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Evolutionary Algorithms
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Evolutionary Computation/Algorithms
Genetic Algorithms

l Simulate “natural” evolution of structures via selection and 
reproduction, based on performance (fitness)

l Type of heuristic search to optimize any set of parameters-
Discovery, not inductive learning in isolation

l Create "genomes" which represent a current potential 
solution with a fitness (quality) score

l Values in genome represent parameters to optimize
– MLP weights, TSP path, knapsack, potential clusterings, etc.

l Discover new genomes (solutions) using genetic operators
– Recombination (crossover) and mutation are most common
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Evolutionary Computation/Algorithms
Genetic Algorithms

l Populate our search space with initial random solutions
l Use genetic operators to search the space
l Do local search near the possible solutions with mutation
l Do exploratory search with recombination (crossover)
l Example: Knapsack with repetition

Ø Given items x1, x2,…, xn
Ø each with weight wi and value vi
Ø find the set of items which maximizes the total value åxivi
Ø under the constraint that the total weight of the items åxiwi does 

not exceed a given W
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Evolutionary Computation/Algorithms
Genetic Algorithms

l Populate our search space with initial random solutions
l Use genetic operators to search the space
l Do local search near the possible solutions with mutation
l Do exploratory search with recombination (crossover)

1 1 0 2 3 1 0 2 2 1 (Fitness = 60)
2 2 0 1 1 3 1 1 0 0 (Fitness = 72)

1 1 0 2 1 3 1 1 0 0 (Fitness = 55)
2 2 0 1 3 1 0 2 2 1 (Fitness = 88)
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Evolutionary Algorithms

l Start with initialized population P(t) - random, domain-
knowledge, etc.

l Typically have fixed population size (type of beam search), 
large enough to maintain diversity

l Selection
– Parent_Selection P(t) - Promising Parents more likely to be chosen 

based on fitness to create new children using genetic operators
– Survive P(t) - Pruning of less promising candidates, Evaluate P(t) -

Calculate fitness of population members.  Could be simple metrics 
to complex simulations.

l Survival of the fittest - Find and keep best while also 
maintaining diversity
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Evolutionary Algorithm

Procedure EA
t = 0;
Initialize Population P(t);
Evaluate P(t);
Until Done{ /*Sufficiently “good” individuals discovered or many 

iterations passed with no improvement, etc.*/
t = t + 1;
Parent_Selection P(t);
Crossover P(t);
Mutate P(t);
Evaluate P(t);
Survive P(t);}



Example – Knapsack w/repetition
l Given items x1, x2,…, xn
l each with weight wi and value vi
l find the set of items which maximizes the total value åxivi
l under the constraint that the total weight of the items 
åxiwi does not exceed a given W
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Item Weight Value
1 4 $10
2 1 $2
3 2 $3
4 3 $7

W = 15 € 

fitness(x) =

0 if weight(x) >W

valuei ⋅ xi
i=1

|x |

∑ Otherwise

$ 

% 
& 

' & 

2 0 3 0 F = 29



Example

l Population size of 3
– 2 0 3 0 F = 29
– 1 1 1 1 F = 22
– 2 2 0 1 F = 31

l Crossover 
– Assume we choose two highest with crossover in the middle
– 2 0 0 1 F = 27 – Child 1
– 2 2 3 0 F = 0 (Over weight) – Child 2

l Mutation – assume we just mutate first feature of Child 1
– 3 0 0 1 F = 37 – Updated Child 1 – replaces original

l Survival – Have 5, must drop 2 (most likely drop lowest)
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Item Weight Value
1 4 $10

2 1 $2
3 2 $3
4 3 $7

W = 15
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EA Example

l Goal:  Discover a new automotive engine to maximize 
performance, reliability, and mileage while minimizing 
emissions

l Features: CID (Cubic inch displacement), fuel system, # of 
valves, # of cylinders, presence of turbo-charging

l Assume - Test unit which tests possible engines and 
returns integer measure of goodness

l Start with population of random engines
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l Individuals are represented so that they can be manipulated 
by genetic operators

l Simplest representation is a bit string, where each bit or 
group of bits could represent a feature/parameter

l Assume the following represents a set of parameters

l Could do crossovers anywhere or just at parameter breaks
l Can use more complex representations including real 

numbers, symbolic representations (e.g. programs for 
genetic programming), etc.

