
CS 270 - Feature Selection and Reduction 1

Feature Selection, Preparation, and Reduction

⚫ Learning accuracy depends on the data!

– Is the data representative of future novel cases - critical

– Relevance

– Amount

– Quality

⚫ Noise

⚫ Missing Data

⚫ Skew

– Proper Representation

– How much of the data is labeled (output target) vs. unlabeled

– Is the number of features/dimensions reasonable?

⚫ Reduction

Gathering Data

⚫ Consider the task – What kind of features could help

⚫ Data availability

– Significant diversity in cost of gathering different features

– More the better (in terms of number of instances, not necessarily in
terms of number of dimensions/features)

⚫ The more features you have the more data you need

– Data augmentation, Jitter – Increased data can help with overfit –
handle with care!

⚫ Labeled data is best

⚫ If not labeled

– Could set up studies/experts to obtain labeled data

– Use unsupervised and semi-supervised techniques

⚫ Clustering

⚫ Active Learning, Bootstrapping, Oracle Learning, etc.

CS 270 - Feature Selection and Reduction 2

When to Gather More Data

⚫ When trying to improve performance, you may need

– More Data

– Better Input Features

– Different Machine learning models or hyperparameters

– Etc.

⚫ One way to decide if you need more/better data

– Compare your accuracy on training and test set

– If bad training set accuracy then you might need better data/
features. Though you might need a different learning
model/hyperparameters

– If test set accuracy is much worse than training set accuracy then
gathering more data is usually a good direction and consider better
overfit avoidance. Learning model/hyperparameters could still be a
significant issue.

CS 270 - Feature Selection and Reduction 3

Data Representation

⚫ Categorical/Symbolic

⚫ Nominal – No natural ordering

⚫ Ordered/Ordinal

⚫ Special cases: Time/Date, Addresses, Names, IDs, etc.

⚫ Already discussed how to transform categorical to continuous data

for models (e.g. perceptrons) which want continuous inputs

⚫ Continuous

– Some models are better equipped to handle nominal/ordered data

– How to transform continuous to ordinal

CS 270 - Feature Selection and Reduction 4

Transforming Continuous to Ordered Data

⚫ Basic approach is to discretize/bin the continuous data

– How many bins – differs by problem, enough to appropriately

divide data

– Equal-Width Binning

⚫ Bins of fixed ranges

⚫ Does not handle skew/outliers well

– Equal-Height Binning

⚫ Bins with equal number of instances

⚫ Uniform distribution, can help for skew and outliers

⚫ More likely to have breaks in high data concentrations

– Clustering

⚫ More accurate, though more complex

– Bin borders can be an issue

CS 270 - Feature Selection and Reduction 5

Supervised Binning

⚫ The previous binning approaches do not consider the

classification of each instance and thus they are unsupervised

(Class-aware vs. Class-blind)

⚫ Could use a supervised approach which attempts to bin such

that learning algorithms may more easily classify

⚫ Supervised approaches can find bins while also maximizing

correlation between output classes and values in each bin

– Often rely on information theoretic techniques

CS 270 - Feature Selection and Reduction 6

Data Normalization

⚫ Normalization for continuous values (0-1 common)

– What if data has skew, outliers, etc.

– Standardization (z-score) – Transform the data by subtracting the

average and then dividing by the standard deviation – allows more

information on spread/outliers

– Look at the data to make these and other decisions!

– May be better served with a non-linear normalization based on the

data spread

CS 270 - Feature Selection and Reduction 7

Output Class Skew

⚫ Nuclear reactor data – Meltdowns vs. non-meltdowns

⚫ If occurrence of certain output classes are rare

– Machine learners often just learn to output the majority class output
value

⚫ Most accurate southern California weather forecast

⚫ Approaches to deal with Skew
– Undersampling: if 100,000 instances and only 1,000 of the minority

class, keep all 1,000 of the minority class, and drop majority class
examples until reaching a reasonable distribution – but lose data

– Oversampling: Make duplicates of every minority instance and add it
to the data set until reaching a reasonable distribution (Overfit
possibilities)

⚫ Could add new copies with jitter (be careful!)

– Have learning algorithm weight the minority class higher, or class with
higher misclassification cost (even if balanced), learning rate, etc.

– Use Precision/Recall or ROC rather than just accuracy

CS 270 - Feature Selection and Reduction 8

Transformed/Derived Variables (Meta-Features)

⚫ Transform initial data features into better ones
- Quadric machine was one example

⚫ Transforms of individual variables
– Use area code rather than full phone number

– Determine the vehicle make from a VIN (vehicle id no.)

