
CS 270 - Nearest Neighbor Learning 1

Nearest Neighbor Learning
(Instance Based Learning)

l Classify based on local similarity
l Ranges from simple nearest neighbor to case-based and

analogical reasoning
l Use local information near the current query instance to

decide the classification of that instance
l As such can represent quite complex decision surfaces in a

simple manner
– Local model vs a model such as an MLP which uses a global

decision surface

k-Nearest Neighbor Approach
l Simply store all (or some representative subset) of the

examples in the training set
l When desiring to generalize on a new instance,

measure the distance from the new instance to all the
stored instances and the nearest ones vote to decide
the class of the new instance

l No need to pre-process a specific hypothesis (Lazy vs
Eager learning)
– Fast learning
– Can be slow during execution and require significant storage
– Possible to index the data or reduce the instances stored to

enhance efficiency

CS 270 - Nearest Neighbor Learning 2

Examples

CS 270 - Nearest Neighbor Learning 3

4

k-Nearest Neighbor
l Naturally supports real valued attributes
l Typically use Euclidean distance

l Nominal/unknown attributes can just be a 1/0 distance (more on other
distance metrics later)

l The k nearest neighbors each vote for their output class and we sum
the votes
– Assume three output classes A, B, C and k = 3 with summed votes (2, 1, 0)
– A is the winning output class, or we could output all the votes, or normalize to a

probability vector (.67, .33. 0)
l k greater than 1 is more noise resistant, but too large of k could lead to

less accuracy as less relevant neighbors have more influence (common
values: k=3, k=5)
– Usually discover best k by trial and error (trying different values for a task)

€

dist(x,y) = (xi − yi)
2

i=1

m

∑

CS 270 - Nearest Neighbor Learning

Decision Surface
l Linear decision boundary between 2 closest points of

different classes for 1-nn

CS 270 - Nearest Neighbor Learning 5

Decision Surface
l Combining all the appropriate intersections gives a

Voronoi diagram

CS 270 - Nearest Neighbor Learning 6

Euclidean distance – each point a unique class Same points - Manhattan distance

CS 270 - Nearest Neighbor Learning 7

k-Nearest Neighbor (cont)

l Usually do distance weighted voting where each nearest
neighbor vote is scaled inversely to its distance

l Inverse of distance squared is a common weight

l Gaussian is another common distance weight
l In this case the k value is more robust, could let k be even

and/or be larger (even all points if desired), because the
more distant points have negligible influence

l w = 1 for the non-weighted version

€

wi =
1

dist(xq ,xi)
2

Challenge Question - k-Nearest Neighbor
l Assume the following data set
l Assume a new point (2, 6)

– For nearest neighbor distance use Manhattan distance
– What would the output be for 3-nn with no distance weighting?

What is the total vote?
– What would the output be for 3-nn with squared inverse distance

weighting? What is the total vote?

A. A A
B. A B
C. B A
D. B B
E. None of the above

CS 270 - Nearest Neighbor Learning 8

x y Label

1 5 A

0 8 B

9 9 B

10 10 A

€

wi =
1

dist(xq ,xi)
2

Challenge Question - k-Nearest Neighbor
l Assume the following data set
l Assume a new point (2, 6)

– For nearest neighbor distance use Manhattan distance
– What would the output be for 3-nn with no distance weighting?

What is the total vote? – B wins with vote 2 out of 3
– What would the output be for 3-nn with distance weighting? What is

the total vote? A wins with vote .25 vs B vote of .0625+.01=.0725

CS 270 - Nearest Neighbor Learning 9

x y Label Distance Weighted Vote

1 5 A 1 + 1 = 2 1/22 = .25

0 8 B 2 + 2 = 4 1/42 = .0625

9 9 B 7 + 3 = 10 1/102 = .01

10 10 A 8 + 4 = 12 1/122 = .0069

CS 270 - Nearest Neighbor Learning 10

Regression with k-nn
l Can do regression by letting the output be the mean of the

k nearest neighbors

CS 270 - Nearest Neighbor Learning 11

Weighted Regression with k-nn

l Can do weighted regression by letting the output be the
weighted mean of the k nearest neighbors

l For distance weighted regression

l Where f(x) is the output value for instance x
l w = 1 for non-weighted€

f
^
(xq) =

wi f (xi)
i=1

k

∑

wi
i=1

k

∑

€

wi =
1

dist(xq ,xi)
2

Regression Example

l What is the value of the new instance?
l Assume dist(xq, n8) = 2, dist(xq, n5) = 3, dist(xq, n3) = 4
l f(xq) = (8/22 + 5/32 + 3/42)/(1/22 + 1/32 + 1/42) = 2.74/.42 = 6.5
l The denominator renormalizes the value