Data Representation (Genome)

1 0 1 0 0 0 1 1 1 1 0 1

p1 p2 p3 p4 p5 p6 p7



CS 472 - Evolutionary Algorithms 13

Genetic Operators

l Crossover variations - multi-point, uniform, averaging, etc.
l Mutation - Random changes in features, adaptive, different 

for each feature, etc.
– More random early, less so with time

l Others - many schemes mimicking  natural genetics: 
dominance, selective mating, inversion, reordering, 
speciation, knowledge-based, etc.
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Fitness Function Evaluation

l Each individual in the population should have a fitness 
based on the fitness function

l Fitness function will depend on the application
– Learning  system will usually use accuracy on a validation set for 

fitness (note that no training set needed, just validation and test)
– Solution finding (path, plan, etc.) - Length or cost of solution
– Program - Does it work and how efficient is it

l Cost of evaluating function can be an issue.  When 
expensive can approximate or use rankings, etc. which 
could be easier.

l Stopping Criteria - A common one is when best candidates 
in population are no longer improving over time
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Parent Selection

l In general want the fittest parents to be involved in 
creating the next generation

l However, also need to maintain diversity and avoid 
crowding so that the entire space gets explored (local 
minima vs global minima)

l Most common approach is Fitness Proportionate 
Selection (aka roulette wheel selection)

l Everyone has a chance but the fittest are more likely

€ 

Pr(hi) =
Fitness(hi)

Fitness(h j )
j=1

| population |

∑
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Parent Selection

l There are other methods which lead to more diversity
l Rank selection

– Rank order all candidates
– Do random selection weighted towards highest rank
– Keeps actual fitness value from dominating

l Fitness scaling - Scale down fitness values during early generations.  
Scale back up with time.  Equivalently could scale selection 
probability function over time.

l Tournament  selection
– Randomly select two candidates
– The one with highest fitness is chosen with probability p, else the lesser is 

chosen
– p is a user defined parameter, .5 < p < 1
– Even more diversity



Tournament Selection with p = 1

Biagio D’Antonio, b. 1446, Florence, Italy - Saint Michael Weighing Souls - 1476
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Survival - New Generation

l Population size - Larger gives more diversity but with diminishing 
gain, small sizes of ~100 are common

l How many new offspring will be created at each generation (what % 
of current generation will not survive) 
– Keep selecting parents without replacement until quota filled

l An equal number of candidates must be removed to maintain the 
population constant

l Many variations
– Randomly keep best candidates weighted by fitness 
– No old candidates kept
– Always keep a fixed percentage of old vs new candidates
– Usually keep highest candidate seen so far (bssf) in separate memory 

since it may be deleted during normal evolution
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Evolutionary Algorithms

l There exist mathematical proofs that evolutionary techniques are 
efficient search strategies

l There are a number of different Evolutionary algorithm approaches
– Genetic Algorithms
– Evolutionary Programming
– Evolution Strategies
– Genetic Programming

l Strategies differ in representations, selection, operators, evaluation, 
survival, etc.

l Some independently discovered, initially function optimization 
(EP, ES)

l Strategies continue to “evolve”
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Genetic Algorithms

l Representation based typically on a list of discrete tokens, 
often bits (Genome) - can be extended to graphs, lists, real-
valued vectors, etc.

l Select m pairs parents probabilistically based on fitness
l Create 2m new children using genetic operators (emphasis 

on crossover) and assign them a fitness - single-point, 
multi-point, and uniform crossover

l Replace weakest candidates in the population with the new 
children (or can always delete parents)
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Evolutionary Programming

l Representation that best fits problem domain
l All n genomes are mutated (no crossover) to create n new 

genomes - total of 2n candidates
l Only n most fit candidates are kept
l Mutation schemes fit representation, varies for each 

variable, amount of mutation (typically higher probability 
for smaller mutation), and can be adaptive (i.e. can 
decrease amount of mutation for candidates with higher 
fitness and based on time - form of simulated annealing)
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Evolution Strategies

l Similar to Evolutionary Programming - initially used for 
optimization of complex real systems - fluid dynamics, etc. 
- usually real vectors

l Uses both crossover and mutation. Crossover first. Also 
averaging crossover (real values), and multi-parent.

