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Feature Selection, Preparation, and Reduction

⚫ Learning accuracy depends on the data!

– Is the data representative of future novel cases - critical

– Relevance

– Amount

– Quality

⚫ Noise

⚫ Missing Data

⚫ Skew

– Proper Representation

– How much of the data is labeled (output target) vs. unlabeled

– Is the number of features/dimensions reasonable?

⚫ Reduction



Gathering Data

⚫ Consider the task – What kind of features could help

⚫ Data availability

– Significant diversity in cost of gathering different features

– More the better (in terms of number of instances, not necessarily in 
terms of number of dimensions/features)

⚫ The more features you have the more data you need

– Data augmentation, Jitter – Increased data can help with overfit – 
handle with care!

⚫ Labeled data is best

⚫ If not labeled

– Could set up studies/experts to obtain labeled data 

– Use unsupervised and semi-supervised techniques

⚫ Clustering

⚫ Active Learning, Bootstrapping, Oracle Learning, etc.
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When to Gather More Data

⚫ When trying to improve performance, you may need 

– More Data

– Better Input Features

– Different Machine learning models or hyperparameters

– Etc.

⚫ One way to decide if you need more/better data

– Compare your accuracy on training and test set

– If bad training set accuracy then you might need better data/ 
features.  Though you might need a different learning 
model/hyperparameters

– If test set accuracy is much worse than training set accuracy then 
gathering more data is usually a good direction and consider better 
overfit avoidance. Learning model/hyperparameters could still be a 
significant issue.
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Data Representation

⚫ Categorical/Symbolic

⚫ Nominal – No natural ordering

⚫ Ordered/Ordinal

⚫ Special cases: Time/Date, Addresses, Names, IDs, etc.

⚫ Already discussed how to transform categorical to continuous data 

for models (e.g. perceptrons) which want continuous inputs

⚫ Continuous

– Some models are better equipped to handle nominal/ordered data

– How to transform continuous to ordinal
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Transforming Continuous to Ordered Data

⚫ Basic approach is to discretize/bin the continuous data

– How many bins – differs by problem, enough to appropriately 

divide data

– Equal-Width Binning

⚫ Bins of fixed ranges

⚫ Does not handle skew/outliers well

– Equal-Height Binning

⚫ Bins with equal number of instances

⚫ Uniform distribution, can help for skew and outliers

⚫ More likely to have breaks in high data concentrations

– Clustering

⚫ More accurate, though more complex

– Bin borders can be an issue
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Supervised Binning

⚫ The previous binning approaches do not consider the 

classification of each instance and thus they are unsupervised 

(Class-aware vs. Class-blind)

⚫ Could use a supervised approach which attempts to bin such 

that learning algorithms may more easily classify

⚫ Supervised approaches can find bins while also maximizing 

correlation between output classes and values in each bin

– Often rely on information theoretic techniques
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Data Normalization

⚫ Normalization for continuous values (0-1 common)

– What if data has skew, outliers, etc.

– Standardization (z-score) – Transform the data by subtracting the 

average and then dividing by the standard deviation – allows more 

information on spread/outliers

– Look at the data to make these and other decisions!

– May be better served with a non-linear normalization based on the 

data spread
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Output Class Skew

⚫ Nuclear reactor data – Meltdowns vs. non-meltdowns

⚫ If occurrence of certain output classes are rare

– Machine learners often just learn to output the majority class output 
value

⚫ Most accurate southern California weather forecast

⚫ Approaches to deal with Skew
– Undersampling: if 100,000 instances and only 1,000 of the minority 

class, keep all 1,000 of the minority class, and drop majority class 
examples until reaching a reasonable distribution – but lose data

– Oversampling: Make duplicates of every minority instance and add it 
to the data set until reaching a reasonable distribution (Overfit 
possibilities)

⚫ Could add new copies with jitter (be careful!)

– Have learning algorithm weight the minority class higher, or class with 
higher misclassification cost (even if balanced), learning rate, etc.