⚫ Combining/deriving variables
– Height/weight ratio

– Difference of two dates

– Do some derived variables in your group project – especially if
features mostly given!

⚫ Features based on other instances in the set
– e.g. This instance is in the top quartile of price/quality tradeoff

⚫ Transforming/Deriving features requires creativity and some
knowledge of the task domain but can be very effective in
improving accuracy

CS 270 - Feature Selection and Reduction 9

Relevant Data

⚫ Typically do not use features where

– Almost all instance have the same value (no information)

⚫ If there is a significant, though small, percentage of other values, then

might still be useful

– Nominal feature where almost all instances have unique values

(SSN, phone-numbers)

⚫ Might be able to use a variation of the feature (such as area code)

– The feature is highly correlated with another feature

⚫ In this case the feature may be redundant and only one is needed

CS 270 - Feature Selection and Reduction 10

CS 270 - Feature Selection and Reduction 11

Missing Data
⚫ Need to consider approach for learning and execution (could differ)

⚫ Throw out data with missing attributes

– Do only if rare, else could lose a significant amount of training set

– Doesn’t work during execution

⚫ Set (impute/imputation) attribute to its mode/mean (based on rest of data set)

– Too big of an assumption?

⚫ Use a learning scheme (NN, DT, etc) to impute missing values

– Train imputing models with a training set which has the missing attribute as the
target and the rest of the attributes as input features. Better accuracy, though more
time consuming - multiple missing values?

⚫ Impute based on the most similar instance(s) in the data set - SK KNNImputer

⚫ Train multiple reduced input models without common missing features

⚫ *Let unknown be just another attribute value – Can work well in many cases

– Missing attribute may contain important information, (didn’t vote can mean
something about congressperson, extreme measurements aren’t captured, etc.).

– Natural for nominal data

– With continuous data, can use an indicator node, or a value which does not occur in
the normal data (-1, outside range, etc.), however, in the latter case, the model will
treat this as an extreme ordered feature value and may cause difficulties

BP Pain Out

.5 Low 0

.8 Hi 1

? Low 1

1 ? 0

Challenge Question - Missing Data

⚫ Given the dataset to the right, what

approach would you use to deal with

the two unknown values and what

would those values be set to?

– Assume you are learning with an MLP

and Backpropagation

– Throwing out those instances is not an

option in this case

– I left out targets on purpose since they

won’t be available with novel data

⚫ If your approach requires any

modifications to the MLP inputs, be

ready to explain exactly what those

are

CS 270 - Feature Selection and Reduction 12

x y z Out

.1 .6 B

.6 .6 G

.3 .35 R

.6 .45 G

.6 .4 ?

.8 ? B

Dirty Data and Data Cleaning

⚫ Dealing with bad data, inconsistencies, and outliers

⚫ Many ways errors are introduced
– Measurement Noise/Outliers

– Poor Data Entry

– User lack of interest
⚫ Most common birthday when B-day mandatory: November 11, 1911

⚫ Data collectors don't want blanks in data warehousing so they may fill in
(impute) arbitrary values

⚫ Data Cleaning
– Data analysis to discover inconsistencies

⚫ Consider distribution of a feature’s values (find mistakes/outliers)

– Clustering/Binning can sometimes help

– Noise/Outlier removal – Requires care to know when it is noise and
how to deal with this during execution – Our experiments show hard
instance removal (those always wrong, noise or not) during training
increases subsequent accuracy

CS 270 - Feature Selection and Reduction 13

Labeled and Unlabeled Data

⚫ Accurately labeled data is always best

⚫ Often there is lots of cheaply available unlabeled data which is

expensive/difficult to label – internet data, etc.

⚫ Semi-Supervised Learning – Can sometimes augment a small set

of labeled data with lots of unlabeled data to gain improvements

⚫ Bootstrapping: Iteratively use current labeled data to train model,

use the trained model to label the unlabeled data, then train again

including most confident newly labeled data, and re-label, etc.,

until some convergence

⚫ Active Learning – Out of a collection of unlabeled data, ML

model queries for the next most informative instance to label

⚫ Combinations of above and other techniques being proposed

CS 270 - Feature Selection and Reduction 14

Semi-Supervised Learning Examples

CS 270 - Feature Selection and Reduction 15

Combine labeled and unlabeled data with assumptions about typical

data to find better solutions than just using the labeled data

Active Learning

CS 270 - Feature Selection and Reduction 16

Often query:

1) A low confidence instance (i.e. near a decision boundary)

2) An instance which is in a relatively dense neighborhood

Active Learning

CS 270 - Feature Selection and Reduction 17

Often query:

1) A low confidence instance (i.e. near a decision boundary)

2) An instance which is in a relatively dense neighborhood

Active Learning

CS 270 - Feature Selection and Reduction 18

Often query:

1) A low confidence instance (i.e. near a decision boundary)

2) An instance which is in a relatively dense neighborhood

Your Project Proposals

⚫ See description in Learning Suite

– Remember your example instance!