l Randomly selects set of parents and modifies them to 
create > n children

l Two survival schemes
– Keep best n of combined parents and children
– Keep best n of only children
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Genetic Programming

l Evolves more complex structures - programs, 
functional language code, neural networks

l Start with random programs of functions and terminals 
(data structures)

l Execute programs and give each a fitness measure
l Use crossover to create new programs, no mutation
l Keep best programs
l For example, place lisp code in a tree structure, 

functions at internal nodes, terminals at leaves, and do 
crossover at sub-trees - always legal in a functional 
language (e.g. scheme, lisp, etc.)
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Genetic Algorithm Example

l Use a Genetic Algorithm to learn the weights of an MLP.  
Used to be a lab.
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Genetic Algorithm Example

l Use a Genetic Algorithm to learn the weights of an MLP
– Used to be a lab

l You could represent each weight with m (e.g. 10) bits 
(Binary or Gray encoding), remember the bias weights

l Could also represent weights as real values - In this case 
use Gaussian style mutation

l Walk through an example
– Assume wanted to train MLP to solve Iris data set
– Assume fixed number of hidden nodes, though GAs can be used to 

discover that also
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Evolutionary Computation Comments
l Much current work and extensions
l Numerous application attempts.  Can plug into many algorithms requiring 

search.  Has built-in heuristic.  Could augment with domain heuristics.
l If no better way, can always try evolutionary algorithms, with pretty good 

results ("Lazy man’s solution" to any problem)
l Many different options and combinations of approaches, parameters, etc.
l Swarm Intelligence – Particle Swarm Optimization, Ant colonies, 

Artificial bees, Robot flocking, etc. 
l Research continues regarding adaptivity of

– population size
– selection mechanisms
– operators
– representation
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Classifier Systems

l Reinforcement Learning - sparse payoff
l Contains rules which can be executed and given a fitness (Credit 

Assignment) - Booker uses bucket brigade scheme
l GA used to discover improved rules
l Classifier made up of input side (conjunction of features allowing don’t 

cares), and an output message (includes internal state message and 
output information)

l Simple representation aids in more flexible adaptation schemes
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Bucket Brigade Credit Assignment

l Each classifier has an associated strength.  When matched 
the strength is used to competitively bid to be able to put 
message on list during next time step.  Highest bidders put 
messages.

l Keeps a message list with values from both input and 
previously matched rules - matched rules set outputs and 
put messages on list - allows internal chaining of rules - all 
messages changed each time step.

l Output message conflict resolved through competition (i.e. 
strengths of classifiers proposing a particular output are 
summed, highest used)
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Bucket Brigade (Continued)

l Each classifier bids for use at time t.  Bid used as a 
probability (non-linear) of being a winner - assures 
lower bids get some chances

B(C,t) = bR(C)s(C,t)
where b is a constant << 1 (to insure prob<1),  R(C) is 

specificity (# of asserted features), s(C,t) is strength
l Economic analogy - Previously winning rules (t-1) 

“suppliers” (made you matchable), following winning 
rules (t+1) “consumers” (you made them matchable -
actually might have made)
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Bucket Brigade (Continued)

l s(C,t+1) = s(C,t) -B(C,t) - Loss of Strength for each consumer (price 
paid to be used, prediction of how good it will pay off)

l {C'} = {suppliers} - Each of the suppliers shares an equal portion of 
strength increase proportional to the amount of the Bid of each of the 
consumers in the next time step

s(C',t+1) = s(C',t) + B(Ci,t)/|C'|
l You pay suppliers amount of bid, receive bid amounts from consumers.  

If consumers profitable (higher bids than you bid) your strength 
increases.  Final rules in chain receive actual payoffs and these 
eventually propagate iteratively.  Consistently winning rules give good 
payoffs which increases strength of rule chain, while low payoffs do 
opposite.