– Use Precision/Recall or ROC rather than just accuracy
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Transformed/Derived Variables (Meta-Features)

⚫ Transform initial data features into better ones
- Quadric machine was one example

⚫ Transforms of individual variables
– Use area code rather than full phone number

– Determine the vehicle make from a VIN (vehicle id no.)

⚫ Combining/deriving variables
– Height/weight ratio

– Difference of two dates

– Do some derived variables in your group project – especially if 
features mostly given!

⚫ Features based on other instances in the set
– e.g. This instance is in the top quartile of price/quality tradeoff

⚫ Transforming/Deriving features requires creativity and some 
knowledge of the task domain but can be very effective in 
improving accuracy
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Relevant Data

⚫ Typically do not use features where

– Almost all instance have the same value (no information)

⚫ If there is a significant, though small, percentage of other values, then 

might still be useful

– Nominal feature where almost all instances have unique values 

(SSN, phone-numbers)

⚫ Might be able to use a variation of the feature (such as area code)

– The feature is highly correlated with another feature 

⚫ In this case the feature may be redundant and only one is needed
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Missing Data
⚫ Need to consider approach for learning and execution (could differ)

⚫ Throw out data with missing attributes

– Do only if rare, else could lose a significant amount of training set 

– Doesn’t work during execution

⚫ Set (impute/imputation) attribute to its mode/mean (based on rest of data set)

– Too big of an assumption?

⚫ Use a learning scheme (NN, DT, etc) to impute missing values

– Train imputing models with a training set which has the missing attribute as the 
target and the rest of the attributes as input features. Better accuracy, though more 
time consuming - multiple missing values?

⚫ Impute based on the most similar instance(s) in the data set - SK KNNImputer

⚫ Train multiple reduced input models without common missing features

⚫ *Let unknown be just another attribute value – Can work well in many cases

– Missing attribute may contain important information, (didn’t vote can mean 
something about congressperson, extreme measurements aren’t captured, etc.).

– Natural for nominal data

– With continuous data, can use an indicator node, or a value which does not occur in 
the normal data (-1, outside range, etc.), however, in the latter case, the model will 
treat this as an extreme ordered feature value and may cause difficulties

BP Pain Out

.5 Low 0

.8 Hi 1

? Low 1

1 ? 0



*Challenge Question* - Missing Data

⚫ Given the dataset to the right, what 

approach would you use to deal with 

the two unknown values and what 

would those values be set to?

– Assume you are learning with an MLP 

and Backpropagation

– Throwing out those instances is not an 

option in this case 

– I left out targets on purpose since they 

won’t be available with novel data

⚫ If your approach requires any 

modifications to the MLP inputs, be 

ready to explain exactly what those 

are
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Dirty Data and Data Cleaning

⚫ Dealing with bad data, inconsistencies, and outliers

⚫ Many ways errors are introduced
– Measurement Noise/Outliers

– Poor Data Entry

– User lack of interest
⚫ Most common birthday when B-day mandatory: November 11, 1911

⚫ Data collectors don't want blanks in data warehousing so they may fill in 
(impute) arbitrary values

⚫ Data Cleaning
– Data analysis to discover inconsistencies

⚫ Consider distribution of a feature’s values (find mistakes/outliers)

– Clustering/Binning can sometimes help

– Noise/Outlier removal – Requires care to know when it is noise and 
how to deal with this during execution – Our experiments show hard 
instance removal (those always wrong, noise or not) during training 
increases subsequent accuracy
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Labeled and Unlabeled Data

⚫ Accurately labeled data is always best

⚫ Often there is lots of cheaply available unlabeled data which is 

expensive/difficult to label – internet data, etc.