⚫ Examples – Look at Irvine Data Set, Kaggle, or OpenML

to get a feel of what data sets look like

⚫ Stick with supervised classification problems for the most

part for the project proposals

⚫ Tasks which interest you

⚫ Too hard vs Too Easy

– Data should be able to be gathered in a relatively short time

– And, want you to have to battle with the data/features a bit. You

can’t just use a pretty much ready to go data set that you find!

CS 270 - Feature Selection and Reduction 19

Feature Selection and Feature Reduction

⚫ Given n original features, it is often advantageous to reduce this
to a smaller set of features for actual training

– Can improve/maintain accuracy if we can preserve the most relevant
information while discarding the most irrelevant information

– And/or can make the learning process more computationally and
algorithmically manageable by working with less features

– Curse of dimensionality requires an exponential increase in data set
size in relation to the number of features to learn without overfit – thus
decreasing features can be critical

⚫ Feature Selection seeks a subset of the n original features which
retains most of the relevant information

– Filters, Wrappers

⚫ Feature Reduction combines/fuses the n original features into a
smaller set of newly created features which hopefully retains
most of the relevant information from all the original features -
Data fusion (e.g. LDA, PCA, etc.)

CS 270 - Feature Selection and Reduction 20

Feature Selection - Filters

⚫ Given n original features, how do you select size of subset

– User can preselect a size p (< n) – not usually as effective

– Usually try to find the smallest size where adding more features does
not yield improvement

⚫ Filters work independent of any particular learning algorithm

⚫ Filters seek a subset of features which maximize some type of
between class separability – or other merit score

⚫ Can score each feature independently and keep best subset

– e.g. 1st order correlation with output, fast, less optimal

⚫ Can score subsets of features together

– Exponential number of subsets requires a more efficient, sub-optimal
search approach

– How to score features is independent of the ML model to be trained on
and is an important research area

– Decision Tree or other ML model pre-process

CS 270 - Feature Selection and Reduction 21

Feature Selection - Wrappers

⚫ Optimizes for a specific learning algorithm

⚫ The feature subset selection algorithm is a "wrapper"

around the learning algorithm

1. Pick a feature subset and pass it to learning algorithm

2. Create training/test set based on the feature subset

3. Train the learning algorithm with the training set

4. Find accuracy (objective) with validation set

5. Repeat for all feature subsets and pick the feature subset which

gives the highest predictive accuracy (or other objective)

⚫ Basic approach is simple

⚫ Variations are based on how to select the feature subsets,

since there are an exponential number of subsets

CS 270 - Feature Selection and Reduction 22

Feature Selection - Wrappers

⚫ Exhaustive Search - Exhausting

⚫ Forward Search – O(n2 · learning/testing time) - Greedy
1. Score each feature by itself and add the best feature to the initially

empty set FS (FS will be our final Feature Set)

2. Try each subset consisting of the current FS plus one remaining
feature and add the best feature to FS

3. Continue until stop getting significant improvement (over a window)

⚫ Backward Search – O(n2 · learning/testing time) - Greedy
1. Score the initial complete FS

2. Try each subset consisting of the current FS minus one feature in FS
and drop the feature from FS causing least decrease in accuracy

3. Continue until dropping any feature causes a significant decreases in
accuracy

⚫ Branch and Bound and other heuristic approaches available

CS 270 - Feature Selection and Reduction 23

PCA – Principal Components Analysis

⚫ PCA is one of the most common feature reduction techniques

⚫ A linear method for dimensionality reduction

⚫ Allows us to combine much of the information contained in n

features into p features where p < n

⚫ PCA is unsupervised in that it does not consider the output

class/value of an instance – There are other algorithms which do

(e.g. LDA - Linear Discriminant Analysis)

⚫ PCA works well in many cases where data features have mostly

linear correlations

⚫ Non-linear dimensionality reduction is also a successful area

and can give better results for data with significant non-linear

correlations between the data features

CS 270 - Feature Selection and Reduction 24

PCA Overview
⚫ Seek new set of bases which correspond to the highest variance

in the data

⚫ Transform n-dimensional normalized data to a new n-
dimensional basis

– The new dimension with the most variance is the first principal
component

– The next is the second principal component, etc.

