
CS 270 - Reinforcement Learning 1

Reinforcement Learning (RL)

⚫ Variation on Supervised Learning

⚫ Exact target outputs are not given

⚫ Some variation of reward is given either immediately or after some

steps

– Chess

– Path Discovery

⚫ RL systems learn a mapping from states to actions by trial-and-error

interactions with a dynamic environment

⚫ TD-Gammon (Neuro-Gammon) - 1992

⚫ Deep RL (RL with deep neural networks) – Recently demonstrating

tremendous potential

– Especially nice for applications (e.g. games) where it is easy to generate data

through simulation or self-play

AlphaGo - Google DeepMind

CS 270 - Reinforcement Learning 2

Alpha Go
⚫ Reinforcement Learning with Deep Net learning the value and

policy functions

⚫ Challenges world Champion Lee Se-dol in March 2016

– AlphaGo Movie – Netflix, check it out, fascinating man/machine
interaction!

⚫ AlphaGo Master (improved with more training) then beat top
masters on-line 60-0 in Jan 2017

⚫ 2017 – Alpha Go Zero

– Alpha Go started by learning from 1000's of expert games before
learning more on its own, and with lots of expert knowledge

– Alpha Go Zero starts from zero (Tabula Rasa), just gets rules of Go and
starts playing itself to learn how to play – not patterned after human
play – More creative

– Beat AlphaGo Master 100 games to 0 (after 3 days of training by
playing itself)

CS 270 - Reinforcement Learning 3

Alpha Zero

⚫ Alpha Zero (late 2017)

⚫ Generic architecture for any board game
– Compared to AlphaGo (2016 - earlier world champion with extensive

background knowledge) and AlphaGo Zero (2017)

⚫ No input other than rules and self-play, and not set up for any
specific game, except different board input

⚫ With no domain knowledge and starting from random weights,
beats worlds best players and computer programs (which were
specifically tuned for their games over many years)

– Go – after 8 hours training (44 million games) beats AlphaGo Zero
(which had beat AlphaGo 100-0) – 1000's of TPU's for training

⚫ AlphaGo had taken many months of human directed training

– Chess – after 4 hours training beats Stockfish8 28-0 (+72 draws)
⚫ Doesn't pattern itself after human play

– Shogi (Japanese Chess) – after 2 hours training beats Elmo

CS 270 - Reinforcement Learning 4

CS 270 - Reinforcement Learning 5

RL Basics

⚫ Agent (sensors and actions)

⚫ Can sense state of Environment (position, etc.)

⚫ Agent has a set of possible actions

– AlphaGo state and actions

– Self-driving car state and actions

⚫ Actual rewards for actions from a state are usually delayed and
do not give direct information about how best to arrive at the
reward

⚫ RL seeks to learn the optimal policy: which action should the
agent take given a particular state to achieve the agents eventual
goals (e.g. maximize reward)

– Trial and error approach – explore the action space and update action
policy based on rewards

CS 270 - Reinforcement Learning 6

Learning a Policy

⚫ Find optimal policy π: S -> A

⚫ a = π(s), where a is an element of A, and s an element of S

⚫ Which actions in a sequence leading to a goal should be rewarded,

punished, etc. – Temporal Credit assignment problem

⚫ Exploration vs. Exploitation – To what extent should we explore new

unknown states (hoping for better opportunities) vs. taking the best

possible action based on knowledge already gained

– The restaurant problem

⚫ Markovian? – Do we just base action decision on current state or is

there some memory of past states – Basic RL assumes Markovian

processes (action outcome is only a function of current state, state fully

observable) – Does not directly handle partially observable states (i.e.

states which are not unambiguously identified) – can still approximate

CS 270 - Reinforcement Learning 7

Rewards

⚫ Assume a reward function r(s,a) – Common approach is a positive
reward for entering a goal state (win the game, get a resource, etc.),
negative for entering a bad state (lose the game, lose resource, etc.), 0
for all other transitions.

