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Basic Neuron
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Expanded Neuron
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Perceptron Learning Algorithm

⚫ First neural network learning model in the 1960’s

– Frank Rosenblatt

⚫ Simple and limited (single layer model)

⚫ Basic concepts are similar for multi-layer and deep models 

so this is a good learning tool

⚫ Still used in some current applications (large business 

problems, where intelligibility is needed, etc.)
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Perceptron Node – Threshold Logic Unit
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Perceptron Node – Threshold Logic Unit
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Perceptron Learning Algorithm

x1

x2

z

q

q

<

=

³

å

å

=

=

i

n

i

i

i

n

i

i

wx 

z

wx 

1

1

 if     0         

 if     1         

.4

-.2

.1

x1 x2 t

0

1

.1

.3

.4

.8



CS 270 - Perceptron 8

First Training Instance
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Second Training Instance
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Perceptron Rule Learning

   wi = c(t – z) xi

⚫ Where wi is the weight from input i to the perceptron node, c is the 
learning rate, t is the target for the current instance, z is the current output, 
and xi is  ith input

⚫ Least perturbation principle 
– Only change weights if there is an error

– small c rather than changing weights sufficient to make current pattern correct

– Scale by xi

⚫ Create a perceptron node with n inputs

⚫ Iteratively apply a pattern from the training set and apply the perceptron 
rule

⚫ Each iteration through the training set is an epoch

⚫ Continue training until total training set error ceases to improve

⚫ Perceptron Convergence Theorem:  Guaranteed to find a solution in finite 
time if a solution exists
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Augmented Pattern Vectors

1 0 1 -> 0

1 0 0 -> 1

Augmented Version

1 0 1 1 -> 0

1 0 0 1 -> 1

⚫ Treat threshold like any other weight.  No special case.  
Call it a bias since it biases the output up or down.

⚫ Since we start with random weights anyways, can ignore 
the - notion, and just think of the bias as an extra 
available weight. (note the author uses a -1 input)

⚫ Always use a bias weight
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Perceptron Rule Example

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

⚫ Assume a learning rate c of 1 and initial weights all 0:  wi = c(t – z) xi

⚫ Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) W

0 0 1  1 0 0 0 0 0  



CS 270 - Perceptron 14

Example

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

⚫ Assume a learning rate c of 1 and initial weights all 0:  wi = c(t – z) xi

⚫ Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) W

0 0 1  1 0 0 0 0 0  0 0 0  0  0  0

1 1 1  1 1 0 0 0 0
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Example

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

⚫ Assume a learning rate c of 1 and initial weights all 0:  wi = c(t – z) xi

⚫ Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) W

0 0 1  1 0 0 0 0 0  0 0 0  0  0  0

1 1 1  1 1 0 0 0 0  0 0 1  1  1  1

1 0 1  1 1 1 1 1 1



Peer Instruction

⚫ I pose a challenge question (often multiple choice), which 
will help solidify understanding of topics we have studied
– Might not just be one correct answer

⚫ You each get some time alone (1-2 minutes) to come up 
with your answer and vote – use Mentimeter (anonymous)

⚫ Then you get some time to convince your group 
(neighbors) why you think you are right (2-3 minutes)

– Learn from and teach each other!

⚫ You vote again.  May change your vote if you want.

⚫ We discuss together the different responses, show the 
votes, give you opportunity to justify your thinking, and 
give you further insights
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Peer Instruction (PI) Why

⚫ Studies show this approach improves learning

⚫ Learn by doing, discussing, and teaching each other 

– Curse of knowledge/expert blind-spot

– Compared to talking with a peer who just figured it out and who can 

explain it in your own jargon

– You never really know something until you can teach it to someone 

else – More improved learning!

