
CS 270 - Perceptron 1

CS 270 - Perceptron 2

Basic Neuron

CS 270 - Perceptron 3

Expanded Neuron

CS 270 - Perceptron 4

Perceptron Learning Algorithm

⚫ First neural network learning model in the 1960’s

– Frank Rosenblatt

⚫ Simple and limited (single layer model)

⚫ Basic concepts are similar for multi-layer and deep models

so this is a good learning tool

⚫ Still used in some current applications (large business

problems, where intelligibility is needed, etc.)

CS 270 - Perceptron 5

Perceptron Node – Threshold Logic Unit

x1

xn

x2

w1

w2

wn

z

q

q

q

<

=

³

å

å

=

=

i

n

i

i

i

n

i

i

wx

z

wx

1

1

 if 0

 if 1

𝜃

CS 270 - Perceptron 6

Perceptron Node – Threshold Logic Unit

x1

xn

x2

w1

w2

wn

z

q

q

<

=

³

å

å

=

=

i

n

i

i

i

n

i

i

wx

z

wx

1

1

 if 0

 if 1 • Learn weights such that an objective

function is maximized.

• What objective function should we use?

• What learning algorithm should we use?

𝜃

CS 270 - Perceptron 7

Perceptron Learning Algorithm

x1

x2

z

q

q

<

=

³

å

å

=

=

i

n

i

i

i

n

i

i

wx

z

wx

1

1

 if 0

 if 1

.4

-.2

.1

x1 x2 t

0

1

.1

.3

.4

.8

CS 270 - Perceptron 8

First Training Instance

.8

.3

z

q

q

<

=

³

å

å

=

=

i

n

i

i

i

n

i

i

wx

z

wx

1

1

 if 0

 if 1

.4

-.2

.1

net = .8*.4 + .3*-.2 = .26

=1

x1 x2 t

0

1

.1

.3

.4

.8

CS 270 - Perceptron 9

Second Training Instance

.4

.1

z

q

q

<

=

³

å

å

=

=

i

n

i

i

i

n

i

i

wx

z

wx

1

1

 if 0

 if 1

.4

-.2

.1

x1 x2 t

0

1

.1

.3

.4

.8

net = .4*.4 + .1*-.2 = .14

=1

wi = (t - z) c xi

CS 270 - Perceptron 10

Perceptron Rule Learning

 wi = c(t – z) xi

⚫ Where wi is the weight from input i to the perceptron node, c is the
learning rate, t is the target for the current instance, z is the current output,
and xi is ith input

⚫ Least perturbation principle
– Only change weights if there is an error

– small c rather than changing weights sufficient to make current pattern correct

– Scale by xi

⚫ Create a perceptron node with n inputs

⚫ Iteratively apply a pattern from the training set and apply the perceptron
rule

⚫ Each iteration through the training set is an epoch

⚫ Continue training until total training set error ceases to improve

⚫ Perceptron Convergence Theorem: Guaranteed to find a solution in finite
time if a solution exists

CS 270 - Perceptron 11

CS 270 - Perceptron 12

Augmented Pattern Vectors

1 0 1 -> 0

1 0 0 -> 1

Augmented Version

1 0 1 1 -> 0

1 0 0 1 -> 1

⚫ Treat threshold like any other weight. No special case.
Call it a bias since it biases the output up or down.

⚫ Since we start with random weights anyways, can ignore
the - notion, and just think of the bias as an extra
available weight. (note the author uses a -1 input)

⚫ Always use a bias weight

CS 270 - Perceptron 13

Perceptron Rule Example

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)

⚫ Assume a learning rate c of 1 and initial weights all 0: wi = c(t – z) xi

⚫ Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) W

0 0 1 1 0 0 0 0 0

CS 270 - Perceptron 14

Example

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)

⚫ Assume a learning rate c of 1 and initial weights all 0: wi = c(t – z) xi

⚫ Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) W

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0

CS 270 - Perceptron 15

Example

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)

⚫ Assume a learning rate c of 1 and initial weights all 0: wi = c(t – z) xi

⚫ Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) W

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 1 1 1 1

1 0 1 1 1 1 1 1 1

Peer Instruction

⚫ I pose a challenge question (often multiple choice), which
will help solidify understanding of topics we have studied
– Might not just be one correct answer

⚫ You each get some time alone (1-2 minutes) to come up
with your answer and vote – use Mentimeter (anonymous)

⚫ Then you get some time to convince your group
(neighbors) why you think you are right (2-3 minutes)

– Learn from and teach each other!