– Some reward states are absorbing states (e.g. end of game)

⚫ Discount factor γ: between 0 and 1, future rewards are discounted

⚫ Value Function V(s): The value of a state is the sum of the discounted
rewards received when starting in that state and following a fixed
policy until reaching a terminal state

⚫ V(s) also called the Discounted Cumulative Reward

V p (st) = rt + grt+1 + g 2rt+2 + ... = g i

i= 0

¥

å rt+ i

CS 270 - Reinforcement Learning 8

Q-Learning

⚫ No model of the world required (is required in some types of RL)

⚫ Just try an action and see what state you end up in and what reward

you get. Update the policy based on these results.

⚫ Rather than find the value function of a state, find the value function of

an (s,a) pair and call it the Q-value

⚫ Just need to try actions from a state and then incrementally update the

policy based on the reward received

⚫ Q(s,a) = Sum of discounted reward for doing a from s and following

the current policy thereafter

– Q*(s,a) represents the optimal Q function giving an optimal policy π*(s)

Q(s,a) º r(s,a)+gV *(d(s,a)) = r(s,a)+g max
¢a
Q(¢s , ¢a)

),(maxarg)(* asQs
a

=p

CS 270 - Reinforcement Learning 9

Q̂(s,a) = r(s,a)+g max
¢a
Q̂(¢s , ¢a)

Assume all initial Q-values are 0 and discount factor is .9

CS 270 - Reinforcement Learning 10

CS 270 - Reinforcement Learning 11

Learning Algorithm for Q function

Q̂(s,a) = r(s,a)+g max
¢a
Q̂(¢s , ¢a)

• Create a table with a cell for every state and (s,a) pair with zero or random

initial values for the hypothesis of the Q values which we represent by

• Iteratively try different actions from different states and update the table

based on the following learning rule (for deterministic environment)

Q̂

• Note that this slowly adjusts the estimated Q-function towards the true Q-

function. Iteratively applying this equation will in the limit converge to the

optimal Q-function if

▪ The system can be modeled by a deterministic Markov Decision Process

– action outcome depends only on current state (not on how you got there)

▪ r is bounded (r(s,a) < c for all transitions)

▪ Each (s,a) transition is visited infinitely many times

CS 270 - Reinforcement Learning 12

Learning Algorithm for Q function

⚫ Until Convergence (Q-function changing very little) repeat:
– Choose an arbitrary state s

– Select any action a and execute (can use exploitation vs. exploration)

– Update the Q-function table entry for (s, a)

⚫ Monotonic Convergence – Once updated once, a Q-value

can only increase

⚫ We do not need to know the actual reward and state

transition functions. Just sample them (Model-less).

Q̂(s,a) = r(s,a)+g max
¢a
Q̂(¢s , ¢a)

Q-Learning Challenge Question

⚫ Assume the deterministic 3 state world below (each cell is
a state) where the immediate reward is 0 for entering all
states, except the rightmost state, for which the reward is 5,
and which is an absorbing state. The only actions are move
right and move left (only one of which is available from
the border cells). Assume a discount factor of .6, and all
initial Q-values of 0. Give the final optimal Q values for
each action in each state and describe the optimal policy.

CS 270 - Reinforcement Learning 13

Reward: 5

Q̂(s,a) = r(s,a)+g max
¢a
Q̂(¢s , ¢a)

Q-Learning Challenge Question

14

Reward: 5

5 + .6*00 + .6*5=3

0 + .6*3=1.8

Optimal Policy: “Choose the Right!!”

⚫ Assume the deterministic 3 state world below (each cell is
a state) where the immediate reward is 0 for entering all
states, except the rightmost state, for which the reward is 5,
and which is an absorbing state. The only actions are move
right and move left (only one of which is available from
the border cells). Assume a discount factor of .6, and all
initial Q-values of 0. Give the final optimal Q values for
each action in each state and describe the optimal policy.

