
CS 472 - Evolutionary Algorithms 1

Evolutionary Algorithms

CS 472 - Evolutionary Algorithms 2

Evolutionary Computation/Algorithms
Genetic Algorithms

l Simulate “natural” evolution of structures via selection and
reproduction, based on performance (fitness)

l Type of heuristic search to optimize any set of parameters-
Discovery, not inductive learning in isolation

l Create "genomes" which represent a current potential
solution with a fitness (quality) score

l Values in genome represent parameters to optimize
– MLP weights, TSP path, knapsack, potential clusterings, etc.

l Discover new genomes (solutions) using genetic operators
– Recombination (crossover) and mutation are most common

CS 472 - Evolutionary Algorithms 3

Evolutionary Computation/Algorithms
Genetic Algorithms

l Populate our search space with initial random solutions
l Use genetic operators to search the space
l Do local search near the possible solutions with mutation
l Do exploratory search with recombination (crossover)
l Example: Knapsack with repetition

Ø Given items x1, x2,…, xn
Ø each with weight wi and value vi
Ø find the set of items which maximizes the total value åxivi
Ø under the constraint that the total weight of the items åxiwi does

not exceed a given W

CS 472 - Evolutionary Algorithms 4

Evolutionary Computation/Algorithms
Genetic Algorithms

l Populate our search space with initial random solutions
l Use genetic operators to search the space
l Do local search near the possible solutions with mutation
l Do exploratory search with recombination (crossover)

1 1 0 2 3 1 0 2 2 1 (Fitness = 60)
2 2 0 1 1 3 1 1 0 0 (Fitness = 72)

1 1 0 2 1 3 1 1 0 0 (Fitness = 55)
2 2 0 1 3 1 0 2 2 1 (Fitness = 88)

CS 472 - Evolutionary Algorithms 5

Evolutionary Algorithms

l Start with initialized population P(t) - random, domain-
knowledge, etc.

l Typically have fixed population size (type of beam search),
large enough to maintain diversity

l Selection
– Parent_Selection P(t) - Promising Parents more likely to be chosen

based on fitness to create new children using genetic operators
– Survive P(t) - Pruning of less promising candidates, Evaluate P(t) -

Calculate fitness of population members. Could be simple metrics
to complex simulations.

l Survival of the fittest - Find and keep best while also
maintaining diversity

CS 472 - Evolutionary Algorithms 6

Evolutionary Algorithm

Procedure EA
t = 0;
Initialize Population P(t);
Evaluate P(t);
Until Done{ /*Sufficiently “good” individuals discovered or many

iterations passed with no improvement, etc.*/
t = t + 1;
Parent_Selection P(t);
Crossover P(t);
Mutate P(t);
Evaluate P(t);
Survive P(t);}

Example – Knapsack w/repetition
l Given items x1, x2,…, xn
l each with weight wi and value vi
l find the set of items which maximizes the total value åxivi
l under the constraint that the total weight of the items
åxiwi does not exceed a given W

CS 472 - Evolutionary Algorithms 7

Item Weight Value
1 4 $10
2 1 $2
3 2 $3
4 3 $7

W = 15 €

fitness(x) =

0 if weight(x) >W

valuei ⋅ xi
i=1

|x |

∑ Otherwise

$

%
&

' &

2 0 3 0 F = 29

Example

l Population size of 3
– 2 0 3 0 F = 29
– 1 1 1 1 F = 22
– 2 2 0 1 F = 31

l Crossover
– Assume we choose two highest with crossover in the middle
– 2 0 0 1 F = 27 – Child 1
– 2 2 3 0 F = 0 (Over weight) – Child 2

l Mutation – assume we just mutate first feature of Child 1
– 3 0 0 1 F = 37 – Updated Child 1 – replaces original

l Survival – Have 5, must drop 2 (most likely drop lowest)

CS 472 - Evolutionary Algorithms 8

Item Weight Value
1 4 $10

2 1 $2
3 2 $3
4 3 $7

W = 15

CS 472 - Evolutionary Algorithms 9

EA Example

l Goal: Discover a new automotive engine to maximize
performance, reliability, and mileage while minimizing
emissions

l Features: CID (Cubic inch displacement), fuel system, # of
valves, # of cylinders, presence of turbo-charging

l Assume - Test unit which tests possible engines and
returns integer measure of goodness

l Start with population of random engines

CS 472 - Evolutionary Algorithms 10

CS 472 - Evolutionary Algorithms 11

CS 472 - Evolutionary Algorithms 12

l Individuals are represented so that they can be manipulated
by genetic operators

l Simplest representation is a bit string, where each bit or
group of bits could represent a feature/parameter

l Assume the following represents a set of parameters

l Could do crossovers anywhere or just at parameter breaks
l Can use more complex representations including real

numbers, symbolic representations (e.g. programs for
genetic programming), etc.