⚫ You vote again. May change your vote if you want.

⚫ We discuss together the different responses, show the
votes, give you opportunity to justify your thinking, and
give you further insights

CS 270 - Perceptron 16

Peer Instruction (PI) Why

⚫ Studies show this approach improves learning

⚫ Learn by doing, discussing, and teaching each other

– Curse of knowledge/expert blind-spot

– Compared to talking with a peer who just figured it out and who can

explain it in your own jargon

– You never really know something until you can teach it to someone

else – More improved learning!

⚫ Learn to reason about your thinking and answers

⚫ More enjoyable - You are involved and active in the learning

CS 270 - Perceptron 17

How Groups Interact

⚫ Best if group members have different initial answers

⚫ 3 is the “magic” group number

– You can self-organize "on-the-fly" or sit together specifically to be a

group

– Can go 2-4 on a given day to make sure everyone is involved

⚫ Teach and learn from each other: Discuss, reason, articulate

⚫ If you know the answer, listen to where colleagues are coming

from first, then be a great humble teacher, you will also learn by

doing that, and you’ll be on the other side in the future

– I can’t do that as well because every small group has different

misunderstandings and you get to focus on your particular questions

⚫ Be ready to justify to the class your vote and justifications!

CS 270 - Perceptron 18

CS 270 - Perceptron 19

Challenge Question - Perceptron

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)

⚫ Assume a learning rate c of 1 and initial weights all 0: wi = c(t – z) xi

⚫ Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) W

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 1 1 1 1

1 0 1 1 1 1 1 1 1

⚫ Once it converges the final weight vector will be
A. 1 1 1 1

B. -1 0 1 0

C. 0 0 0 0

D. 1 0 0 0

E. None of the above

CS 270 - Perceptron 20

Example

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)

⚫ Assume a learning rate c of 1 and initial weights all 0: wi = c(t – z) xi

⚫ Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) W

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 1 1 1 1

1 0 1 1 1 1 1 1 1 3 1 0 0 0 0

0 1 1 1 0 1 1 1 1

CS 270 - Perceptron 21

Example

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)

⚫ Assume a learning rate c of 1 and initial weights all 0: wi = c(t – z) xi

⚫ Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) W

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 1 1 1 1

1 0 1 1 1 1 1 1 1 3 1 0 0 0 0

0 1 1 1 0 1 1 1 1 3 1 0 -1 -1 -1

0 0 1 1 0 1 0 0 0

CS 270 - Perceptron 22

Example

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)

⚫ Assume a learning rate c of 1 and initial weights all 0: wi = c(t – z) xi

⚫ Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) W

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 1 1 1 1

1 0 1 1 1 1 1 1 1 3 1 0 0 0 0

0 1 1 1 0 1 1 1 1 3 1 0 -1 -1 -1

0 0 1 1 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 1 1 0 0 0 0

1 0 1 1 1 1 0 0 0 1 1 0 0 0 0

0 1 1 1 0 1 0 0 0 0 0 0 0 0 0

CS 270 - Perceptron 23

Perceptron Homework

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if net > 0, else 0)

