
Abstract 

A machine learning approach was taken to create 
an AI to play Rack-O. We initially started with a 
learner that would play randomly against itself and 
save the moves it used when it won a game in a 
good amount of time. We then moved to creating 
more intelligent AIs using different methods such 
as temporal difference and Q-Learning.Our new 
AIs performed significantly better and were able to 
beat human players. 

1 Introduction 

Rack-O is a game that involves two or more players wherein 
they draw cards and place them in a rack. The object of the 
game is to place the cards in ascending order. A player ini-
tially draws cards from a shuffled deck and places them in a 
rack starting from the bottom and proceeding upwards. This 
results in a rack that has the cards out of order. The cards 
each have a unique number on them and are labeled 1-N 
where N is the maximum card value, usually 40 to 60. Each 
rack usually has 10 slots but more or fewer slots can be 
used. Players take turns drawing from either the deck or the 
top of the discard pile. The top card of the discard pile is 
visible to all players. Once a player has drawn a card, he or 
she uses it to replace a card in his or her rack. The card that 
is replaced is placed on the top of the discard pile. If the 
player does not wish to use the card he or she drew, he or 
she can discard it. The game ends when one player has a 
rack where all the cards are in ascending order from bottom 
to top. 

1.1 Motivation 

We thought that a machine learner could easily record its 
moves, have them scored by some score metric, and learn to 
use the best moves in future games. With enough scored 
moves as training data, the machine learner could become 
quite intelligent. We decided to start with a game where the 
racks had five slots and the cards were numbered 1 through 
30. This would reduce the problem enough that our data 
instances would not be too big, but the problem was still big 
enough to be learnable by a machine learner. 

2 Methods and Data 

2.1 Data Sources 

Our original plan was to create an AI that played randomly 
against itself for a multitude of games. When the learner 
would win, it would save its moves as good moves and 
score them based on how many moves it took to win. Fewer 
moves, which would indicate more intelligent move choices, 
would result in a higher score. If the losing player was close 
to having a winning rack, his rack would also be scored, 
although not as well. This would become our initial training 
data.  

Once enough random games had been played, the high-
est-scoring training data would be run through a backpropa-
gation learner. The now learning AI would continue playing 
games against the AI and would continue to score its new 
moves. This would result in a type of bootstrapping learning 
model. 

Once we created this Random-Then-Bootstrapping AI, 
we played it against a simple random player. Our AI player 
would consistently beat the random player. However, when 
played against a human player, our AI almost never won. 

2.2 Data Instances 

We needed two data sets. First, we needed a data set for 
deciding whether to draw from the deck or from the discard 
pile. Second, we needed a data set to help decided where to 
place the card in the rack (or whether to discard the drawn 
card because it would not be beneficial in any slot of the 
rack). 

The drawing data instances initially contained the play-
er’s current rack, the probabilities of drawing a card higher 
than the card in each slot in the rack, the probabilities of 
drawing a card lower than the card in each slot of the stack, 
and the current card at the top of the discard pile. The output 
value was whether to draw from the draw pile or from the 
discard pile. The play data instances contained the current 
rack and the card drawn. The output value indicated the slot 
the drawn card should be placed in or to discard the drawn 
card. 

We used these features in our data sets because we hoped 
they would be enough information in order to make a good 
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decision. The probabilities were calculated using cards in 
the current player’s rack and cards that had been seen by the 
player. For example, if the card in slot 1 was a 10, the base 
probability of a card lower would be 9/(number of cards in 
the deck). If the player knew that cards 2 and 5 had already 
been used, then the probability would drop to (9-2)/(number 
of cards in the deck). 
 
slot1_pLower Probability of drawing a card lower 

than the current card in slot 1. 

.67 

slot1_pHigher Probability of drawing a card higher 

than the current card in slot 1. 