Data Representation (Genome)

1 0 1 0 0 0 1 1 1 1 0 1

p1 p2 p3 p4 p5 p6 p7

CS 472 - Evolutionary Algorithms 13

Genetic Operators

l Crossover variations - multi-point, uniform, averaging, etc.
l Mutation - Random changes in features, adaptive, different

for each feature, etc.
– More random early, less so with time

l Others - many schemes mimicking natural genetics:
dominance, selective mating, inversion, reordering,
speciation, knowledge-based, etc.

CS 472 - Evolutionary Algorithms 14

CS 472 - Evolutionary Algorithms 15

Fitness Function Evaluation

l Each individual in the population should have a fitness
based on the fitness function

l Fitness function will depend on the application
– Learning system will usually use accuracy on a validation set for

fitness (note that no training set needed, just validation and test)
– Solution finding (path, plan, etc.) - Length or cost of solution
– Program - Does it work and how efficient is it

l Cost of evaluating function can be an issue. When
expensive can approximate or use rankings, etc. which
could be easier.

l Stopping Criteria - A common one is when best candidates
in population are no longer improving over time

CS 472 - Evolutionary Algorithms 16

Parent Selection

l In general want the fittest parents to be involved in
creating the next generation

l However, also need to maintain diversity and avoid
crowding so that the entire space gets explored (local
minima vs global minima)

l Most common approach is Fitness Proportionate
Selection (aka roulette wheel selection)

l Everyone has a chance but the fittest are more likely

€

Pr(hi) =
Fitness(hi)

Fitness(h j)
j=1

| population |

∑

CS 472 - Evolutionary Algorithms 17

Parent Selection

l There are other methods which lead to more diversity
l Rank selection

– Rank order all candidates
– Do random selection weighted towards highest rank
– Keeps actual fitness value from dominating

l Fitness scaling - Scale down fitness values during early generations.
Scale back up with time. Equivalently could scale selection
probability function over time.

l Tournament selection
– Randomly select two candidates
– The one with highest fitness is chosen with probability p, else the lesser is

chosen
– p is a user defined parameter, .5 < p < 1
– Even more diversity

Tournament Selection with p = 1

Biagio D’Antonio, b. 1446, Florence, Italy - Saint Michael Weighing Souls - 1476

CS 472 - Evolutionary Algorithms 19

Survival - New Generation

l Population size - Larger gives more diversity but with diminishing
gain, small sizes of ~100 are common

l How many new offspring will be created at each generation (what %
of current generation will not survive)
– Keep selecting parents without replacement until quota filled

l An equal number of candidates must be removed to maintain the
population constant

l Many variations
– Randomly keep best candidates weighted by fitness
– No old candidates kept
– Always keep a fixed percentage of old vs new candidates
– Usually keep highest candidate seen so far (bssf) in separate memory

since it may be deleted during normal evolution

CS 472 - Evolutionary Algorithms 20

CS 472 - Evolutionary Algorithms 21

Evolutionary Algorithms

l There exist mathematical proofs that evolutionary techniques are
efficient search strategies

l There are a number of different Evolutionary algorithm approaches
– Genetic Algorithms
– Evolutionary Programming
– Evolution Strategies
– Genetic Programming

l Strategies differ in representations, selection, operators, evaluation,
survival, etc.

l Some independently discovered, initially function optimization
(EP, ES)

l Strategies continue to “evolve”

CS 472 - Evolutionary Algorithms 22

Genetic Algorithms

l Representation based typically on a list of discrete tokens,
often bits (Genome) - can be extended to graphs, lists, real-
valued vectors, etc.

l Select m pairs parents probabilistically based on fitness
l Create 2m new children using genetic operators (emphasis

on crossover) and assign them a fitness - single-point,
multi-point, and uniform crossover

l Replace weakest candidates in the population with the new
children (or can always delete parents)

CS 472 - Evolutionary Algorithms 23

Evolutionary Programming

l Representation that best fits problem domain
l All n genomes are mutated (no crossover) to create n new

genomes - total of 2n candidates
l Only n most fit candidates are kept
l Mutation schemes fit representation, varies for each

variable, amount of mutation (typically higher probability
for smaller mutation), and can be adaptive (i.e. can
decrease amount of mutation for candidates with higher
fitness and based on time - form of simulated annealing)