⚫ Semi-Supervised Learning – Can sometimes augment a small set 

of labeled data with lots of unlabeled data to gain improvements

⚫ Bootstrapping: Iteratively use current labeled data to train model, 

use the trained model to label the unlabeled data, then train again 

including most confident newly labeled data, and re-label, etc., 

until some convergence

⚫ Active Learning – Out of a collection of unlabeled data, ML 

model queries for the next most informative instance to label

⚫ Combinations of above and other techniques being proposed
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Semi-Supervised Learning Examples
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Combine labeled and unlabeled data with assumptions about typical

data to find better solutions than just using the labeled data



Active Learning
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Often query:

1) A low confidence instance (i.e. near a decision boundary)

2) An instance which is in a relatively dense neighborhood



Active Learning
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Active Learning
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Often query:

1) A low confidence instance (i.e. near a decision boundary)
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Your Project Proposals

⚫ See description in Learning Suite

– Remember your example instance!

⚫ Examples – Look at Irvine Data Set, Kaggle, or OpenML 

to get a feel of what data sets look like

⚫ Stick with supervised classification problems for the most 

part for the project proposals

⚫ Tasks which interest you

⚫ Too hard vs Too Easy

– Data should be able to be gathered in a relatively short time

– And, want you to have to battle with the data/features a bit. You 

can’t just use a pretty much ready to go data set that you find!

CS 270 - Feature Selection and Reduction 19



Feature Selection and Feature Reduction

⚫ Given n original features, it is often advantageous to reduce this 
to a smaller set of features for actual training

– Can improve/maintain accuracy if we can preserve the most relevant 
information while discarding the most irrelevant information

– And/or can make the learning process more computationally and 
algorithmically manageable by working with less features

– Curse of dimensionality requires an exponential increase in data set 
size in relation to the number of features to learn without overfit – thus 
decreasing features can be critical

⚫ Feature Selection seeks a subset of the n original features which 
retains most of the relevant information

– Filters, Wrappers

⚫ Feature Reduction combines/fuses the n original features into a 
smaller set of newly created features which hopefully retains 
most of the relevant information from all the original features - 
Data fusion (e.g. LDA, PCA, etc.)
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Feature Selection - Filters

⚫ Given n original features, how do you select size of subset

– User can preselect a size p (< n) – not usually as effective

– Usually try to find the smallest size where adding more features does 
not yield improvement

⚫ Filters work independent of any particular learning algorithm

⚫ Filters seek a subset of features which maximize some type of 
between class separability – or other merit score

⚫ Can score each feature independently and keep best subset

– e.g. 1st order correlation with output, fast, less optimal

⚫ Can score subsets of features together

– Exponential number of subsets requires a more efficient, sub-optimal 
search approach

– How to score features is independent of the ML model to be trained on 
and is an important research area

– Decision Tree or other ML model pre-process
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Feature Selection - Wrappers

⚫ Optimizes for a specific learning algorithm

⚫ The feature subset selection algorithm is a "wrapper" 

around the learning algorithm

1. Pick a feature subset and pass it to learning algorithm

2. Create training/test set based on the feature subset

3. Train the learning algorithm with the training set

4. Find accuracy (objective) with validation set

5. Repeat for all feature subsets and pick the feature subset which 

gives the highest predictive accuracy (or other objective)

⚫ Basic approach is simple

⚫ Variations are based on how to select the feature subsets, 

since there are an exponential number of subsets
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Feature Selection - Wrappers

⚫ Exhaustive Search - Exhausting

⚫ Forward Search – O(n2 · learning/testing time) - Greedy
1. Score each feature by itself and add the best feature to the initially 

empty set FS (FS will be our final Feature Set)

2. Try each subset consisting of the current FS plus one remaining 
feature and add the best feature to FS

3. Continue until stop getting significant improvement (over a window)

⚫ Backward Search – O(n2 · learning/testing time) - Greedy
1. Score the initial complete FS 

2. Try each subset consisting of the current FS minus one feature in FS 
and drop the feature from FS causing least decrease in accuracy

3. Continue until dropping any feature causes a significant decreases in 
accuracy

⚫ Branch and Bound and other heuristic approaches available
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PCA – Principal Components Analysis

⚫ PCA is one of the most common feature reduction techniques

⚫ A linear method for dimensionality reduction

⚫ Allows us to combine much of the information contained in n 

features into p features where p < n

⚫ PCA is unsupervised in that it does not consider the output 

class/value of an instance – There are other algorithms which do 

(e.g. LDA - Linear Discriminant Analysis)

⚫ PCA works well in many cases where data features have mostly 

linear correlations

⚫ Non-linear dimensionality reduction is also a successful area 

and can give better results for data with significant non-linear 

correlations between the data features
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PCA Overview
⚫ Seek new set of bases which correspond to the highest variance 

in the data

⚫ Transform n-dimensional normalized data to a new n-
dimensional basis

– The new dimension with the most variance is the first principal 
component

– The next is the second principal component, etc.

