random opponent. If the
model did not win at least 70% of the time, it discarded the
model and trained a new one. This allowed the end result to
be much more consistent.

We also tried training against Kyle, but found that models
trained in this way only won about 20% of the time against
a random opponent. This was probably due to the fact that
the random opponent won so quickly that Baltar did not
have sufficient time to explore and encountered only nega-
tive outcomes.

We then experimented with different metrics for deter-
mining states. When we tried creating one state for every
possible configuration of the rack and drawn card, the pro-
gram ran out of heap space. Other metrics that were tried,
such as determining which sixth of the entire range each
card was in or determining for each card whether it was
25%, 50%, 75% or 100% likely to draw above or below it.
To our surprise, these did not perform as well as our initial
metric. They consistently won less than 50% of the time
against a random opponent.

We then started saving the best models to files and creat-
ed an AI that read them in and played using a weighted vot-
ing approach, where each model would get a vote propor-
tional to the percentage of games it won against the random
AI. This AI won 75% of the time against the previous ver-
sion, which had only one model.

4.2 Diablo

Another model we tried was one that we named “Diablo.”
Diablo uses a learned scoring function to decide what moves
it should make. The scoring function gives higher values for
racks that are more likely to win.

Decisions for each turn follow this algorithm:
• Drawing: Diablo looks at the card on the top of the discard
pile is. It inserts this card into each slot of its rack, scoring
the rack at each position. The slot that gives the maximum
score is returned. If this improves the rack's score by a large
enough margin, the top of the discard pile is drawn. Other-
wise, a card is taken from the draw pile.
• Playing: The card that was drawn is inserted into each slot
of the rack. The slot that gives the maximum score is re-
turned. If this improves the rack's score at all, the move is
played. Otherwise, the card is discarded.

4.2.1 Temporal Difference
Initially, we set the required margin for drawing from the
discard pile at 1/(rack_size*2). To learn a scoring function,
temporal difference reinforcement learning was used. Dia-
blo uses a similar approach to the strategy Gerald Tesauro
used in his famous TD-Gammon program. Basically, the
scoring function tries to predict what the rack's score will be
in one move. The score of the current move is set as the
target output for the inputs of the previous move.

Error(t) = score(inputs(t+1)) – score(inputs(t))
At the end of a round, the target output is set to the score the
player actually received.

Error(tend)=final_score_for_game - score(inputs(tend-1))

A neural network was used as the model for learning.
Training was done at the end of each round. More influence
was given to error values closer to the end of the game. Spe-
cifically, the weighting function for the error values fol-
lowed this formula:

Weight(t) = max(0, (t-tend)/(40*rack_size) + 0.1)
Initially, the cards in each slot of the rack were used as

input features for the neural network. Nevertheless, after
training for one million games, it could only win 51% of
games against a random player. These input features were
augmented with probabilities for drawing higher and lower
than a card in a slot but, the added features still did not im-
prove performance.

Due to the ill performance of the neural network, we de-
cided to replace the features with a number of high level,
pre-computed features. The new features are calculated by
computing scores for various criterion, namely:
• Distribution of cards in the rack

• Usable sequence length

• Probability of filling holes in a sequence

• Density of clumps in a sequence

We define a “usable sequence” as a set of cards that could
be used together in a winning rack. Clumps are cards in a
sequence that are adjacent to one another, and holes are slots
that are not part of a usable sequence. A usable sequence is
highlighted in green in Figure 1.

Fig. 1 – Clumps and useable sequences.

For a rack that is completely sorted, there are 2^rack_size

number of usable sequences. The majority of the new fea-
tures are computed from a usable sequence. Since the score
for each of these sequences can be different, we need to run
a separate set of features through the neural network for
each possible sequence. The maximum score out of all usa-
ble sequences is returned as the score for the rack.

4.2.2 Diablo’s New Data Instances

Table 3 shows Diablo’s new feature set and explanations
for each feature.

Turns A typical rack can be sorted in about as many

moves as there are slots in a rack. If this feature is

closer to one, there is a high probability that the

round will end. If the player's rack isn't close to

winning, they may want to play for a high point

score, instead of a win.

Points Could be used to optimize for a high scoring rack.

Sequence

Length

A sequence length equal to the number of slots in a

rack will win the game.

Rack dis-

tribution

error

Measures the error of each card, given a “flat”

target distribution. The flat distribution is given by

the formula: y = x(max_card-1)/rack_size + 1,

where y is a card number (from 1 to rack_size) and

x is a slot number (from 0 to rack_size-1). Without

knowing information about probabilities or the

rack's usable sequences, a flat distribution maxim-

izes the chances of getting a sorted rack.

Clump

distribution

error

Measures the error of cards in clump centers, given

a “flat” target distribution (described above). This

gives a similar result to the rack distribution error,

but doesn't penalize for cards that couldn't be used

in a winning rack. The error of each clump is

weighted by how large the clump is.

Probability Gives the probability of filling holes in a sequence,

if the player drew from the draw pile. Higher prob-

ability is better.

Average

probability

In some cases, the probability of filling a hole is

zero, making the entire probability score zero.

However, there is a chance an opponent will dis-

card a card for that hole or the player will draw

such a card when the discard pile is reshuffled. The

Average probability score averages probabilities

for each slot, to account for this.

Adjacent

density

Computes the differences between adjacent cards

in a clump. If the density is one, the clump is in

perfect sequence (1,2,3), whereas a density of zero

has a very large spread (1,15,25). Higher densities

in clumps will give higher probabilities of filling in

holes.