CS 472 - Evolutionary Algorithms 24

Evolution Strategies

l Similar to Evolutionary Programming - initially used for
optimization of complex real systems - fluid dynamics, etc.
- usually real vectors

l Uses both crossover and mutation. Crossover first. Also
averaging crossover (real values), and multi-parent.

l Randomly selects set of parents and modifies them to
create > n children

l Two survival schemes
– Keep best n of combined parents and children
– Keep best n of only children

CS 472 - Evolutionary Algorithms 25

Genetic Programming

l Evolves more complex structures - programs,
functional language code, neural networks

l Start with random programs of functions and terminals
(data structures)

l Execute programs and give each a fitness measure
l Use crossover to create new programs, no mutation
l Keep best programs
l For example, place lisp code in a tree structure,

functions at internal nodes, terminals at leaves, and do
crossover at sub-trees - always legal in a functional
language (e.g. scheme, lisp, etc.)

CS 472 - Evolutionary Algorithms 26

CS 472 - Evolutionary Algorithms 27

Genetic Algorithm Example

l Use a Genetic Algorithm to learn the weights of an MLP.
Used to be a lab.

CS 472 - Evolutionary Algorithms 28

Genetic Algorithm Example

l Use a Genetic Algorithm to learn the weights of an MLP
– Used to be a lab

l You could represent each weight with m (e.g. 10) bits
(Binary or Gray encoding), remember the bias weights

l Could also represent weights as real values - In this case
use Gaussian style mutation

l Walk through an example
– Assume wanted to train MLP to solve Iris data set
– Assume fixed number of hidden nodes, though GAs can be used to

discover that also

CS 472 - Evolutionary Algorithms 29

Evolutionary Computation Comments
l Much current work and extensions
l Numerous application attempts. Can plug into many algorithms requiring

search. Has built-in heuristic. Could augment with domain heuristics.
l If no better way, can always try evolutionary algorithms, with pretty good

results ("Lazy man’s solution" to any problem)
l Many different options and combinations of approaches, parameters, etc.
l Swarm Intelligence – Particle Swarm Optimization, Ant colonies,

Artificial bees, Robot flocking, etc.
l Research continues regarding adaptivity of

– population size
– selection mechanisms
– operators
– representation

CS 472 - Evolutionary Algorithms 30

Classifier Systems

l Reinforcement Learning - sparse payoff
l Contains rules which can be executed and given a fitness (Credit

Assignment) - Booker uses bucket brigade scheme
l GA used to discover improved rules
l Classifier made up of input side (conjunction of features allowing don’t

cares), and an output message (includes internal state message and
output information)

l Simple representation aids in more flexible adaptation schemes

CS 472 - Evolutionary Algorithms 31

Bucket Brigade Credit Assignment

l Each classifier has an associated strength. When matched
the strength is used to competitively bid to be able to put
message on list during next time step. Highest bidders put
messages.

l Keeps a message list with values from both input and
previously matched rules - matched rules set outputs and
put messages on list - allows internal chaining of rules - all
messages changed each time step.

l Output message conflict resolved through competition (i.e.
strengths of classifiers proposing a particular output are
summed, highest used)

CS 472 - Evolutionary Algorithms 32

Bucket Brigade (Continued)

l Each classifier bids for use at time t. Bid used as a
probability (non-linear) of being a winner - assures
lower bids get some chances

B(C,t) = bR(C)s(C,t)
where b is a constant << 1 (to insure prob<1), R(C) is

specificity (# of asserted features), s(C,t) is strength
l Economic analogy - Previously winning rules (t-1)

“suppliers” (made you matchable), following winning
rules (t+1) “consumers” (you made them matchable -
actually might have made)

CS 472 - Evolutionary Algorithms 33

Bucket Brigade (Continued)

l s(C,t+1) = s(C,t) -B(C,t) - Loss of Strength for each consumer (price
paid to be used, prediction of how good it will pay off)

l {C'} = {suppliers} - Each of the suppliers shares an equal portion of
strength increase proportional to the amount of the Bid of each of the
consumers in the next time step

s(C',t+1) = s(C',t) + B(Ci,t)/|C'|
l You pay suppliers amount of bid, receive bid amounts from consumers.

If consumers profitable (higher bids than you bid) your strength
increases. Final rules in chain receive actual payoffs and these
eventually propagate iteratively. Consistently winning rules give good
payoffs which increases strength of rule chain, while low payoffs do
opposite.