⚫ Assume a learning rate c of 1 and initial weights all 1: wi = c(t – z) xi

⚫ Show weights after each pattern for just one epoch

⚫ Training set 1 0 1 -> 0

1 .5 0 -> 0

1 -.4 1 -> 1

0 1 .5 -> 1

Pattern Target (t) Weight Vector (wi) Net Output (z) W

 1 1 1 1

CS 270 - Perceptron 24

Training Sets and Noise

⚫ Assume a Probability of Error at each input and output

value each time a pattern is trained on

⚫ 0 0 1 0 1 1 0 0 1 1 0 -> 0 1 1 0

⚫ i.e. P(error) = .05

⚫ Or a probability that the algorithm is applied wrong

(opposite) occasionally

⚫ Averages out over learning

CS 270 - Perceptron 25

CS 270 - Perceptron 26

If no bias weight, the

hyperplane must go

through the origin.

Note that since 𝛳 = -bias,

the equation with bias is:

X2 = (-W1/W2)X1 - bias/W2

CS 270 - Perceptron 27

Linear Separability

CS 270 - Perceptron 28

Linear Separability and Generalization

When is data noise vs. a legitimate exception

CS 270 - Perceptron 29

Limited Functionality of Hyperplane

How to Handle Multi-Class Output

⚫ This is an issue with learning models which only support binary
classification (perceptron, SVM, etc.)

⚫ Create 1 perceptron for each output class, where the training set
considers all other classes to be negative examples (one vs the
rest)

– Run all perceptrons on novel data and set the output to the class of the
perceptron which outputs high

– If there is a tie, choose the perceptron with the highest net value

⚫ Another approach: Create 1 perceptron for each pair of output
classes, where the training set only contains examples from the
2 classes (one vs one)

– Run all perceptrons on novel data and set the output to be the class
with the most wins (votes) from the perceptrons

– In case of a tie, use the net values to decide

– Number of models grows by the square of the output classes

CS 270 - Perceptron 30

CS 270 - Perceptron 31

UC Irvine Machine Learning Data Base

Iris Data Set

4.8,3.0,1.4,0.3, Iris-setosa

5.1,3.8,1.6,0.2, Iris-setosa

4.6,3.2,1.4,0.2, Iris-setosa

5.3,3.7,1.5,0.2, Iris-setosa

5.0,3.3,1.4,0.2, Iris-setosa

7.0,3.2,4.7,1.4, Iris-versicolor

6.4,3.2,4.5,1.5, Iris-versicolor

6.9,3.1,4.9,1.5, Iris-versicolor

5.5,2.3,4.0,1.3, Iris-versicolor

6.5,2.8,4.6,1.5, Iris-versicolor

6.0,2.2,5.0,1.5, Iris-viginica

6.9,3.2,5.7,2.3, Iris-viginica

5.6,2.8,4.9,2.0, Iris-viginica

7.7,2.8,6.7,2.0, Iris-viginica

6.3,2.7,4.9,1.8, Iris-viginica

Objective Functions: Accuracy/Error

⚫ How do we judge the quality of a particular model (e.g.
Perceptron with a particular setting of weights)

⚫ Consider how accurate the model is on the data set
– Classification accuracy = # Correct/Total instances

– Classification error = # Misclassified/Total instances (= 1 – acc)

⚫ Usually minimize a Loss function (aka cost, error)

⚫ For real valued outputs and/or targets
– Pattern error = Target – output: Errors could cancel each other

⚫ |tj – zj| (L1 loss) where j indexes all outputs in the pattern

⚫ Common approach is Squared Error = (tj – zj)
2 (L2 loss)

– Sum squared error (SSE) = pattern squared errors = (tij – zij)
2

where i indexes all the patterns in training set

⚫ For nominal data, pattern error is typically 1 for a mismatch and
0 for a match

– For nominal (including binary) output and targets, L1, L2, and
classification error are equivalent

CS 270 - Perceptron 32

Mean Squared Error

⚫ Mean Squared Error (MSE) – SSE/n where n is the number of
instances in the data set

– This can be nice because it normalizes the error for data sets of
different sizes

– MSE is the average squared error per pattern

⚫ Root Mean Squared Error (RMSE) – is the square root of the
MSE

– This puts the error value back into the same units as the features and
can thus be more intuitive

⚫ Since we squared the error on the SSE

– RMSE is the average distance (error) of targets from the outputs in the
same scale as the features

– Note RMSE is the root of the total data set MSE, and NOT the sum of
the root of each individual pattern MSE

CS 270 - Perceptron 33

Challenge Question - Error
⚫ Given the following data set, what is the L1 (|ti – zi|), SSE (L2)

((ti – zi)
2), MSE, and RMSE error for the entire data set?