.00 

slot2_pLower Same as above for slot 2. .02 

slot2_pHigher Same as above for slot 2. .58 

slot3_pLower Same as above for slot 3. .11 

slot3_pHigher Same as above for slot 3. .38 

slot4_pLower Same as above for slot 4. .52 

slot4_pHigher Same as above for slot 4. .31 

slot5_pLower Same as above for slot 5. .56 

slot5_pHigher Same as above for slot 5. .29 

slot1 Card in slot 1. 29 

slot2 Card in slot 2. 4 

slot3 Card in slot 3. 8 

slot4 Card in slot 4. 19 

slot5 Card in slot 5. 17 

discard Card at the top of the discard pile. 23 

drawDiscard Output class T=draw from discard. F= 

draw from deck. 

T 

Table 1 – A sample draw data instance. 

Table 2 – A sample play data instance. 

2.3 Models 

We chose a backpropagation model to learn this task. We 
chose backpropagation because all of the features were real-
numbered values. We also chose backpropagation because 
the training could be done separately from playing, the 
weights could be saved once it had trained sufficiently, and 
the weights could be loaded into a model for game play. It 
would also be able to calculate moves quickly due to all the 
training being done a priori.  

Our backpropagation model was capable of deep learn-
ing. The neural net would play against another AI in a series 
of games. When a predetermined number of epochs was 
reached without improvement (normally 100), the neural net 
would add another hidden layer and continue training. This 
procedure continued until a sufficient win percentage was 
reached. 

3 Initial Results 

We used several measurements when evaluating the perfor-
mance of our model. The first measurement was the number 
of moves the AI needed in order to finish a game. Ideally, 
the maximum number of moves would be the number of 
slots in the rack. If the rack started out with each card need-
ing to be replaced, then each card should only need one 
move to replace it. However, most racks start with at least 
one card in a useable position so the average number of 
moves over all games should be slightly less than the rack 
size. 

Another performance measurement was the percentage of 
games won against a random player. Since the random play-
er just randomly draws from the deck or discard pile and 
chooses a random slot for the drawn card, the player is es-
sentially performing a Bozo sort which should finish in n! 
moves (where n is the number of slots in a rack). Any player 
with a slightly smart heuristic should be able to beat the 
random player. 

The last performance measurement we used was the per-
centage of games won against another AI. This AI could be 
another instance of the AI or a completely different AI that 
does not rely on machine learning. This would be the true 
test of our machine learning AI. We also used percentage of 
games won against a human as a performance measurement 
but not as much as the previous three. 

We had our AI play 1 million games against another in-
stance of itself. At first, the two AIs were evenly matched in 
win percentages. They initially took around 1200 moves to 
finish a game. After 28 epochs, the first AI began to over-
take the second and the average number of moves to com-
plete a game dropped to 400. By the end (3333 epochs), one 
instance of our AI had won 64% of the games and was fin-
ishing in 113 moves. While the improvement was impres-
sive, the number of moves per game was still not what we 
were hoping for. 

We added the deep learning capability to the AI. Overall 
win percentage increased to 93% while the number of 
moves per game stayed at about 117 after 1188 epochs. 
When allowed to run longer (4230 epochs), the win percent-
age decreased to 85% but the number of moves per game 
dropped to 36. 

When played in a tournament between a temporal differ-
ence AI, an AI that maximized the length of the longest us-
able sequence in its rack, our AI, and a random player, our 
AI won 54% of the games and had an average of 4.09 
moves. However, a human could still beat our AI every 
time. 

4 Model and Feature Improvement 

Unsatisfied that our AI could not compete against a human, 
we began examining our model and seeing how we could 
improve it. We implemented a fairly smart AI that we found 
on the Internet dubbed “Kyle.” We decided to use this AI as 
our benchmark. We then proceeded to try different learning 
approaches. 
 

slot1 Card in slot 1. 2 

slot2 Card in slot 2. 22 

slot3 Card in slot 3. 15 

slot4 Card in slot 4. 23 

slot5 Card in slot 5. 29 

drawn The card that was drawn. 5 

slot The slot where the drawn card will be placed. 1 

= slot 1, 2 = slot 2, etc. 0 = discard. 
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4.1 Baltar and Q-Learning 
We created a Reinforcement Learning model using Q-
Learning called “Baltar.” This model kept track of a set of 
states, as well as a set of actions that can be performed for 
each state. Each action had an expected reward associated 
with it. All these rewards were initially zero. 
Each turn, the reward function for the action taken on the 
previous turn was updated. This was done through a Q-
Learning function, taking into account the highest reward 
for any possible action from the current state and the num-
ber of times that the particular reward has been updated. In 
order to explore the state space as much as possible, while 
training, it chose whatever action it has chosen the fewest 
number of times before. 