CS 270 - Nearest Neighbor Learning 12

8

5

3

€

f
^
(xq) =

wi f (xi)
i=1

k

∑

wi
i=1

k

∑

€

wi =
1

dist(xq ,xi)
2

k-Nearest Neighbor Homework
l Assume the following training set
l Assume a new point (.5, .2)

– Use Manhattan distance and show work
– What would the output class for 3-nn be with no distance weighting?
– What would the output class for 3-nn be with squared inverse

distance weighting?
– What would the 3-nn regression value be for the point if we used the

regression values rather than class labels? Show results for both no
distance weighting and squared inverse distance weighting.

CS 270 - Nearest Neighbor Learning 13

x y Class
Label

Regression
Label

.3 .8 A .6

-.3 1.6 B -.3

.9 0 B .8

1 1 A 1.2

CS 270 - Nearest Neighbor Learning 14

Attribute Weighting
l Normalize Features!
l One of the main weaknesses of nearest neighbor is irrelevant

features, since they can dominate the distance
– Example: assume 2 relevant and 10 irrelevant features

l Most learning algorithms weight the attributes (e.g. MLP and
Decisions Trees do higher order weighting of features)

l Could do attribute weighting - No longer lazy evaluation since
you need to come up with a portion of your hypothesis (attribute
weights) before generalizing

l Still an open area of research
– Higher order weighting – 1st order helps, but not enough
– Even if all features are relevant features, all distances become similar

as number of features increases, since not all features are relevant at
the same time, and the currently irrelevant ones can dominate distance

– An issue with all pure distance based techniques, need higher-order
weighting to ignore currently irrelevant features

– Dimensionality reduction can be useful (feature pre-processing, PCA,
NLDR, etc.)

CS 270 - Nearest Neighbor Learning 15

Reduction Techniques
l Create a subset or other representative set of prototype nodes

– Faster execution, and could even improve accuracy if noisy instances removed

l Approaches
– Leave-one-out reduction - Drop instance if it would still be classified

correctly
– Growth algorithm - Only add instance if it is not already classified correctly

- both order dependent, similar results
– More global optimizing approaches
– Just keep central points – lower accuracy (mostly linear Voronoi decision

surface), best space savings
– Just keep border points, best accuracy (pre-process noisy instances – Drop5)
– Drop 5 (Wilson & Martinez) maintains good accuracy with approximately

15% of the original instances
l Wilson, D. R. and Martinez, T. R., Reduction Techniques for Exemplar-Based

Learning Algorithms, Machine Learning Journal, vol. 38, no. 3, pp. 257-286,
2000.

Reduction Techniques

CS 270 - Nearest Neighbor Learning 16

CS 270 - Nearest Neighbor Learning 17

CS 270 - Nearest Neighbor Learning 18

Distance Metrics

l Wilson, D. R. and Martinez, T. R., Improved Heterogeneous Distance
Functions, Journal of Artificial Intelligence Research, vol. 6, no. 1, pp.
1-34, 1997.

l Normalization of features - critical
l Don't know values in novel or data set instances

– Can do some type of imputation and then normal distance
– Or have a distance (between 0-1) for don't know values

l Original main question: How best to handle nominal features

CS 270 - Nearest Neighbor Learning 19

Value Difference Metric
l Assume a 2-output class task (A, B)
l Attribute 1 = Shape (Round, Square, Triangle, etc.)
l 10 total round instances

– 6 class A and 4 class B
l 5 total square instances

– 3 class A and 2 class B
l Since both attribute values suggest the same probabilities

for the output class, the distance between Round and
Square would be 0
– If triangle and round suggested very different outputs, triangle and

round would have a large distance
l Distance of two attribute values is a measure of how

similar they are in inferring the output class

CS 270 - Nearest Neighbor Learning 20

CS 270 - Nearest Neighbor Learning 21

CS 270 - Nearest Neighbor Learning 22

CS 270 - Nearest Neighbor Learning 23

CS 270 - Nearest Neighbor Learning 24

CS 270 - Nearest Neighbor Learning 25

CS 270 - Nearest Neighbor Learning 26

IVDM
l Distance Metrics make a difference
l IVDM also helps deal with the many/irrelevant feature

problem of k-NN, because features only add significantly
to the overall distance if that distance leads to different
outputs

l Two features which tend to lead to the same output
probabilities (exactly what irrelevant features should do)
will have 0 or little distance, while their Euclidean distance
could have been significantly larger

l Need to take it further to find distance approaches taking
into account higher order combinations between features in
the distance metric

k-Nearest Neighbor Notes

l Note that full "Leave one out" CV is easy with k-nn
l Very powerful yet simple scheme which does well on

many tasks
l Overfitting (less of an issue) handled by using larger k
l Struggles with irrelevant inputs