– Note z1 combines/fuses significant information from both x1 and x2

⚫ Can drop dimensions for which there is little variance
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Variance and Covariance
⚫ Variance is a measure of data spread in one feature/dimension

– n features, m instances in data set 

– Note n in variance/covariance equations is number of instances in the 
data set, apologies

⚫ Covariance measures how two dimensions (features) vary with 
respect to each other

⚫ Normalize data features so they have similar magnitudes else 
covariance may not be as informative
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var(X) =

X i - X( )
i=1

n

å X i - X( )

n -1( )

cov(X,Y ) =

X i - X( ) Yi -Y( )
i=1

n

å

n -1( )



Covariance and the Covariance Matrix

⚫ Considering the sign (rather than exact value) of covariance:

– Positive value means that as one feature increases or decreases the 

other does also (positively correlated)

– Negative value means that as one feature increases the other decreases 

and vice versa (negatively correlated)

– A value close to zero means the features are independent

– If highly covariant, are both features necessary?

⚫ Covariance matrix is an n × n matrix containing the covariance 

values for all pairs of features in a data set with n features 

(dimensions)

⚫ The diagonal contains the covariance of a feature with itself 

which is the variance (i.e. the square of the standard deviation)

⚫ The matrix is symmetric
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PCA Example
⚫ First step is to center the original data around 0 by subtracting 

the mean in each dimension – normalize first if needed
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Data x y x' y'

2.5 2.4 0.68 0.49

0.5 0.7 -1.32 -1.21

2.2 2.9 0.38 0.99

1.9 2.2 0.08 0.29

3.1 3.0 1.28 1.09

2.3 2.7 0.48 0.79

2.0 1.6 0.18 -0.31

1.0 1.1 -0.82 -0.81

1.5 1.6 -0.32 -0.31

1.2 0.9 -0.62 -1.01

Mean 1.82 1.91 0 0



PCA Example

⚫ Second: Calculate the covariance matrix of the centered data

⚫ Only 2 × 2 for this case
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cov(X,Y) =

X i - X( ) Yi -Y( )
i=1

n

å

n -1( )

Data x y x' y'

2.5 2.4 0.68 0.49

0.5 0.7 -1.32 -1.21

2.2 2.9 0.38 0.99

1.9 2.2 0.08 0.29

3.1 3.0 1.28 1.09

2.3 2.7 0.48 0.79

2.0 1.6 0.18 -0.31

1.0 1.1 -0.82 -0.81

1.5 1.6 -0.32 -0.31

1.2 0.9 -0.62 -1.01

Mean 1.82 1.91 0 0

Covariance Matrix

0.60177778 0.60422222

0.71655556



PCA Example

⚫ Third: Calculate the unit eigenvectors and eigenvalues of the 

covariance matrix (remember your linear algebra)

– Covariance matrix is always square n × n and positive semi-definite, 

thus n non-negative eigenvalues will exist

– All eigenvectors (principal components) are orthogonal to each other 

and form the new set of bases/dimensions for the data (columns)

– The magnitude of each eigenvalue corresponds to the variance along 

each new dimension – Just what we wanted!

– We can sort the principal components according to their eigenvalues

– Just keep those dimensions with the largest eigenvalues
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Principal 

Component

Eigenvalues Eigenvectors

1 1.26610816 -0.67284685, -0.7397818

2 0.05222517 -0.7397818, 0.67284685



PCA Example

⚫ Below are the two eigenvectors overlaying the centered data

⚫ Which eigenvector has the largest eigenvalue?