Initially, when coding up Baltar for the first time, we 
chose a simple metric for dividing the states so that it would 
be able to explore the entire state space fairly quickly. For 
each card in the rack, as well as the card from the discard 
pile, we figured out whether it would be more likely to draw 
a card above or below that one.  This gave a small state 
space of just 64 states for drawing and 64 states for playing. 
We expected this to be able to do better than random, but 
not by much. When we ran it, though, we were surprised by 
the variability in results it displayed. The final trained mod-
els were consistent in the percentage of games they won 
against random opponents, but there was a lot of variance 
between the models. They varied anywhere from winning 
only 2% of games against a random opponent to winning 
80% of the time. To deal with this, after training a model, 
Baltar played 2000 games against a random opponent. If the 
model did not win at least 70% of the time, it discarded the 
model and trained a new one. This allowed the end result to 
be much more consistent. 

We also tried training against Kyle, but found that models 
trained in this way only won about 20% of the time against 
a random opponent. This was probably due to the fact that 
the random opponent won so quickly that Baltar did not 
have sufficient time to explore and encountered only nega-
tive outcomes. 

We then experimented with different metrics for deter-
mining states. When we tried creating one state for every 
possible configuration of the rack and drawn card, the pro-
gram ran out of heap space. Other metrics that were tried, 
such as determining which sixth of the entire range each 
card was in or determining for each card whether it was 
25%, 50%, 75% or 100% likely to draw above or below it. 
To our surprise, these did not perform as well as our initial 
metric. They consistently won less than 50% of the time 
against a random opponent. 

We then started saving the best models to files and creat-
ed an AI that read them in and played using a weighted vot-
ing approach, where each model would get a vote propor-
tional to the percentage of games it won against the random 
AI. This AI won 75% of the time against the previous ver-
sion, which had only one model. 
 
4.2 Diablo 

Another model we tried was one that we named “Diablo.” 
Diablo uses a learned scoring function to decide what moves 
it should make. The scoring function gives higher values for 
racks that are more likely to win. 

Decisions for each turn follow this algorithm: 
• Drawing: Diablo looks at the card on the top of the discard 
pile is. It inserts this card into each slot of its rack, scoring 
the rack at each position. The slot that gives the maximum 
score is returned. If this improves the rack's score by a large 
enough margin, the top of the discard pile is drawn.  Other-
wise, a card is taken from the draw pile. 
• Playing: The card that was drawn is inserted into each slot 
of the rack. The slot that gives the maximum score is re-
turned. If this improves the rack's score at all, the move is 
played. Otherwise, the card is discarded. 
  
4.2.1 Temporal Difference  
Initially, we set the required margin for drawing from the 
discard pile at 1/(rack_size*2). To learn a scoring function, 
temporal difference reinforcement learning was used. Dia-
blo uses a similar approach to the strategy Gerald Tesauro 
used in his famous TD-Gammon program. Basically, the 
scoring function tries to predict what the rack's score will be 
in one move. The score of the current move is set as the 
target output for the inputs of the previous move. 

Error(t) = score(inputs(t+1)) – score(inputs(t)) 
At the end of a round, the target output is set to the score the 
player actually received. 

Error(tend)=final_score_for_game - score(inputs(tend-1)) 

A neural network was used as the model for learning. 
Training was done at the end of each round. More influence 
was given to error values closer to the end of the game. Spe-
cifically, the weighting function for the error values fol-
lowed this formula: 

Weight(t) = max(0, (t-tend)/(40*rack_size) + 0.1) 
Initially, the cards in each slot of the rack were used as 

input features for the neural network. Nevertheless, after 
training for one million games, it could only win 51% of 
games against a random player. These input features were 
augmented with probabilities for drawing higher and lower 
than a card in a slot but, the added features still did not im-
prove performance. 

