Learning Sets of Rules

CS 478 - Learning Rules

Learning Rules

If (Color = Red) and (Shape = round) then Class is A
If (Color = Blue) and (Size = large) then Class is B
If (Shape = square) then Class is A

Natural and intuitive hypotheses
— Comprehensibility - Easy to understand?

CS 478 - Learning Rules

Learning Rules

If (Color = Red) and (Shape = round) then Class is A
If (Color = Blue) and (Size = large) then Class is B
If (Shape = square) then Class is A
Natural and intuitive hypotheses

— Comprehensibility - Easy to understand?

Ordered (Prioritized) rules - default at the bottom, common
but not so easy to comprehend

Unordered rules
— Theoretically easier to understand, except must
— Force consistency, or

— Create a separate unordered list for each output class and use a tier
break scheme when multiple lists are matched

CS 478 - Learning Rules

Sequential Covering Algorithms

There are a number of rule learning algorithms based on
different variations of sequential covering

— (N2, AQx, etc.

Find a “good” rule for the current training set

Delete covered instances (or those covered correctly)
from the training set

Go back to 1 until the training set is empty or until no
more “good” rules can be found

CS 478 - Learning Rules

Finding “Good” Rules

The large majority of instances covered.by the rule infer
the same output class

Rule covers as many instances as possible (general, vs
specific rules)

Rule covers enough instances (statistically significant)
Example rules and approaches?

How to find good rules efficiently? - General to specifi¢
search 1s common

Continuous features - some type of ranges/discretization

CS 478 - Learning Rules

Common Rule “Goodness” Approaches

Relative frequency: n/n 0+ mp
m-estimate of accuracy (better when 7 is small): |G-
where p is the prior probability of a random instance having the output
class of the proposed rule, penalizes rules with small »n, Laplacian

common: (n,+1)/(n+|C)|) (i.e. m = 1/p,)
Entropy - Favors rules which cover a large number of examples from a
single class, and few from others

— Entropy can be better than relative frequency

— Improves consequent rule induction. R1:(.7,.1,.1,.1) R2 (.7,0.3,0) -
entropy selects R2 which makes for better subsequent specializations
during later rule growth

— Empirically, rules of low entropy have higher significance than relative
frequency, but Laplacian often better than entropy

CS 478 - Learning Rules

SEQUENTIAL-COVERING(T ar get _attribute, Attributes, Examples, Threshold)
e Learned rules < {}
e Rule < LEARN-ONE-RULE(T arget_attribute, Attributes, Examples)

e while PERFORMANCE(Rule, Examples) > Threshold, do
e Learned rules < Learned_rules + Rule
e Examples < Examples — {examples correctly classified by Rule}
e Rule < LEARN-ONE-RULE(Target.attribute, Attributes, Examples)

o Learned_rules < sort Learned rules accord to PERFORMANCE over Examples

e return Learned_rules

CS 478 - Learning Rules

LEARN-ONE-RULE(Target.attribute, Attributes, Examples, k)

Returns a single rule that covers some of the Examples. Conducts a general_to_specific
greedy beam search for the best rule, guided by the PERFORMANCE metric.

o Initialize Best_hypothesis to the most general hypothesis @
e Initialize Candidate hypotheses to the set {Best _hypothesis}

e While Candidate hypotheses is not empty, Do
1. Generate the next more specific candidate_hypotheses
o All _constraints < the set of all constraints of the form (a = v), where a is a member
of Attributes, and v is a value of a that occurs in the current set of Examples
e New_candidate _hypotheses <
for each h in Candidate_hypotheses,
for each ¢ in All _constraints,
e create a specialization of 4 by adding the constraint ¢
e Remove from New_candidate_hypotheses any hypotheses that are duplicates, inconsis-
tent, or not maximally specific
2. Update Best_hypothesis
e For all 4 in New_candidate _hypotheses do
e If (PERFORMANCE(h, Examples, Target attribute)
> PERFORMANCE(Best _hypothesis, Examples, Target_attribute))
Then Best_hypothesis < h
3. Update Candidate hypotheses
e Candidate hypotheses < the k best members of New_candidate hypotheses, according
to the PERFORMANCE measure.

e Return a rule of the form
“IF Best_hypothesis THEN prediction”
where prediction is the most frequent value of Targer_attribute among those Examples
that match Best_hypothesis.

