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Reinforcement Learning (RL)

⚫ Variation on Supervised Learning

⚫ Exact target outputs are not given

⚫ Some variation of reward is given either immediately or after some 

steps

– Chess

– Path Discovery

⚫ RL systems learn a mapping from states to actions by trial-and-error 

interactions with a dynamic environment

⚫ TD-Gammon (Neuro-Gammon) - 1992

⚫ Deep RL (RL with deep neural networks) – Recently demonstrating 

tremendous potential

– Especially nice for applications (e.g. games) where it is easy to generate data 

through simulation or self-play



AlphaGo - Google DeepMind
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Alpha Go
⚫ Reinforcement Learning with Deep Net learning the value and 

policy functions

⚫ Challenges world Champion Lee Se-dol in March 2016

– AlphaGo Movie – Netflix, check it out, fascinating man/machine 
interaction!

⚫ AlphaGo Master (improved with more training) then beat top 
masters on-line 60-0 in Jan 2017

⚫ 2017 – Alpha Go Zero

– Alpha Go started by learning from 1000's of expert games before 
learning more on its own, and with lots of expert knowledge

– Alpha Go Zero starts from zero (Tabula Rasa), just gets rules of Go and 
starts playing itself to learn how to play – not patterned after human 
play – More creative

– Beat AlphaGo Master 100 games to 0 (after 3 days of training by 
playing itself)
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Alpha Zero

⚫ Alpha Zero (late 2017)

⚫ Generic architecture for any board game
– Compared to AlphaGo (2016 - earlier world champion with extensive 

background knowledge) and AlphaGo Zero (2017)

⚫ No input other than rules and self-play, and not set up for any 
specific game, except different board input

⚫ With no domain knowledge and starting from random weights, 
beats worlds best players and computer programs (which were 
specifically tuned for their games over many years)

– Go – after 8 hours training (44 million games) beats AlphaGo Zero 
(which had beat AlphaGo 100-0) – 1000's of TPU's for training

⚫ AlphaGo had taken many months of human directed training

– Chess – after 4 hours training beats Stockfish8 28-0 (+72 draws)
⚫ Doesn't pattern itself after human play

– Shogi (Japanese Chess) – after 2 hours training beats Elmo

CS 270 - Reinforcement Learning 4



CS 270 - Reinforcement Learning 5

RL Basics

⚫ Agent (sensors and actions)

⚫ Can sense state of Environment (position, etc.)

⚫ Agent has a set of possible actions

– AlphaGo state and actions

– Self-driving car state and actions

⚫ Actual rewards for actions from a state are usually delayed and 
do not give direct information about how best to arrive at the 
reward

⚫ RL seeks to learn the optimal policy: which action should the 
agent take given a particular state to achieve the agents eventual 
goals (e.g. maximize reward)

– Trial and error approach – explore the action space and update action 
policy based on rewards
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Learning a Policy

⚫ Find optimal policy π: S -> A

⚫ a = π(s), where a is an element of A, and s an element of S

⚫ Which actions in a sequence leading to a goal should be rewarded, 

punished, etc. – Temporal Credit assignment problem

⚫ Exploration vs. Exploitation – To what extent should we explore new 

unknown states (hoping for better opportunities) vs. taking the best 

possible action based on knowledge already gained

– The restaurant problem

⚫ Markovian? – Do we just base action decision on current state or is 

there some memory of past states – Basic RL assumes Markovian 

processes (action outcome is only a function of current state, state fully 

observable) – Does not directly handle partially observable states (i.e. 

states which are not unambiguously identified) – can still approximate
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Rewards

⚫ Assume a reward function r(s,a) – Common approach is a positive 
reward for entering a goal state (win the game, get a resource, etc.), 
negative for entering a bad state (lose the game, lose resource, etc.), 0 
for all other transitions.

– Some reward states are absorbing states (e.g. end of game)

⚫ Discount factor γ: between 0 and 1, future rewards are discounted

⚫ Value Function V(s): The value of a state is the sum of the discounted 
rewards received when starting in that state and following a fixed 
policy until reaching a terminal state

⚫ V(s) also called the Discounted Cumulative Reward

   

V p (st ) = rt + grt+1 + g 2rt+2 + ... = g i

i= 0

¥

å rt+ i
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Q-Learning

⚫ No model of the world required (is required in some types of RL)

⚫ Just try an action and see what state you end up in and what reward 

you get.  Update the policy based on these results. 