⚫ Learn to reason about your thinking and answers

⚫ More enjoyable - You are involved and active in the learning
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How Groups Interact

⚫ Best if group members have different initial answers 

⚫ 3 is the “magic” group number

– You can self-organize "on-the-fly" or sit together specifically to be a 

group

– Can go 2-4 on a given day to make sure everyone is involved

⚫ Teach and learn from each other: Discuss, reason, articulate

⚫ If you know the answer, listen to where colleagues are coming 

from first, then be a great humble teacher, you will also learn by 

doing that, and you’ll be on the other side in the future

– I can’t do that as well because every small group has different 

misunderstandings and you get to focus on your particular questions

⚫ Be ready to justify to the class your vote and justifications!
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**Challenge Question** - Perceptron

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

⚫ Assume a learning rate c of 1 and initial weights all 0:  wi = c(t – z) xi

⚫ Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) W

0 0 1  1 0 0 0 0 0  0 0 0  0  0  0

1 1 1  1 1 0 0 0 0  0 0 1  1  1  1

1 0 1  1 1 1 1 1 1

⚫ Once it converges the final weight vector will be
A. 1 1 1 1

B. -1 0 1 0

C. 0 0 0 0

D. 1 0 0 0

E. None of the above
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Example

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

⚫ Assume a learning rate c of 1 and initial weights all 0:  wi = c(t – z) xi

⚫ Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) W

0 0 1  1 0 0 0 0 0  0 0 0  0  0  0

1 1 1  1 1 0 0 0 0  0 0 1  1  1  1

1 0 1  1 1 1 1 1 1  3 1 0  0  0  0

0 1 1  1 0 1 1 1 1    
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Example

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

⚫ Assume a learning rate c of 1 and initial weights all 0:  wi = c(t – z) xi

⚫ Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) W

0 0 1  1 0 0 0 0 0  0 0 0  0  0  0

1 1 1  1 1 0 0 0 0  0 0 1  1  1  1

1 0 1  1 1 1 1 1 1  3 1 0  0  0  0

0 1 1  1 0 1 1 1 1  3 1 0 -1 -1 -1

0 0 1  1 0 1 0 0 0  
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Example

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

⚫ Assume a learning rate c of 1 and initial weights all 0:  wi = c(t – z) xi

⚫ Training set 0 0 1 -> 0

1 1 1 -> 1

1 0 1 -> 1

0 1 1 -> 0

Pattern Target (t) Weight Vector (wi) Net Output (z) W

0 0 1  1 0 0 0 0 0  0 0 0  0  0  0

1 1 1  1 1 0 0 0 0  0 0 1  1  1  1

1 0 1  1 1 1 1 1 1  3 1 0  0  0  0

0 1 1  1 0 1 1 1 1  3 1 0 -1 -1 -1

0 0 1  1 0 1 0 0 0  0 0 0  0  0  0

1 1 1  1 1 1 0 0 0  1 1 0  0  0  0

1 0 1  1 1 1 0 0 0  1 1 0  0  0  0

0 1 1  1 0 1 0 0 0  0 0 0  0  0  0
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Perceptron Homework

⚫ Assume a 3 input perceptron plus bias (it outputs 1 if  net > 0, else 0) 

⚫ Assume a learning rate c of 1 and initial weights all 1:  wi = c(t – z) xi

⚫ Show weights after each pattern for just one epoch

⚫ Training set 1  0  1 -> 0

1 .5  0 -> 0

1 -.4 1 -> 1

0  1 .5 -> 1

Pattern Target (t) Weight Vector (wi) Net Output (z) W

   1  1  1  1
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Training Sets and Noise

⚫ Assume a Probability of Error at each input and output 

value each time a pattern is trained on

⚫ 0 0 1 0 1 1 0 0 1 1 0  -> 0 1 1 0

⚫ i.e. P(error) = .05

⚫ Or a probability that the algorithm is applied wrong 

(opposite) occasionally

⚫ Averages out over learning
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If no bias weight, the 

hyperplane must go 

through the origin.