Adjacent

density

penalized

This is the same as adjacent density, only it penal-

izes clumps with only one card in them. This may

encourage the player to get larger clumps, rather

than many clumps with only one card.

Center

density

Calculates the differences between cards in a

clump and the center of the clump. Adjacent densi-

ty really only improves when the edges of a clump

come closer together. Center density will improve

if the interior of a clump comes closer together.

Skewed

features

All the features except turns, points, and sequence

length are included again, with their values

weighted to a skewed distribution. The skewed

distribution is linear, given by the points (0, 1) and

(rack_size-1, 0). Racko is scored by counting the

number of ascending cards, starting with the bot-

tom and stopping when a descending card is en-

countered. If a player doesn't win the round, it may

be beneficial to get the highest non-winning score,

so the loss is not so detrimental.

Table 3 – Diablo’s new feature set.

 Since computing scores for all 2^rack_size number of
usable sequences would take too long, we chose to compute
scores only for sequences that were not subsets of another
sequence (e.g. given sequences [1,2] and [1,2,8], [1,2]
would be discarded). Later experiments showed that using
all 2^rack_size sequences did not give any noticeable im-
provement.

The neural network was trained for 476,000 games, using
a rack size of 10. The number of turns per round was limited
to 1500. After 15,000 games, Diablo was able to finish a
game under the 1500 move limit. At 43,000 games, Diablo's
learning accelerated until it reached 10 moves per game. By
the end of training, Diablo averaged 9.87 moves per game.
Figure 2 is a graph that shows how Diablo’s move count
improved over time.

Adding a second hidden layer to Diablo's neural network
with 30 nodes improved its performance further, giving 8.88
moves per game. A tournament between Diablo and Kyle
resulted in 66.83% wins with only one hidden layer, and
71.4% with two hidden layers. We did not experiment with
more than two hidden layers.

Experimenting with the threshold margin for drawing
from the discard pile gave slight improvements. A good
value for the margin was found to be 1/(rack_size*2.8169).
This improved the win percentage against Kyle to 73.21%.

We tried using a neural network to automatically learn
the best threshold, but this approach only degraded perfor-
mance. We also experimented with a simple voting ensem-
ble using Kyle, Max, Baltar, and Diablo. However, the en-
semble was only able to win around 15% of its games
against Diablo.

4.3 Casandra

We tried creating a model that would record the moves
made by another model, such as Baltar or Diablo, and using

these moves as initial training data. The model would then
play against another AI and would remember the moves it
made when it would win. We dubbed this mimicking model
“Casandra.” Unfortunately, Casandra did not fare well, even
against a random player. Most of the games would end in
ties by reaching a predetermined number of moves without
any player winning. Of the games that did not end in a tie,
Casandra would win about one-fourth of the games. Deep
learning caused Casandra to improve faster but it would still
not beat the random player.

We concluded that the reason for Casandra’s failure was
that the initial training features that we were using, which
Casandra would record from the other AI and use in later
games, were not useful in deciding where to draw from and
where to play the drawn card. Perhaps a neural net would be
able to learn to play Rack-O if we could find better features.

5 Final Results

We created a 1 million game tournament consisting of racks
of 5 slots. The three players were Kyle Diablo, and Baltar.
Kyle won 37.8% of the games in an average of 2.86 moves.
Diablo won 54.27% of games in an average of 2.76 moves,
and Baltar won 7.9% of games with an average of 2.61
moves. Both Diablo and Baltar improved the number of
moves per game over our initial AI’s 4.09 moves per game.

The real test of our AI’s intelligence, however, was the
number of games it could win against a human player. Final
version of Diablo won 45/100 rounds against a human play-
er. This was a vast improvement over our initial AI which
could not win any games against a human player.

It seems that Diablo’s temporal difference learning model
along with a new and improved feature set led to its domi-
nance over the other AIs that we tested.

Fig. 2 – Diablo’s moves/game over time.

6 Conclusions

Replacing our initial random-then-learning AI with Diablo
led to a vast improvement in the number of moves and per-
centage of games won against both a random player and
other AIs such as Kyle. Adding more hidden layers to Dia-

blo also significantly improved its performance over Kyle.
Diablo was also able to finally defeat a human player.

7 Future Work

If time were permitted, we would like to have attempted to
develop Casandra so that she could successfully mimic an-
other AI. We could try to have her learn using Diablo’s data
instances. For Baltar, we could continue experimenting with
different state spaces to see if we could find one that would
work better than the one it currently uses. We could also
allow Diablo to train even longer and hopefully be able to
defeat a human opponent almost every time. Due to the ran-
dom nature of the game, victory is not always possible. Per-
haps an ensemble of many instance of Diablo, all with dif-
ferent weights, would be more successful than the ensemble
we mentioned in section 4.2

References

[Abbeel, 2013] Pieter Abbeel. Lecture 10: reinforcement
learning.
https://www.youtube.com/watch?v=ifma8G7LegE.
2013. Last accessed April 2014.

[Abbeel, 2013] Pieter Abbeel. Lecture 11: reinforcement
learning II.
http://www.youtube.com/watch?v=Si1_YTw960c. 2013.
Last accessed April 2014.

[Tesauro, Gerald, 1995] Gerald Teauro. Temporal differ-
ence learning and TD-Gammon. Communications of the
ACM, 38(3):58-67, 1995.

[Thompson, Kyle, 2008] Kyle Thompson. Rack-O revision
105. http://subversion.assembla.com/svn/rack-o/. 2008.
Last accessed April 2014.