Due to the ill performance of the neural network, we de-
cided to replace the features with a number of high level, 
pre-computed features. The new features are calculated by 
computing scores for various criterion, namely: 
• Distribution of cards in the rack 

• Usable sequence length 

• Probability of filling holes in a sequence 

• Density of clumps in a sequence 

We define a “usable sequence” as a set of cards that could 
be used together in a winning rack. Clumps are cards in a 
sequence that are adjacent to one another, and holes are slots 
that are not part of a usable sequence. A usable sequence is 
highlighted in green in Figure 1. 
 



Fig. 1 – Clumps and useable sequences. 
 
For a rack that is completely sorted, there are 2^rack_size 

number of usable sequences. The majority of the new fea-
tures are computed from a usable sequence. Since the score 
for each of these sequences can be different, we need to run 
a separate set of features through the neural network for 
each possible sequence. The maximum score out of all usa-
ble sequences is returned as the score for the rack. 
 
4.2.2 Diablo’s New Data Instances 
 

Table 3 shows Diablo’s new feature set and explanations 
for each feature. 

 
Turns A typical rack can be sorted in about as many 

moves as there are slots in a rack. If this feature is 

closer to one, there is a high probability that the 

round will end. If the player's rack isn't close to 

winning, they may want to play for a high point 

score, instead of a win. 

Points Could be used to optimize for a high scoring rack. 

Sequence 

Length 

A sequence length equal to the number of slots in a 

rack will win the game. 

Rack dis-

tribution 

error 

Measures the error of each card, given a “flat” 

target distribution. The flat distribution is given by 

the formula: y = x(max_card-1)/rack_size + 1, 

where y is a card number (from 1 to rack_size) and 

x is a slot number (from 0 to rack_size-1). Without 

knowing information about probabilities or the 

rack's usable sequences, a flat distribution maxim-

izes the chances of getting a sorted rack. 

Clump 

distribution 

error 

Measures the error of cards in clump centers, given 

a “flat” target distribution (described above). This 

gives a similar result to the rack distribution error, 

but doesn't penalize for cards that couldn't be used 

in a winning rack. The error of each clump is 

weighted by how large the clump is. 

Probability Gives the probability of filling holes in a sequence, 

if the player drew from the draw pile. Higher prob-

ability is better. 

Average 

probability 

In some cases, the probability of filling a hole is 

zero, making the entire probability score zero. 

However, there is a chance an opponent will dis-

card a card for that hole or the player will draw 

such a card when the discard pile is reshuffled. The 

Average probability score averages probabilities 

for each slot, to account for this. 

Adjacent 

density 

Computes the differences between adjacent cards 

in a clump. If the density is one, the clump is in 

perfect sequence (1,2,3), whereas a density of zero 

has a very large spread (1,15,25). Higher densities 

in clumps will give higher probabilities of filling in 

holes. 

Adjacent 

density 

penalized 

This is the same as adjacent density, only it penal-

izes clumps with only one card in them. This may 

encourage the player to get larger clumps, rather 

than many clumps with only one card. 

Center 

density 

Calculates the differences between cards in a 

clump and the center of the clump. Adjacent densi-

ty really only improves when the edges of a clump 

come closer together. Center density will improve 

if the interior of a clump comes closer together. 

Skewed 

features 

All the features except turns, points, and sequence 

length are included again, with their values 

weighted to a skewed distribution. The skewed 

distribution is linear, given by the points (0, 1) and 

(rack_size-1, 0). Racko is scored by counting the 

number of ascending cards, starting with the bot-

tom and stopping when a descending card is en-

countered. If a player doesn't win the round, it may 

be beneficial to get the highest non-winning score, 

so the loss is not so detrimental. 

Table 3 – Diablo’s new feature set. 
 