– Note z1 combines/fuses significant information from both x1 and x2

⚫ Can drop dimensions for which there is little variance

CS 270 - Feature Selection and Reduction 25

Variance and Covariance
⚫ Variance is a measure of data spread in one feature/dimension

– n features, m instances in data set

– Note n in variance/covariance equations is number of instances in the
data set, apologies

⚫ Covariance measures how two dimensions (features) vary with
respect to each other

⚫ Normalize data features so they have similar magnitudes else
covariance may not be as informative

CS 270 - Feature Selection and Reduction 26

var(X) =

X i - X()
i=1

n

å X i - X()

n -1()

cov(X,Y) =

X i - X() Yi -Y()
i=1

n

å

n -1()

Covariance and the Covariance Matrix

⚫ Considering the sign (rather than exact value) of covariance:

– Positive value means that as one feature increases or decreases the

other does also (positively correlated)

– Negative value means that as one feature increases the other decreases

and vice versa (negatively correlated)

– A value close to zero means the features are independent

– If highly covariant, are both features necessary?

⚫ Covariance matrix is an n × n matrix containing the covariance

values for all pairs of features in a data set with n features

(dimensions)

⚫ The diagonal contains the covariance of a feature with itself

which is the variance (i.e. the square of the standard deviation)

⚫ The matrix is symmetric

CS 270 - Feature Selection and Reduction 27

PCA Example
⚫ First step is to center the original data around 0 by subtracting

the mean in each dimension – normalize first if needed

CS 270 - Feature Selection and Reduction 28

Data x y x' y'

2.5 2.4 0.68 0.49

0.5 0.7 -1.32 -1.21

2.2 2.9 0.38 0.99

1.9 2.2 0.08 0.29

3.1 3.0 1.28 1.09

2.3 2.7 0.48 0.79

2.0 1.6 0.18 -0.31

1.0 1.1 -0.82 -0.81

1.5 1.6 -0.32 -0.31

1.2 0.9 -0.62 -1.01

Mean 1.82 1.91 0 0

PCA Example

⚫ Second: Calculate the covariance matrix of the centered data

⚫ Only 2 × 2 for this case

CS 270 - Feature Selection and Reduction 29

cov(X,Y) =

X i - X() Yi -Y()
i=1

n

å

n -1()

Data x y x' y'

2.5 2.4 0.68 0.49

0.5 0.7 -1.32 -1.21

2.2 2.9 0.38 0.99

1.9 2.2 0.08 0.29

3.1 3.0 1.28 1.09

2.3 2.7 0.48 0.79

2.0 1.6 0.18 -0.31

1.0 1.1 -0.82 -0.81

1.5 1.6 -0.32 -0.31

1.2 0.9 -0.62 -1.01

Mean 1.82 1.91 0 0

Covariance Matrix

0.60177778 0.60422222

0.71655556

PCA Example

⚫ Third: Calculate the unit eigenvectors and eigenvalues of the

covariance matrix (remember your linear algebra)

– Covariance matrix is always square n × n and positive semi-definite,

thus n non-negative eigenvalues will exist

– All eigenvectors (principal components) are orthogonal to each other

and form the new set of bases/dimensions for the data (columns)

– The magnitude of each eigenvalue corresponds to the variance along

each new dimension – Just what we wanted!

– We can sort the principal components according to their eigenvalues

– Just keep those dimensions with the largest eigenvalues

CS 270 - Feature Selection and Reduction 30

Principal

Component

Eigenvalues Eigenvectors

1 1.26610816 -0.67284685, -0.7397818

2 0.05222517 -0.7397818, 0.67284685

PCA Example

⚫ Below are the two eigenvectors overlaying the centered data

⚫ Which eigenvector has the largest eigenvalue?

⚫ Fourth Step: Just keep the p eigenvectors with the largest eigenvalues
– Do lose some information, but if we just drop dimensions with small

eigenvalues then we lose only a little information, hopefully noise

– We can then have p input features rather than n

– The p features contain the most pertinent combined information from all n
original features

– How many dimensions p should we keep?

1 2 3 4 5 6 7 … n

Eigenvalue
Proportion

of Variance

PC Eigenvalues Eigenvectors

1 1.26610816 -0.67284685, -0.7397818

2 0.05222517 -0.7397818, 0.67284685

1.226/(1.226+.052) = .96

31

PCA Example
⚫ Last Step: Transform the n features to the p (< n) chosen bases (Eigenvectors)

⚫ Transform data (m instances) with a matrix multiply T = A × B
– A is a p×n matrix with the p principal components in the rows, component one on top

– B is a n×m matrix containing the transposed centered original data set

– TT is a m×p matrix containing the transformed data set

⚫ Now we have the new transformed data set with p features

⚫ Keep matrix A to transform future centered data instances

⚫ Below is the transform of both dimensions. Would if we just kept the 1st
component for this case?