Note that since 𝛳 = -bias, 

the equation with bias is:

X2 = (-W1/W2)X1 - bias/W2
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Linear Separability
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Linear Separability and Generalization

When is data noise vs. a legitimate exception
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Limited Functionality of Hyperplane



How to Handle Multi-Class Output

⚫ This is an issue with learning models which only support binary 
classification (perceptron, SVM, etc.)

⚫ Create 1 perceptron for each output class, where the training set 
considers all other classes to be negative examples (one vs the 
rest)

– Run all perceptrons on novel data and set the output to the class of the 
perceptron which outputs high

– If there is a tie, choose the perceptron with the highest net value

⚫ Another approach: Create 1 perceptron for each pair of output 
classes, where the training set only contains examples from the 
2 classes (one vs one)

– Run all perceptrons on novel data and set the output to be the class 
with the most wins (votes) from the perceptrons

– In case of a tie, use the net values to decide

– Number of models grows by the square of the output classes
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UC Irvine Machine Learning Data Base

Iris Data Set

4.8,3.0,1.4,0.3, Iris-setosa

5.1,3.8,1.6,0.2, Iris-setosa

4.6,3.2,1.4,0.2, Iris-setosa

5.3,3.7,1.5,0.2, Iris-setosa

5.0,3.3,1.4,0.2, Iris-setosa

7.0,3.2,4.7,1.4, Iris-versicolor

6.4,3.2,4.5,1.5, Iris-versicolor

6.9,3.1,4.9,1.5, Iris-versicolor

5.5,2.3,4.0,1.3, Iris-versicolor

6.5,2.8,4.6,1.5, Iris-versicolor

6.0,2.2,5.0,1.5, Iris-viginica

6.9,3.2,5.7,2.3, Iris-viginica

5.6,2.8,4.9,2.0, Iris-viginica

7.7,2.8,6.7,2.0, Iris-viginica

6.3,2.7,4.9,1.8, Iris-viginica



Objective Functions: Accuracy/Error

⚫ How do we judge the quality of a particular model (e.g. 
Perceptron with a particular setting of weights)

⚫ Consider how accurate the model is on the data set
– Classification accuracy =  # Correct/Total instances

– Classification error =  # Misclassified/Total instances (= 1 – acc)

⚫ Usually minimize a Loss function (aka cost, error)

⚫ For real valued outputs and/or targets
– Pattern error = Target – output:  Errors could cancel each other

⚫ |tj – zj|  (L1 loss) where j indexes all outputs in the pattern

⚫ Common approach is Squared Error = (tj – zj)
2   (L2 loss) 

– Sum squared error (SSE) =  pattern squared errors =   (tij – zij)
2 

where i indexes all the patterns in training set

⚫ For nominal data, pattern error is typically 1 for a mismatch and 
0 for a match

– For nominal (including binary) output and targets, L1, L2, and 
classification error are equivalent
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Mean Squared Error

⚫ Mean Squared Error (MSE) – SSE/n where n is the number of 
instances in the data set

– This can be nice because it normalizes the error for data sets of 
different sizes

– MSE is the average squared error per pattern

⚫ Root Mean Squared Error (RMSE) – is the square root of the 
MSE

– This puts the error value back into the same units as the features and 
can thus be more intuitive

⚫ Since we squared the error on the SSE

– RMSE is the average distance (error) of targets from the outputs in the 
same scale as the features

– Note RMSE is the root of the total data set MSE, and NOT the sum of 
the root of each individual pattern MSE
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**Challenge Question** - Error
⚫ Given the following data set, what is the L1 (|ti – zi|), SSE (L2) 

((ti – zi)
2), MSE, and RMSE error for the entire data set?

CS 270 - Perceptron 34

x y Output Target Data Set

2 -3 1 1

0 1 0 1

.5 .6 .8 .2

L1 ?

SSE ?

MSE ?

RMSE ?