CS 270 - Perceptron 34

x y Output Target Data Set

2 -3 1 1

0 1 0 1

.5 .6 .8 .2

L1 ?

SSE ?

MSE ?

RMSE ?

A. .4 1 1 1

B. 1.6 2.36 1 1

C. .4 .64 .21 0.453

D. 1.6 1.36 .673 .82

E. None of the above

Challenge Question - Error

CS 270 - Perceptron 35

x y Output Target Data Set

2 -3 1 1

0 1 0 1

.5 .6 .8 .2

L1 1.6

SSE 1.36

MSE 1.36/3 = .453

RMSE .453^.5 = .673

A. .4 1 1 1

B. 1.6 2.36 1 1

C. .4 .64 .21 0.453

D. 1.6 1.36 .673 .82

E. None of the above

⚫ Given the following data set, what is the L1 (|ti – zi|), SSE (L2)

((ti – zi)
2), MSE, and RMSE error for the entire data set?

Error Values Homework
⚫ Given the following data set, what is the L1, SSE (L2), MSE,

and RMSE error of Output1, Output2, and the entire data set?
Fill in cells that have a ?.

– Notes: For instance 1 the L1 pattern error is 1 + .4 = 1.4 and the SSE
pattern error is 1 + .16 = 1.16. The Data Set L1 and SSE errors will
just be the sum of each of the pattern errors.

CS 270 - Perceptron 36

Instance x y Output1 Target1 Output2 Target 2 Data Set

1 -1 -1 0 1 .6 1.0

2 -1 1 1 1 -.3 0

3 1 -1 1 0 1.2 .5

4 1 1 0 0 0 -.2

L1 ? ? ?

SSE ? ? ?

MSE ? ? ?

RMSE ? ? ?

CS 270 - Perceptron 37

Gradient Descent Learning: Minimize

(Maximize) the Objective Function

Total SSE:

Sum

Squared

Error

 (t – z)2

0

Error Landscape

Weight Values

CS 270 - Perceptron 38

⚫ Goal is to decrease overall error (or other loss function)

each time a weight is changed

⚫ Total Sum Squared error one possible loss function

E: (t – z)2

⚫ Seek a weight changing algorithm such that is

negative

⚫ If a formula can be found then we have a gradient descent

learning algorithm

⚫ Delta rule is a variant of the perceptron rule which gives a

gradient descent learning algorithm with perceptron nodes

Deriving a Gradient Descent Learning

Algorithm

ijw

E

¶

¶

CS 270 - Perceptron 39

Delta rule algorithm

⚫ Delta rule uses (target - net) before the net value goes through the
threshold in the learning rule to decide weight update

⚫ Weights are updated even when the output would be correct

⚫ Because this model is single layer and because of the SSE objective
function, the error surface is guaranteed to be parabolic with only one
minima

⚫ Learning rate

– If learning rate is too large can jump around global minimum

– If too small, will get to minimum, but will take a longer time

– Can decrease learning rate over time to give higher speed and still
attain the global minimum (although exact minimum is still just for
training set and thus…)

Dwi = c(t -net)xi

Batch vs Stochastic Update

⚫ To get the true gradient with the delta rule, we need to sum
errors over the entire training set and only update weights
at the end of each epoch

⚫ Batch (gradient) vs stochastic (on-line, incremental)
– SGD (Stochastic Gradient Descent)