32

PCA Algorithm Summary

1. Center the n normalized TS features (subtract the n means)

2. Calculate the covariance matrix of the centered TS

3. Calculate the unit eigenvectors and eigenvalues of the

covariance matrix

4. Keep the p (< n) eigenvectors with the largest eigenvalues

5. Matrix multiply the p eigenvectors with the centered TS to

get a new TS with only p features

⚫ Given a novel instance during execution

1. Center the normalized instance (subtract the n means)

2. Do the matrix multiply (step 5 above) to change the new instance

from n to p features

CS 270 - Feature Selection and Reduction 33

PCA Homework

CS 270 - Feature Selection and Reduction 34

Original Data

x y Out

m1 .2 -.3 -

m2 -1.1 2 -

m3 1 -2.2 -

m4 .5 -1 -

m5 -.6 1 -

mean

Terms

m 5 Number of instances in data set

n 2 Number of input features

p 1 Final number of principal components chosen

• Use PCA on the given data set to get a transformed data

set with just one feature (the first principal component

(PC)). Show your work along the way.

• Show what % of the total information is contained in the

1st PC.

• Do not use a PCA package to do it. You need to go

through the steps yourself, or program it yourself. You

may use a spreadsheet, Matlab, etc. to do the arithmetic

for you.

• You may use Python or any web tool to calculate the

eigenvectors/eigenvalues from the covariance matrix.

• Optional: After, use any PCA solver (e.g. sklearn) and

use it to solve the problem and check your answers.

PCA Summary

⚫ PCA is a linear transformation, so if the features have highly

non-linear correlations, the transformed data will be less useful

– Non linear dimensionality reduction techniques can sometimes handle

these situations better (e.g. LLE, Isomap, Manifold-Sculpting)

– PCA is good at removing redundant linearly correlated features

⚫ With high dimensional data the eigenvector is a hyper-plane

⚫ Interesting note: The 1st principal component is the multiple

regression plane that delta rule will always discover

⚫ Caution: Not a "cure all" and can lose important info in some

cases

– How would you know if it is effective?

– Just compare accuracies of original vs transformed data set

CS 270 - Feature Selection and Reduction 35

Practical Feature Reduction

⚫ Assume you have a data set with 50 features

⚫ You might like to reduce if possible (you might hope for 10 or
so, but let the results decide)

⚫ Could try PCA – Compare PCA with original training results to
see how effective PCA is for the particular data set

⚫ Could also try a wrapper (e.g. backward greedy) and compare
its results and then go with what gives the best accuracy

⚫ PCA
– Pro: Potentially fuses most information from all features into a new

smaller set of features

– Con: Will fail if features have lots of non-linear correlations

⚫ Wrappers
– Pro: Can handle data features with arbitrary non-linear correlations

– Con: Does not fuse info, those features which are dropped are
completely gone

CS 270 - Feature Selection and Reduction 36

Group Projects and Teams

CS 270 - Feature Selection and Reduction 37

	Slide 1: Feature Selection, Preparation, and Reduction
	Slide 2: Gathering Data
	Slide 3: When to Gather More Data
	Slide 4: Data Representation
	Slide 5: Transforming Continuous to Ordered Data
	Slide 6: Supervised Binning
	Slide 7: Data Normalization
	Slide 8: Output Class Skew
	Slide 9: Transformed/Derived Variables (Meta-Features)
	Slide 10: Relevant Data
	Slide 11: Missing Data
	Slide 12: *Challenge Question* - Missing Data
	Slide 13: Dirty Data and Data Cleaning
	Slide 14: Labeled and Unlabeled Data
	Slide 15: Semi-Supervised Learning Examples
	Slide 16: Active Learning
	Slide 17: Active Learning
	Slide 18: Active Learning
	Slide 19: Your Project Proposals
	Slide 20: Feature Selection and Feature Reduction
	Slide 21: Feature Selection - Filters
	Slide 22: Feature Selection - Wrappers
	Slide 23: Feature Selection - Wrappers
	Slide 24: PCA – Principal Components Analysis
	Slide 25: PCA Overview
	Slide 26: Variance and Covariance
	Slide 27: Covariance and the Covariance Matrix
	Slide 28: PCA Example
	Slide 29: PCA Example
	Slide 30: PCA Example
	Slide 31: PCA Example
	Slide 32: PCA Example
	Slide 33: PCA Algorithm Summary
	Slide 34: PCA Homework
	Slide 35: PCA Summary
	Slide 36: Practical Feature Reduction
	Slide 37: Group Projects and Teams