A. .4  1  1  1

B. 1.6  2.36  1  1

C. .4  .64  .21  0.453

D. 1.6  1.36  .673  .82

E. None of the above



**Challenge Question** - Error
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x y Output Target Data Set

2 -3 1 1

0 1 0 1

.5 .6 .8 .2

L1 1.6

SSE 1.36

MSE 1.36/3 = .453

RMSE .453^.5 = .673

A. .4  1  1  1

B. 1.6  2.36  1  1

C. .4  .64  .21  0.453

D. 1.6  1.36  .673  .82

E. None of the above

⚫ Given the following data set, what is the L1 (|ti – zi|), SSE (L2) 

((ti – zi)
2), MSE, and RMSE error for the entire data set?



Error Values Homework
⚫ Given the following data set, what is the L1, SSE (L2), MSE, 

and RMSE error of Output1, Output2, and the entire data set? 
Fill in cells that have a ?.

– Notes: For instance 1 the L1 pattern error is 1 + .4 = 1.4 and the SSE 
pattern error is 1 + .16 = 1.16.  The Data Set L1 and SSE errors will 
just be the sum of each of the pattern errors. 
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Instance x y Output1 Target1 Output2 Target 2 Data Set

1 -1 -1 0 1 .6 1.0

2 -1 1 1 1 -.3 0

3 1 -1 1 0 1.2 .5

4 1 1 0 0 0 -.2

L1 ? ? ?

SSE ? ? ?

MSE ? ? ?

RMSE ? ? ?
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Gradient Descent Learning: Minimize 

(Maximize) the Objective Function

Total SSE:

Sum 

Squared

Error

 (t – z)2

0

Error Landscape

Weight Values
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⚫ Goal is to decrease overall error (or other loss function) 

each time a weight is changed

⚫ Total Sum Squared error one possible loss function           

E:  (t – z)2

⚫ Seek a weight changing algorithm such that           is 

negative

⚫ If a formula can be found then we have a gradient descent 

learning algorithm

⚫ Delta rule is a variant of the perceptron rule which gives a 

gradient descent learning algorithm with perceptron nodes

Deriving a Gradient Descent Learning 

Algorithm

ijw

E

¶

¶
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Delta rule algorithm

⚫ Delta rule uses (target - net) before the net value goes through the 
threshold in the learning rule to decide weight update

⚫ Weights are updated even when the output would be correct

⚫ Because this model is single layer and because of the SSE objective 
function, the error surface is guaranteed to be parabolic with only one 
minima

⚫ Learning rate

– If learning rate is too large can jump around global minimum

– If too small, will get to minimum, but will take a longer time

– Can decrease learning rate over time to give higher speed and still 
attain the global minimum (although exact minimum is still just for 
training set and thus…)

Dwi = c(t -net)xi



Batch vs Stochastic Update

⚫ To get the true gradient with the delta rule, we need to sum 
errors over the entire training set and only update weights 
at the end of each epoch

⚫ Batch (gradient) vs stochastic (on-line, incremental)
– SGD (Stochastic Gradient Descent)

– With the stochastic delta rule algorithm, you update after every pattern, 
just like with the perceptron algorithm (even though that means each 
change may not be along the true gradient)

– Stochastic is more efficient and best to use in almost all cases, though not 
all have figured it out yet

– We’ll talk about this in more detail when we get to Backpropagation
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Perceptron rule vs Delta rule

⚫ Perceptron rule (target - thresholded output) guaranteed to 
converge to a separating hyperplane if the problem is 
linearly separable.  Otherwise may not converge – could 
get in a cycle

⚫ Singe layer Delta rule guaranteed to have only one global 
minimum.  Thus, it will converge to the best SSE solution 
whether the problem is linearly separable or not.