⚫ Rather than find the value function of a state, find the value function of 

an (s,a) pair and call it the Q-value

⚫ Just need to try actions from a state and then incrementally update the 

policy based on the reward received

⚫ Q(s,a) = Sum of discounted reward for doing a from s and following 

the current policy thereafter

– Q*(s,a) represents the optimal Q function giving an optimal policy π*(s) 

Q(s,a) º r(s,a)+gV *(d(s,a)) = r(s,a)+g max
¢a
Q( ¢s , ¢a )

),(maxarg)(* asQs
a

=p
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Q̂(s,a) = r(s,a)+g max
¢a
Q̂( ¢s , ¢a )

Assume all initial Q-values are 0 and discount factor is .9
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Learning Algorithm for Q function

Q̂(s,a) = r(s,a)+g max
¢a
Q̂( ¢s , ¢a )

• Create a table with a cell for every state and (s,a) pair with zero or random 

initial values for the hypothesis of the Q values which we represent by

• Iteratively try different actions from different states and update the table 

based on the following learning rule (for deterministic environment)

Q̂

• Note that this slowly adjusts the estimated Q-function towards the true Q-

function.  Iteratively applying this equation will in the limit converge to the 

optimal Q-function if

▪ The system can be modeled by a deterministic Markov Decision Process 

– action outcome depends only on current state (not on how you got there)

▪ r is bounded (r(s,a) < c for all transitions)

▪ Each (s,a) transition is visited infinitely many times
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Learning Algorithm for Q function

⚫ Until Convergence (Q-function changing very little) repeat:
–  Choose an arbitrary state s

–  Select any action a and execute (can use exploitation vs. exploration)

–  Update the Q-function table entry for (s, a)

⚫ Monotonic Convergence – Once updated once, a Q-value 

can only increase

⚫ We do not need to know the actual reward and state 

transition functions.  Just sample them (Model-less).

Q̂(s,a) = r(s,a)+g max
¢a
Q̂( ¢s , ¢a )



*Q-Learning Challenge Question*

⚫ Assume the deterministic 3 state world below (each cell is 
a state) where the immediate reward is 0 for entering all 
states, except the rightmost state, for which the reward is 5, 
and which is an absorbing state. The only actions are move 
right and move left (only one of which is available from 
the border cells). Assume a discount factor of .6, and all 
initial Q-values of 0. Give the final optimal Q values for 
each action in each state and describe the optimal policy. 
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Reward: 5

Q̂(s,a) = r(s,a)+g max
¢a
Q̂( ¢s , ¢a )



*Q-Learning Challenge Question*

14

Reward: 5

5 + .6*00 + .6*5=3

0 + .6*3=1.8

Optimal Policy: “Choose the Right!!”

⚫ Assume the deterministic 3 state world below (each cell is 
a state) where the immediate reward is 0 for entering all 
states, except the rightmost state, for which the reward is 5, 
and which is an absorbing state. The only actions are move 
right and move left (only one of which is available from 
the border cells). Assume a discount factor of .6, and all 
initial Q-values of 0. Give the final optimal Q values for 
each action in each state and describe the optimal policy. 

Q̂(s,a) = r(s,a)+g max
¢a
Q̂( ¢s , ¢a )



Q-Learning Homework

⚫ Assume the deterministic 4 state world below (each cell is 

a state) where the immediate reward is 0 for entering all 

states, except the leftmost state, for which the reward is 10, 

and which is an absorbing state. The only actions are move 

right and move left (only one of which is available from 

the border cells).  Assume a discount factor of .8, and all 

initial Q-values of 0. Give the final optimal Q values for 

each action in each state and describe an optimal policy. 
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Reward: 10

Q̂(s,a) = r(s,a)+g max
¢a
Q̂( ¢s , ¢a )



Real Q-Learning

⚫ System can't see reward states, etc. though we did for our exercise

⚫ Assume a discount factor of .6, and all initial Q-values of 0, and the 

same reward as the challenge question but we don’t see if beforehand

⚫ How would our program learn it?