– With the stochastic delta rule algorithm, you update after every pattern,
just like with the perceptron algorithm (even though that means each
change may not be along the true gradient)

– Stochastic is more efficient and best to use in almost all cases, though not
all have figured it out yet

– We’ll talk about this in more detail when we get to Backpropagation

CS 270 - Perceptron 40

CS 270 - Perceptron 41

Perceptron rule vs Delta rule

⚫ Perceptron rule (target - thresholded output) guaranteed to
converge to a separating hyperplane if the problem is
linearly separable. Otherwise may not converge – could
get in a cycle

⚫ Singe layer Delta rule guaranteed to have only one global
minimum. Thus, it will converge to the best SSE solution
whether the problem is linearly separable or not.

– Could have a higher misclassification rate than with the perceptron
rule and a less intuitive decision surface – we will discuss this later
with regression where Delta rules is more appropriate

⚫ Stopping Criteria – For these models we stop when no
longer making progress
– When you have gone a few epochs with no significant

improvement/change between epochs (including oscillations)

CS 270 - Perceptron 42

Exclusive Or

X1

X2

1

1

0

0

Is there a dividing hyperplane?

CS 270 - Perceptron 43

Linearly Separable Boolean Functions

⚫ d = # of dimensions (i.e. inputs)

CS 270 - Perceptron 44

Linearly Separable Boolean Functions

⚫ d = # of dimensions

⚫ P = 2d = # of Patterns

CS 270 - Perceptron 45

Linearly Separable Boolean Functions

⚫ d = # of dimensions

⚫ P = 2d = # of Patterns

⚫ 2P = 22d
= # of Functions

n Total Functions Linearly Separable Functions

0 2 2

1 4 4

2 16 14

CS 270 - Perceptron 46

Linearly Separable Boolean Functions

⚫ d = # of dimensions

⚫ P = 2d = # of Patterns

⚫ 2P = 22d
= # of Functions

n Total Functions Linearly Separable Functions

0 2 2

1 4 4

2 16 14

3 256 104

4 65536 1882

5 4.3 × 109 94572

6 1.8 × 1019 1.5 × 107

7 3.4 × 1038 8.4 × 109

CS 270 - Perceptron 47

Linearly Separable Functions

LS(P,d) = 2 å
i=0

d

(P-1)!

(P-1-i)!i! for P > d

= 2P for P ≤ d

(All patterns for d=P)

i.e. all 8 ways of dividing 3 vertices of a

cube for d=P=3

Where P is the # of patterns for training and

d is the # of inputs

 lim
d -> ∞ (# of LS functions) = ∞

Linear Models which are Non-Linear in the

Input Space

⚫ So far we have used

⚫ We could preprocess the inputs in a non-linear way and do

⚫ To the perceptron it looks the same but with more/different
inputs. It still uses the same learning algorithm.

⚫ For example, for a problem with two inputs x and y (plus the
bias), we could also add the inputs x2, y2, and x·y

⚫ The perceptron would just consider it is a 5-dimensional task,
and it is linear (5-d hyperplane) in those 5 dimensions

– But what kind of decision surfaces would it allow for the original 2-d
input space?

CS 270 - Perceptron 48

f (x,w) = sign(wixi

1=1

n

å)

f (x,w) = sign(wifi(x
1=1

m

å))

Quadric Machine

⚫ All quadratic surfaces (2nd order)

– ellipsoid

– parabola

– etc.

⚫ That significantly increases the number of problems that

can be solved

⚫ Can we solve XOR with this model?

CS 270 - Perceptron 49

Quadric Machine

⚫ All quadratic surfaces (2nd order)

– ellipsoid

– parabola

– etc.

⚫ That significantly increases the number of problems that

can be solved

⚫ But still many problem which are not quadrically separable

⚫ Could go to 3rd and higher order features (cubic), but

number of possible features grows exponentially

⚫ Multi-layer neural networks will allow us to discover high-

order features automatically from the input space

CS 270 - Perceptron 50

Simple Quadric Example

⚫ What is the decision surface for a 1-d (1 input) problem?