– Could have a higher misclassification rate than with the perceptron 
rule and a less intuitive decision surface – we will discuss this later 
with regression where Delta rules is more appropriate

⚫ Stopping Criteria – For these models we stop when no 
longer making progress
– When you have gone a few epochs with no significant 

improvement/change between epochs (including oscillations) 
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Exclusive Or 

 

X1
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Is there a dividing hyperplane? 
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Linearly Separable Boolean Functions

⚫ d = # of dimensions (i.e. inputs)
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Linearly Separable Boolean Functions

⚫ d = # of dimensions

⚫ P = 2d = # of Patterns
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Linearly Separable Boolean Functions

⚫ d = # of dimensions

⚫ P = 2d = # of Patterns

⚫ 2P = 22d
= # of Functions

n  Total Functions Linearly Separable Functions

0  2   2

1  4   4

2  16   14
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Linearly Separable Boolean Functions

⚫ d = # of dimensions

⚫ P = 2d = # of Patterns

⚫ 2P = 22d
= # of Functions

n  Total Functions Linearly Separable Functions

0  2   2

1  4   4

2  16   14

3  256   104

4  65536   1882

5  4.3 × 109  94572

6  1.8 × 1019  1.5 × 107

7  3.4 × 1038  8.4 × 109
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Linearly Separable Functions 

 

LS(P,d) = 2 å
i=0

d

 
(P-1)!

(P-1-i)!i!     for P > d 

 

= 2P   for P ≤ d 

 

(All patterns for d=P) 

i.e. all 8 ways of dividing 3 vertices of a 

cube for d=P=3 

 

Where P is the # of patterns for training and 

d is the # of inputs 

 

  lim
d -> ∞ (# of LS functions)  = ∞ 



Linear Models which are Non-Linear in the 

Input Space

⚫ So far we have used

⚫ We could preprocess the inputs in a non-linear way and do

⚫ To the perceptron it looks the same but with more/different 
inputs. It still uses the same learning algorithm. 

⚫ For example, for a problem with two inputs x and y (plus the 
bias), we could also add the inputs x2, y2, and x·y

⚫ The perceptron would just consider it is a 5-dimensional task, 
and it is linear (5-d hyperplane) in those 5 dimensions

– But what kind of decision surfaces would it allow for the original 2-d 
input space?
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Quadric Machine

⚫ All quadratic surfaces (2nd order)

– ellipsoid

– parabola

– etc.

⚫ That significantly increases the number of problems that 

can be solved

⚫ Can we solve XOR with this model?
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Quadric Machine

⚫ All quadratic surfaces (2nd order)

– ellipsoid

– parabola

– etc.

⚫ That significantly increases the number of problems that 

can be solved

⚫ But still many problem which are not quadrically separable

⚫ Could go to 3rd and higher order features (cubic), but 

number of possible features grows exponentially

⚫ Multi-layer neural networks will allow us to discover high-

order features automatically from the input space
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Simple Quadric Example

⚫ What is the decision surface for a 1-d (1 input) problem?

⚫ Perceptron with just feature f1 cannot separate the data

⚫ Could we add a transformed feature to our perceptron?
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-3   -2   -1    0   1    2    3

f1



Simple Quadric Example

⚫ Perceptron with just feature f1 cannot separate the data

⚫ Could we add a transformed feature to our perceptron?

⚫  f2 = f1
2 
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-3   -2   -1    0   1    2    3

f1



Simple Quadric Example

⚫ Perceptron with just feature f1 cannot separate the data

⚫ Could we add another feature to our perceptron f2 = f1
2 

⚫ Note could also think of this as just using feature f1 but now 
allowing a quadric surface to divide the data

– Note that f1 not actually needed in this case
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-3   -2   -1    0   1    2    3

f1

-3   -2   -1    0   1    2    3

f2

f1



Quadric Machine Homework 

⚫ Assume a 2-input perceptron expanded to be a quadric (2nd order) 

perceptron, with 5 inputs/weights (x, y, x·y, x2, y2) and the bias weight

–  Assume it outputs 1 if  net > 0, else 0

⚫ Assume a learning rate c of .5 and initial weights all 0

–   wi = c(t – z) xi

⚫ Show all weights after each pattern for one epoch with the following 

training set
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x y Target

0 .4 0

-.1 1.2 1

.5 .8 0
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