⚫ Fourth Step:  Just keep the p eigenvectors with the largest eigenvalues
– Do lose some information, but if we just drop dimensions with small 

eigenvalues then we lose only a little information, hopefully noise

– We can then have p input features rather than n

– The p features contain the most pertinent combined information from all n 
original features

– How many dimensions p should we keep?

1 2 3 4 5 6 7 … n

Eigenvalue
Proportion

of Variance

PC Eigenvalues Eigenvectors

1 1.26610816 -0.67284685, -0.7397818

2 0.05222517 -0.7397818, 0.67284685

1.226/(1.226+.052) = .96 
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PCA Example
⚫ Last Step:  Transform the n features to the p (< n) chosen bases (Eigenvectors)

⚫ Transform data (m instances) with a matrix multiply T =  A × B
– A is a p×n matrix with the p principal components in the rows, component one on top

– B is a n×m matrix containing the transposed centered original data set

– TT is a m×p matrix containing the transformed data set  

⚫ Now we have the new transformed data set with p features

⚫ Keep matrix A to transform future centered data instances

⚫ Below is the transform of both dimensions. Would if we just kept the 1st 
component for this case?
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PCA Algorithm Summary

1. Center the n normalized TS features (subtract the n means)

2. Calculate the covariance matrix of the centered TS

3. Calculate the unit eigenvectors and eigenvalues of the 

covariance matrix

4. Keep the p (< n) eigenvectors with the largest eigenvalues

5. Matrix multiply the p eigenvectors with the centered TS to 

get a new TS with only p features

⚫ Given a novel instance during execution

1. Center the normalized instance (subtract the n means)

2. Do the matrix multiply (step 5 above) to change the new instance 

from n to p features
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PCA Homework
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Original Data

x y Out

m1 .2 -.3 -

m2 -1.1 2 -

m3 1 -2.2 -

m4 .5 -1 -

m5 -.6 1 -

mean

Terms

m 5 Number of instances in data set

n 2 Number of input features

p 1 Final number of principal components chosen

• Use PCA on the given data set to get a transformed data 

set with just one feature (the first principal component 

(PC)).  Show your work along the way.

• Show what % of the total information is contained in the 

1st PC.

• Do not use a PCA package to do it.  You need to go 

through the steps yourself, or program it yourself. You 

may use a spreadsheet, Matlab, etc. to do the arithmetic 

for you.

• You may use Python or any web tool to calculate the 

eigenvectors/eigenvalues from the covariance matrix.

• Optional: After, use any PCA solver (e.g. sklearn) and 

use it to solve the problem and check your answers.



PCA Summary

⚫ PCA is a linear transformation, so if the features have highly 

non-linear correlations, the transformed data will be less useful

– Non linear dimensionality reduction techniques can sometimes handle 

these situations better (e.g. LLE, Isomap, Manifold-Sculpting)

– PCA is good at removing redundant linearly correlated features

⚫ With high dimensional data the eigenvector is a hyper-plane

⚫ Interesting note:  The 1st principal component is the multiple 

regression plane that delta rule will always discover

⚫ Caution:  Not a "cure all" and can lose important info in some 

cases

– How would you know if it is effective?

– Just compare accuracies of original vs transformed data set
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Practical Feature Reduction

⚫ Assume you have a data set with 50 features

⚫ You might like to reduce if possible (you might hope for 10 or 
so, but let the results decide)

⚫ Could try PCA – Compare PCA with original training results to 
see how effective PCA is for the particular data set

⚫ Could also try a wrapper (e.g. backward greedy) and compare 
its results and then go with what gives the best accuracy

⚫ PCA
– Pro: Potentially fuses most information from all features into a new 

smaller set of features

– Con: Will fail if features have lots of non-linear correlations

⚫ Wrappers
– Pro: Can handle data features with arbitrary non-linear correlations

– Con: Does not fuse info, those features which are dropped are 
completely gone
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Group Projects and Teams
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