Until Convergence (Q-function not changing or changing very little)

 Choose an arbitrary s

 Select any action a and execute (exploitation vs. exploration)

 Update the Q-function table entry
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0

0

Q̂(s,a) = r(s,a)+g max
¢a
Q̂( ¢s , ¢a )

0

0



Real Q-Learning

⚫ System can't see reward states, etc. though we did for our exercise – 

Model-less

⚫ Assume a discount factor of .6, and all initial Q-values of 0

⚫ How would our program learn it?

Until Convergence (Q-function not changing or changing very little)

 Choose an arbitrary s

 Select any action a and execute (exploitation vs. exploration)

 Update the Q-function table entry
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5

0

Q̂(s,a) = r(s,a)+g max
¢a
Q̂( ¢s , ¢a )

0

0



Real Q-Learning

⚫ System can't see reward states, etc. though we did for our exercise – 

Model-less

⚫ Assume a discount factor of .6, and all initial Q-values of 0

⚫ How would our program learn it?

Until Convergence (Q-function not changing or changing very little)

 Choose an arbitrary s

 Select any action a and execute (exploitation vs. exploration)

 Update the Q-function table entry
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53

0

Q̂(s,a) = r(s,a)+g max
¢a
Q̂( ¢s , ¢a )

0



Real Q-Learning

⚫ System can't see reward states, etc. though we did for our exercise – 

Model-less

⚫ Assume a discount factor of .6, and all initial Q-values of 0

⚫ How would our program learn it?

Until Convergence (Q-function not changing or changing very little)

 Choose an arbitrary s

 Select any action a and execute (exploitation vs. exploration)

 Update the Q-function table entry
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53

1.8

Q̂(s,a) = r(s,a)+g max
¢a
Q̂( ¢s , ¢a )

0



Non-Absorbing Reward States

⚫ Would if the left state was non-absorbing with a negative reward of -1.

Until Convergence (Q-function not changing or changing very little)

 Choose an arbitrary s

 Select any action a and execute (exploitation vs. exploration)

 Update the Q-function table entry
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5

Q̂(s,a) = r(s,a)+g max
¢a
Q̂( ¢s , ¢a )

3

?



Non-Absorbing Reward States

⚫ And would if the left state was non-absorbing with a negative reward 

of -1.

Until Convergence (Q-function not changing or changing very little)

 Choose an arbitrary s

 Select any action a and execute (exploitation vs. exploration)

 Update the Q-function table entry
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Q̂(s,a) = r(s,a)+g max
¢a
Q̂( ¢s , ¢a )

53

-1 + (.6*3) = .8
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Exploration vs Exploitation

⚫ Choosing action during learning (Exploitation vs. Exploration) – 2 Common 

approaches

⚫ Softmax:

å
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k
saP

),(ˆ

),(ˆ

)|(

o Can increase k (constant >1) over time to move from exploration to 

exploitation

⚫ ε-greedy: With probability ε randomly choose any action, else greedily take the 

action with the best current Q value.

o Start ε at 1 and then decrease with time
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Q-Learning in Non-Deterministic Environments

⚫ Both the transition function and reward functions could be non-deterministic

⚫ In this case the previous algorithm will not monotonically converge

⚫ Though more iterations may be required, we simply replace the update function 
with

 

where αn starts at 1 and decreases over time and n stands for the nth iteration.  An 
example of adapting αn is

⚫ Large variations in the non-deterministic function are muted and an overall 
averaging effect is attained (like a small learning rate in neural network 
learning)

Q̂n(s,a) = (1-an )Q̂n-1(s,a)+an[r(s,a)+g max
¢a
Q̂n-1( ¢s , ¢a )]

),(#1

1

asofvisits
n

+
=a

Q*(s,a) = E[r(s,a)+g max
¢a
Q*( ¢s , ¢a )]



Episodic Updates

⚫ Note that much efficiency could be gained if you worked back from the goal 

state (like you did on the challenge question). However, with model free 

learning, we do not know where the goal states are, or what the transition 

function is, or what the reward function is.  We just sample things and observe.  

If you do know these functions then you can simulate the environment and 

come up with more efficient ways to find the optimal policy with other DP 

algorithms (e.g. policy iteration).