 Since computing scores for all 2^rack_size number of 
usable sequences would take too long, we chose to compute 
scores only for sequences that were not subsets of another 
sequence (e.g. given sequences [1,2] and [1,2,8], [1,2] 
would be discarded). Later experiments showed that using 
all 2^rack_size sequences did not give any noticeable im-
provement. 

The neural network was trained for 476,000 games, using 
a rack size of 10. The number of turns per round was limited 
to 1500. After 15,000 games, Diablo was able to finish a 
game under the 1500 move limit. At 43,000 games, Diablo's 
learning accelerated until it reached 10 moves per game. By 
the end of training, Diablo averaged 9.87 moves per game. 
Figure 2 is a graph that shows how Diablo’s move count 
improved over time. 

Adding a second hidden layer to Diablo's neural network 
with 30 nodes improved its performance further, giving 8.88 
moves per game. A tournament between Diablo and Kyle 
resulted in 66.83% wins with only one hidden layer, and 
71.4% with two hidden layers. We did not experiment with 
more than two hidden layers. 

Experimenting with the threshold margin for drawing 
from the discard pile gave slight improvements. A good 
value for the margin was found to be 1/(rack_size*2.8169). 
This improved the win percentage against Kyle to 73.21%. 

We tried using a neural network to automatically learn 
the best threshold, but this approach only degraded perfor-
mance. We also experimented with a simple voting ensem-
ble using Kyle, Max, Baltar, and Diablo. However, the en-
semble was only able to win around 15% of its games 
against Diablo. 
 
4.3 Casandra 
 

We tried creating a model that would record the moves 
made by another model, such as Baltar or Diablo, and using 



these moves as initial training data. The model would then 
play against another AI and would remember the moves it 
made when it would win. We dubbed this mimicking model 
“Casandra.” Unfortunately, Casandra did not fare well, even 
against a random player. Most of the games would end in 
ties by reaching a predetermined number of moves without 
any player winning. Of the games that did not end in a tie, 
Casandra would win about one-fourth of the games. Deep 
learning caused Casandra to improve faster but it would still 
not beat the random player. 

We concluded that the reason for Casandra’s failure was 
that the initial training features that we were using, which 
Casandra would record from the other AI and use in later 
games, were not useful in deciding where to draw from and 
where to play the drawn card. Perhaps a neural net would be 
able to learn to play Rack-O if we could find better features. 
  
5       Final Results 
  
We created a 1 million game tournament consisting of racks 
of 5 slots. The three players were Kyle Diablo, and Baltar. 
Kyle won 37.8% of the games in an average of 2.86 moves. 
Diablo won 54.27% of games in an average of 2.76 moves, 
and Baltar won 7.9% of games with an average of 2.61 
moves. Both Diablo and Baltar improved the number of 
moves per game over our initial AI’s 4.09 moves per game. 

The real test of our AI’s intelligence, however, was the 
number of games it could win against a human player. Final 
version of Diablo won 45/100 rounds against a human play-
er. This was a vast improvement over our initial AI which 
could not win any games against a human player. 

It seems that Diablo’s temporal difference learning model 
along with a new and improved feature set led to its domi-
nance over the other AIs that we tested.  

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 – Diablo’s moves/game over time. 
 
6       Conclusions 
  
Replacing our initial random-then-learning AI with Diablo 
led to a vast improvement in the number of moves and per-
centage of games won against both a random player and 
other AIs such as Kyle. Adding more hidden layers to Dia-

blo also significantly improved its performance over Kyle. 
Diablo was also able to finally defeat a human player. 
  
7       Future Work 
  
If time were permitted, we would like to have attempted to 
develop Casandra so that she could successfully mimic an-
other AI. We could try to have her learn using Diablo’s data 
instances. For Baltar, we could continue experimenting with 
different state spaces to see if we could find one that would 
work better than the one it currently uses. We could also 
allow Diablo to train even longer and hopefully be able to 
defeat a human opponent almost every time. Due to the ran-
dom nature of the game, victory is not always possible. Per-
haps an ensemble of many instance of Diablo, all with dif-
ferent weights, would be more successful than the ensemble 
we mentioned in section 4.2 
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