Q̂(s,a) = r(s,a)+g max
¢a
Q̂(¢s , ¢a)

Q-Learning Homework

⚫ Assume the deterministic 4 state world below (each cell is

a state) where the immediate reward is 0 for entering all

states, except the leftmost state, for which the reward is 10,

and which is an absorbing state. The only actions are move

right and move left (only one of which is available from

the border cells). Assume a discount factor of .8, and all

initial Q-values of 0. Give the final optimal Q values for

each action in each state and describe an optimal policy.

CS 270 - Reinforcement Learning 15

Reward: 10

Q̂(s,a) = r(s,a)+g max
¢a
Q̂(¢s , ¢a)

Real Q-Learning

⚫ System can't see reward states, etc. though we did for our exercise

⚫ Assume a discount factor of .6, and all initial Q-values of 0, and the

same reward as the challenge question but we don’t see if beforehand

⚫ How would our program learn it?

Until Convergence (Q-function not changing or changing very little)

 Choose an arbitrary s

 Select any action a and execute (exploitation vs. exploration)

 Update the Q-function table entry

CS 270 - Reinforcement Learning 16

0

0

Q̂(s,a) = r(s,a)+g max
¢a
Q̂(¢s , ¢a)

0

0

Real Q-Learning

⚫ System can't see reward states, etc. though we did for our exercise –

Model-less

⚫ Assume a discount factor of .6, and all initial Q-values of 0

⚫ How would our program learn it?

Until Convergence (Q-function not changing or changing very little)

 Choose an arbitrary s

 Select any action a and execute (exploitation vs. exploration)

 Update the Q-function table entry

CS 270 - Reinforcement Learning 17

5

0

Q̂(s,a) = r(s,a)+g max
¢a
Q̂(¢s , ¢a)

0

0

Real Q-Learning

⚫ System can't see reward states, etc. though we did for our exercise –

Model-less

⚫ Assume a discount factor of .6, and all initial Q-values of 0

⚫ How would our program learn it?

Until Convergence (Q-function not changing or changing very little)

 Choose an arbitrary s

 Select any action a and execute (exploitation vs. exploration)

 Update the Q-function table entry

CS 270 - Reinforcement Learning 18

53

0

Q̂(s,a) = r(s,a)+g max
¢a
Q̂(¢s , ¢a)

0

Real Q-Learning

⚫ System can't see reward states, etc. though we did for our exercise –

Model-less

⚫ Assume a discount factor of .6, and all initial Q-values of 0

⚫ How would our program learn it?

Until Convergence (Q-function not changing or changing very little)

 Choose an arbitrary s

 Select any action a and execute (exploitation vs. exploration)

 Update the Q-function table entry

CS 270 - Reinforcement Learning 19

53

1.8

Q̂(s,a) = r(s,a)+g max
¢a
Q̂(¢s , ¢a)

0

Non-Absorbing Reward States

⚫ Would if the left state was non-absorbing with a negative reward of -1.

Until Convergence (Q-function not changing or changing very little)

 Choose an arbitrary s

 Select any action a and execute (exploitation vs. exploration)

 Update the Q-function table entry

CS 270 - Reinforcement Learning 20

5

Q̂(s,a) = r(s,a)+g max
¢a
Q̂(¢s , ¢a)

3

?

Non-Absorbing Reward States

⚫ And would if the left state was non-absorbing with a negative reward

of -1.

Until Convergence (Q-function not changing or changing very little)

 Choose an arbitrary s

 Select any action a and execute (exploitation vs. exploration)

 Update the Q-function table entry

CS 270 - Reinforcement Learning 21

Q̂(s,a) = r(s,a)+g max
¢a
Q̂(¢s , ¢a)

53

-1 + (.6*3) = .8

CS 270 - Reinforcement Learning 22

Exploration vs Exploitation

⚫ Choosing action during learning (Exploitation vs. Exploration) – 2 Common

approaches

⚫ Softmax:

å
=

j

asQ

asQ

i
j

i

k

k
saP

),(ˆ

),(ˆ

)|(

o Can increase k (constant >1) over time to move from exploration to

exploitation

⚫ ε-greedy: With probability ε randomly choose any action, else greedily take the

action with the best current Q value.

o Start ε at 1 and then decrease with time

CS 270 - Reinforcement Learning 23

Q-Learning in Non-Deterministic Environments

⚫ Both the transition function and reward functions could be non-deterministic

⚫ In this case the previous algorithm will not monotonically converge

⚫ Though more iterations may be required, we simply replace the update function
with

where αn starts at 1 and decreases over time and n stands for the nth iteration. An
example of adapting αn is

⚫ Large variations in the non-deterministic function are muted and an overall
averaging effect is attained (like a small learning rate in neural network
learning)

Q̂n(s,a) = (1-an)Q̂n-1(s,a)+an[r(s,a)+g max
¢a
Q̂n-1(¢s , ¢a)]

),(#1

1

asofvisits
n

+
=a

Q*(s,a) = E[r(s,a)+g max
¢a
Q*(¢s , ¢a)]

Episodic Updates

⚫ Note that much efficiency could be gained if you worked back from the goal

state (like you did on the challenge question). However, with model free

learning, we do not know where the goal states are, or what the transition

function is, or what the reward function is. We just sample things and observe.

If you do know these functions then you can simulate the environment and

come up with more efficient ways to find the optimal policy with other DP

algorithms (e.g. policy iteration).

⚫ One thing we can do for Q-learning is rather than start with a new state each

step, continue going from state to state until reaching a reward state (episode)

Then, propagate the discounted Q-function update all the way back to the

initial starting state, allowing multiple updates. This can speed up learning at a

cost of memory. This approach is often used but it is not the “true” learning

algorithm

CS 270 - Reinforcement Learning 24

Reward: 5

00

0

Reward: 5

55*.6=3

3*.6=1.8

CS 270 - Reinforcement Learning 25

Example - Chess

⚫ Assume reward of 0’s except win (+10) and loss (-10)

⚫ Set initial Q-function to all 0’s

⚫ Start from any legal state (typically normal start of game) and choose

transitions until reaching an absorbing state (win or lose), Episodic

– Starting in a random state more challenging in this case as many states aren’t

realistic, etc.

⚫ Finally, after entering an absorbing state, the full chain of preceding

state-action pairs gets updated (positive for win or negative for loss).

– Earlier Q-values have higher discounts on their updates

– Could do non-episodic, but much slower in this kind of task

⚫ If other actions from a state also lead to the same outcome (e.g. loss)

then Q-learning will learn to avoid this state altogether

– However, remember it is the max action out of the state that sets the actual Q-value

Possible States for Chess

CS 270 - Reinforcement Learning 26

Replace Q-table with a Function Approximator

⚫ Train a function approximator (e.g. ML model) to output
approximate Q-values

– Use an MLP/deep net in place of the lookup table, where it is trained
with the inputs s and a with the current Q-value as output

– Avoids huge or infinite lookup tables (real values, etc.)

– Allows generalization from all states, not just those seen during training

– We are not training with the optimal Q-values (we don’t know them)

– Initial Q-values are random based on initial random weights

– For each update the training error is the difference between the network's
current Q-value output (generalization) and the updated Q-value
expectation from our standard update equation above

⚫ If current Q-value is .4 and the updated Q-value is .7, then output error
propagated back is .3

– Converged when Q-values are no longer changing much

CS 270 - Reinforcement Learning 27

Q*(s,a) »Q(s,a;q) Q̂(s,a) = r(s,a)+g max
¢a
Q̂(¢s , ¢a)

Deep Q-Learning Example

⚫ Deep convolutional network trained to learn Q function

⚫ To overcome Markov limitation (partially observed states)

the function approximator can be given an input made up

of m consecutive proceeding states (Atari and Alpha zero

approach) or have memory (e.g. recurrent NN), etc.