⚫ One thing we can do for Q-learning is rather than start with a new state each 

step, continue going from state to state until reaching a reward state (episode) 

Then, propagate the discounted Q-function update all the way back to the 

initial starting state, allowing  multiple updates. This can speed up learning at a 

cost of memory. This approach is often used but it is not the “true” learning 

algorithm 
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Reward: 5

00

0

Reward: 5

55*.6=3

3*.6=1.8



CS 270 - Reinforcement Learning 25

Example - Chess

⚫ Assume reward of 0’s except win (+10) and loss (-10)

⚫ Set initial Q-function to all 0’s

⚫ Start from any legal state (typically normal start of game) and choose 

transitions until reaching an absorbing state (win or lose), Episodic

– Starting in a random state more challenging in this case as many states aren’t 

realistic, etc.

⚫ Finally, after entering an absorbing state, the full chain of preceding 

state-action pairs gets updated (positive for win or negative for loss).

– Earlier Q-values have higher discounts on their updates

– Could do non-episodic, but much slower in this kind of task

⚫ If other actions from a state also lead to the same outcome (e.g. loss) 

then Q-learning will learn to avoid this state altogether 

– However, remember it is the max action out of the state that sets the actual Q-value



Possible States for Chess
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Replace Q-table with a Function Approximator

⚫ Train a function approximator (e.g. ML model) to output 
approximate Q-values

– Use an MLP/deep net in place of the lookup table, where it is trained 
with the inputs s and a with the current Q-value as output

– Avoids huge or infinite lookup tables (real values, etc.)

– Allows generalization from all states, not just those seen during training

– We are not training with the optimal Q-values (we don’t know them)

– Initial Q-values are random based on initial random weights

– For each update the training error is the difference between the network's 
current Q-value output (generalization) and the updated Q-value 
expectation from our standard update equation above

⚫ If current Q-value is .4 and the updated Q-value is .7, then output error 
propagated back is .3

– Converged when Q-values are no longer changing much
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Q*(s,a) »Q(s,a;q) Q̂(s,a) = r(s,a)+g max
¢a
Q̂( ¢s , ¢a )



Deep Q-Learning Example

⚫ Deep convolutional network trained to learn Q function

⚫ To overcome Markov limitation (partially observed states) 

the function approximator can be given an input made up 

of m consecutive proceeding states (Atari and Alpha zero 

approach) or have memory (e.g. recurrent NN), etc.

– Early Q learning used linear models or shallow neural networks

⚫ Using deep networks as the approximator has been shown 

to lead to accurate stable learning
⚫ Learns all 49 classic Atari games with the only inputs being pixels from 

the screen and the score, at above standard human playing level with no 

tuning of hyperparameters.
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Deep Q Network – 49 Classic Atari Games
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AlphaStar

⚫ DeepMind considered "perfect information" board games solved

⚫ Next step (2018)  – Starcraft II - AlphaStar

– Considered a next "Grand AI Challenge"

– Complex, long-term strategy, stochastic, hidden info, real-time

– Plays best Pros - AlphaStar limited to human speed in actions/clicks 
per minute – so just comparing strategy, beats best

⚫ Moved on to Alpha-fold (protein folding) and other
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Examples – What Learning Approach to Use

⚫ Heart Attack Diagnosis?

⚫ Checkers?

⚫ Self Driving Car?
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Examples – What Learning Approach to Use

⚫ Heart Attack Diagnosis?

⚫ Checkers?

⚫ Self Driving Car?

– Can do supervised with easy to record data of human drivers driving

– Deep net (with vision input) to represent state and give output

– But would if we want to learn to drive better than humans?

⚫ RL with actions being steering wheel, brakes, gas, etc.

– Could initialize training with human data, but…

– Use simulators to create lots more data – Car just starts driving in 

simulated environments with rewards (positive and negative)

⚫ but need real good simulators!

– Could learn Tabula Rasa if we want to do better than human
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Reinforcement Learning Summary

⚫ Learning can be slow even for small environments

– Can be great for tasks where trial and error is reasonable or can be 

done through simulation

⚫ Large and continuous spaces can be handled using a function 

approximator (e.g. MLP)

⚫ Deep Q learning: States and policy represented by a deep neural 

network – more later

⚫ Suitable for tasks which require state/action sequences

– RL not used for choosing best pizza, but could be used to discover the 

steps to create the best or a better pizza

– Need mechanism to efficiently explore (e.g. simulator, self-play, etc.)

⚫ With RL we don’t need labeled data.  Just experiment and learn!
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