PERFORMANCE(h, Examples, T ar get attribute)
o h_examples < the subset of Examples that match &

e return —Entropy(h-examples), where entropy is with respect to Target attribute

IF
THEN PlayTennis=yes

IF Wind=weak
THEN PlayTennis=yes

IF Wind=strong IF Humidity=high
THEN PlayTennis=no IF Humidity=normal THEN PlayTennis=no

THEN PlayTennis=yes

IF Huniidityznormal _ /
Wind=weak '
THEN PlayTennis=yes _
IF Humidity=normal

IF Humidity=normal '
Wind=strong IF Humidity=normal Outlook=rain
THEN PlayTennis=yes Outlook=sunny ' THEN PlayTennis=yes

THEN PlayTennis=yes

CS 478 - Learning Rules

Learning First Order Rules

Inductive Logic Programming

Propositional vs. first order rules
— st order allows variables in rules
— If Color of objectl = x and Color of object 2 = x then Class 1S"A

— More expressive

FOIL - Uses a sequential covering approach from general
to specific which allows the addition of literals with
variables

CS 478 - Learning Rules

RIPPER

procedure IREP(Pos,Neg)
begin
Ruleset, := ()
while Pos# () do
/* grow and prune a new rule */
split (Pos,Neg) into (GrowPos,GrowNeg)
and (PrunePos,PruneNeg)
Rule := GrowRule(GrowPos,GrowNeg)
Rule := PruneRule(Rule,PrunePos,PruneNeg)
if the error rate of Rule on
(PrunePos,PruneNeg) exceeds 50% then
return Ruleset
else
add Rule to Ruleset
remove examples covered by Rule
from (Pos,Neg)
endif
endwhile
return Ruleset
end

Figure 1: The IREP algorithm

Table 3. The CN2 induction algorithm.

Let E be a set of classified examples.
Let SELECTORS be the set of all possible selectors.

Procedure CN2(E)

Let RULELIST be the empty list.
Repeat until BEST.CPX is nil or E is empty:
Let BEST_CPX be Find Best_Complex(E).
If BEST.CPX is not nil,
Then let E' be the examples covered by BEST.CPX.
Remove from E the examples E' covered by BEST.CPX.
Let C be the most common class of examples in E'.
Add the rule ‘If BEST_CPX then the class is C’
to the end of RULELIST.

Return RULE_LIST.

Procedure Find.Best_Complex(E)

Let STAR be the set containing the empty complex.
Let BEST.CPX be nil.
While STAR is not empty,
Specialize all complexes in STAR as follows:
Let NEWSTAR be the set {x A y|x € STAR,y € SELECTORS}.
Remove all complexes in NEWSTAR that are either in STAR (i.e.,
the unspecialized ones) or null (e.g., big=yAbig=n),
For every complex C; in NEWSTAR:
If C; is statistically significant and better than
BEST_CPX by user-defined criteria when tested on E,
Then replace the current value of BEST.CPX by C;.
Repeat until size of NEWSTAR < user-defined maximum:
Remove the worst complex from NEWSTAR.
Let STAR be NEWSTAR.
Return BEST._CPX.

Insert Rules at Top or Bottom

Typically would like focused-exception rules higher and more
general rules lower in the list

Typical (CN2): Delete all instances covered by a rule during
learning

— Putting new rule on the bottom (i.e. early learned rules stay on top)
makes sense since this rule 1s rated good only afterrtemoving all
instances covered by previous rules, (i.e. instances whichiean get by
the earlier rules).

Still should get exceptions up top and general rules lower'in the list
because exceptions will achieve a higher score and thus be added first
(assuming statistical significance) than a general rule which has to
cover more cases. Even though E keeps getting diminished there
should still be enough data to support reasonable general rules lager (in
fact the general rules should get increasing scores after true exceptions
are removed).

e Highest scoring rules: Somewhat specific, high accuracy, sufficient
coverage

e Medium scoring rules: General and specific with reasonable accuracy and
coverage

e Low scoring rules: Specific with low coverage, and general with low
accuracy

Rule Order—-_Continued

If delete only correct instances covered by-a rule

— Putting new rule on the the top (i.e. first learned rule stays on bottom)
could make sense because we could learn exceptiontules for those
instances not covered by general rules at the bottom

— This only works if the rule placed at the bottom is truly mere general
than the later rules (i.e. many novel instances will slide past'the more
exceptional rules and get covered by the general rules at the battom)

Sort after: (Mitchell) Proceed with care because rules were
learned based on specific subsets of the training set

Other variations possible, but many could be problematic
because there are an exponential number of possible orderings

Also can do unordered lists with tie-breaking mechanisms

CS 478 - Learning Rules