⚫ Perceptron with just feature f1 cannot separate the data

⚫ Could we add a transformed feature to our perceptron?

CS 270 - Perceptron 51

-3 -2 -1 0 1 2 3

f1

Simple Quadric Example

⚫ Perceptron with just feature f1 cannot separate the data

⚫ Could we add a transformed feature to our perceptron?

⚫ f2 = f1
2

CS 270 - Perceptron 52

-3 -2 -1 0 1 2 3

f1

Simple Quadric Example

⚫ Perceptron with just feature f1 cannot separate the data

⚫ Could we add another feature to our perceptron f2 = f1
2

⚫ Note could also think of this as just using feature f1 but now
allowing a quadric surface to divide the data

– Note that f1 not actually needed in this case

CS 270 - Perceptron 53

-3 -2 -1 0 1 2 3

f1

-3 -2 -1 0 1 2 3

f2

f1

Quadric Machine Homework

⚫ Assume a 2-input perceptron expanded to be a quadric (2nd order)

perceptron, with 5 inputs/weights (x, y, x·y, x2, y2) and the bias weight

– Assume it outputs 1 if net > 0, else 0

⚫ Assume a learning rate c of .5 and initial weights all 0

– wi = c(t – z) xi

⚫ Show all weights after each pattern for one epoch with the following

training set

CS 270 - Perceptron 54

x y Target

0 .4 0

-.1 1.2 1

.5 .8 0

	Slide 1
	Slide 2: Basic Neuron
	Slide 3: Expanded Neuron
	Slide 4: Perceptron Learning Algorithm
	Slide 5: Perceptron Node – Threshold Logic Unit
	Slide 6: Perceptron Node – Threshold Logic Unit
	Slide 7: Perceptron Learning Algorithm
	Slide 8: First Training Instance
	Slide 9: Second Training Instance
	Slide 10: Perceptron Rule Learning
	Slide 11
	Slide 12: Augmented Pattern Vectors
	Slide 13: Perceptron Rule Example
	Slide 14: Example
	Slide 15: Example
	Slide 16: Peer Instruction
	Slide 17: Peer Instruction (PI) Why
	Slide 18: How Groups Interact
	Slide 19: **Challenge Question** - Perceptron
	Slide 20: Example
	Slide 21: Example
	Slide 22: Example
	Slide 23: Perceptron Homework
	Slide 24: Training Sets and Noise
	Slide 25
	Slide 26
	Slide 27: Linear Separability
	Slide 28: Linear Separability and Generalization
	Slide 29: Limited Functionality of Hyperplane
	Slide 30: How to Handle Multi-Class Output
	Slide 31: UC Irvine Machine Learning Data Base Iris Data Set
	Slide 32: Objective Functions: Accuracy/Error
	Slide 33: Mean Squared Error
	Slide 34: **Challenge Question** - Error
	Slide 35: **Challenge Question** - Error
	Slide 36: Error Values Homework
	Slide 37: Gradient Descent Learning: Minimize (Maximize) the Objective Function
	Slide 38: Deriving a Gradient Descent Learning Algorithm
	Slide 39: Delta rule algorithm
	Slide 40: Batch vs Stochastic Update
	Slide 41: Perceptron rule vs Delta rule
	Slide 42
	Slide 43: Linearly Separable Boolean Functions
	Slide 44: Linearly Separable Boolean Functions
	Slide 45: Linearly Separable Boolean Functions
	Slide 46: Linearly Separable Boolean Functions
	Slide 47
	Slide 48: Linear Models which are Non-Linear in the Input Space
	Slide 49: Quadric Machine
	Slide 50: Quadric Machine
	Slide 51: Simple Quadric Example
	Slide 52: Simple Quadric Example
	Slide 53: Simple Quadric Example
	Slide 54: Quadric Machine Homework