– Needs better incorporation of feature weighting schemes
l Issues with distance with very high dimensionality tasks

– Too many features wash out effects of the specifically important
ones (akin to the irrelevant feature problem)

– May need distance metrics other than Euclidean distances
l Also may be helpful to reduce total # of instances

– Efficiency
– Sometimes accuracy

CS 270 - Nearest Neighbor Learning 27

CS 270 - Nearest Neighbor Learning 28

K-nn Lab

l See Learning Suite

Radial Basis Function Networks

29
f (x) = w0 + wiK(d(µi, x))

i=1

h

∑ Where f(x) is the output of each linear output node,
K is RBF (kernel function) and d is distance

CS 270 - Nearest Neighbor Learning 30

Radial Basis Function (RBF) Networks
l One linear output node per class – with weights and bias
l Each hidden (prototype) node computes the distance from itself to the input

instance (Gaussian is common) – not like an MLP hidden node
l An arbitrary number of prototype nodes form a hidden layer in the Radial

Basis Function network – prototype nodes typically non-adaptive
l The prototype layer expands the input space into a new prototype space.

Translates the data set into a new set with more features
l Output layer weights are learned with the linear model delta rule

– Not a preset label vote like in k-nearest neighbor
l Thus, output nodes learn 1st order prototype weightings for each class

2

A

3

x y

1

B

4

1

x

y

2

3 4

Δwi = c(t − net)xi

CS 270 - Nearest Neighbor Learning 31

Radial Basis Function Networks
l Neural Network variation of nearest neighbor algorithm
l Output layer execution and weight learning

– Highest node/class net value wins (or can output confidences)
– Each node collects weighted votes from prototypes – unlearned

weighting from distance (prototype activation – like k-nn), but unlike
k-nn, vote value is learned and all nodes always have a vote (weight)
for every output class

– Weight learning - Delta rule variations or direct matrix weight
calculation – linear or non-linear node activation function

l Could use an MLP at the top layer if desired
l Key Issue: How many prototype nodes should there be and

where should they be placed (means)
l Prototype node sphere of influence – Kernel basis function

(deviation) – like choosing k for k-NN
– Too small – less generalization, should have some overlap
– Too large - saturation, lose local effects, longer training

CS 270 - Nearest Neighbor Learning 32

Node Placement

l Random Coverage - Prototypes potentially placed in areas
where instances don't occur, Curse of dimensionality

l One prototype node for each instance of the training set
l Random subset of training set instances
l Clustering - Unsupervised or supervised - k-means style

vs. constructive
l Genetic Algorithms
l Node adjustment – Adaptive prototypes (Competitive

Learning style)
l Dynamic addition and deletion of prototype nodes

RBF Homework – Not currently required
l Assume you have an RBF with

– Two inputs
– Three output classes A, B, and C (linear units)
– Three prototype nodes at (0,0), (.5,1) and (1,.5)
– The radial basis function of the prototype nodes is

l max(0, 1 – Manhattan distance between the node and the instance in
question)

– Assume no bias and initial weights of .6 into output node A, -.4
into output node B, and 0 into output node C

– Assume top layer training is the delta rule with LR = .1

l Assume we input the single instance .6 .8
– Which class would be the winner?
– What would the weights be updated to if it were a training instance

of .6 .8 with target class B? (thus B has target 1 and A and C have
target 0)

CS 270 - Nearest Neighbor Learning 33

Δwi = c(t − net)xi

CS 270 - Nearest Neighbor Learning 34

RBF vs. BP

l Line vs. Sphere - mix-and-match approaches
– Multiple spheres still create Voronoi decision surfaces

l Potential Faster Training - nearest neighbor localization -
Yet more data and hidden nodes typically needed

l Local vs Distributed, less extrapolation (ala BP), have
reject capability (avoid false positives)

l RBF will have problems with irrelevant features just like
nearest neighbor (or any distance based approach which
treats all inputs equally)
– Could be improved by adding learning into the prototype layer to

learn attribute weighting

Distributed vs Local
l MLP vs K-NN (RBF) – exponential vs linear representation

potential – but how useable is it? – overfit, exponential training
data? Which is best is an open question.

l Below are decision surfaces for MLP with 3 hidden nodes, and
K-NN with 3 nodes

CS 270 - Nearest Neighbor Learning 35