– Early Q learning used linear models or shallow neural networks

⚫ Using deep networks as the approximator has been shown

to lead to accurate stable learning
⚫ Learns all 49 classic Atari games with the only inputs being pixels from

the screen and the score, at above standard human playing level with no

tuning of hyperparameters.

CS 270 - Reinforcement Learning 28

CS 270 - Reinforcement Learning 29

Deep Q Network – 49 Classic Atari Games

CS 270 - Reinforcement Learning 30

CS 270 - Reinforcement Learning 31

CS 270 - Reinforcement Learning 32

CS 270 - Reinforcement Learning 33

AlphaStar

⚫ DeepMind considered "perfect information" board games solved

⚫ Next step (2018) – Starcraft II - AlphaStar

– Considered a next "Grand AI Challenge"

– Complex, long-term strategy, stochastic, hidden info, real-time

– Plays best Pros - AlphaStar limited to human speed in actions/clicks
per minute – so just comparing strategy, beats best

⚫ Moved on to Alpha-fold (protein folding) and other

CS 270 - Reinforcement Learning 34

Examples – What Learning Approach to Use

⚫ Heart Attack Diagnosis?

⚫ Checkers?

⚫ Self Driving Car?

CS 270 - Reinforcement Learning 35

Examples – What Learning Approach to Use

⚫ Heart Attack Diagnosis?

⚫ Checkers?

⚫ Self Driving Car?

– Can do supervised with easy to record data of human drivers driving

– Deep net (with vision input) to represent state and give output

– But would if we want to learn to drive better than humans?

⚫ RL with actions being steering wheel, brakes, gas, etc.

– Could initialize training with human data, but…

– Use simulators to create lots more data – Car just starts driving in

simulated environments with rewards (positive and negative)

⚫ but need real good simulators!

– Could learn Tabula Rasa if we want to do better than human

CS 270 - Reinforcement Learning 36

CS 270 - Reinforcement Learning 37

Reinforcement Learning Summary

⚫ Learning can be slow even for small environments

– Can be great for tasks where trial and error is reasonable or can be

done through simulation

⚫ Large and continuous spaces can be handled using a function

approximator (e.g. MLP)

⚫ Deep Q learning: States and policy represented by a deep neural

network – more later

⚫ Suitable for tasks which require state/action sequences

– RL not used for choosing best pizza, but could be used to discover the

steps to create the best or a better pizza

– Need mechanism to efficiently explore (e.g. simulator, self-play, etc.)

⚫ With RL we don’t need labeled data. Just experiment and learn!

	Slide 1: Reinforcement Learning (RL)
	Slide 2: AlphaGo - Google DeepMind
	Slide 3: Alpha Go
	Slide 4: Alpha Zero
	Slide 5: RL Basics
	Slide 6: Learning a Policy
	Slide 7: Rewards
	Slide 8: Q-Learning
	Slide 9
	Slide 10
	Slide 11: Learning Algorithm for Q function
	Slide 12: Learning Algorithm for Q function
	Slide 13: *Q-Learning Challenge Question*
	Slide 14: *Q-Learning Challenge Question*
	Slide 15: Q-Learning Homework
	Slide 16: Real Q-Learning
	Slide 17: Real Q-Learning
	Slide 18: Real Q-Learning
	Slide 19: Real Q-Learning
	Slide 20: Non-Absorbing Reward States
	Slide 21: Non-Absorbing Reward States
	Slide 22: Exploration vs Exploitation
	Slide 23: Q-Learning in Non-Deterministic Environments
	Slide 24: Episodic Updates
	Slide 25: Example - Chess
	Slide 26: Possible States for Chess
	Slide 27: Replace Q-table with a Function Approximator
	Slide 28: Deep Q-Learning Example
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: AlphaStar
	Slide 35: Examples – What Learning Approach to Use
	Slide 36: Examples – What Learning Approach to Use
	Slide 37: Reinforcement Learning Summary

