Data Mining

- The Extraction of useful information from data
- The automated extraction of hidden predictive information from (large) databases
- Business, Huge data bases, customer data, mine the data
 - Also Medical, Genetic, Astronomy, etc.
- Data sometimes unlabeled – unsupervised clustering, etc.
- Focuses on learning approaches which scale to massive amounts of data
 - and potentially to a large number of features
 - sometimes requires simpler algorithms with lower big-O complexities
Data Mining Applications

- Often seeks to give businesses a competitive advantage
- Which customers should they target
 - For advertising – more focused campaign
 - Customers they most/least want to keep
 - Most favorable business decisions
- Associations
 - Which products should/should not be on the same shelf
 - Which products should be advertised together
 - Which products should be bundled
- Information Brokers
 - Make transaction information available to others who are seeking advantages
Data Mining

Basically, a particular niche of machine learning applications

- Focused on business and other large data problems
- Focused on problems with huge amounts of data which needs to be manipulated in order to make effective inferences
- “Mine” for “gems” of actionable information
Data Mining Popularity

- Recent Data Mining explosion based on:
 - Data available – Transactions recorded in data warehouses
 - From these warehouses specific databases for the goal task can be created
 - Algorithms available – Machine Learning and Statistics
 - Including special purpose Data Mining software products to make it easier for people to work through the entire data mining cycle
 - Computing power available
 - Competitiveness of modern business – need an edge
Data Mining Process Model

- You will use much of this process in your group project

1. Identify and define the task (e.g. business problem)
2. Gather and Prepare the Data
 - Build Data Base for the task
 - Select/Transform/Derive features
 - Analyze and Clean the Data, remove outliers, etc.
3. Build and Evaluate the Model(s) – Using training and test data
4. Deploy the Model(s) and Evaluate business related Results
 - Data visualization tools
5. Iterate through this process to gain continual improvements both initially and during life of task
 - Improve/adjust features and/or machine learning approach
Monitor, Evaluate, and update deployment
Data Science and Big Data

Interdisciplinary field about scientific methods, processes and systems to extract knowledge or insights from data

- Machine Learning
- Statistics/Math
- CS/Database/Algorithms
- Visualization
- Parallel Processing
- Etc.

Increasing demand in industry!

Data Science Departments and Tracks

New DS emphasis in BYU CS began Fall 2019
Group Projects

- Review timing and expectations
 - Progress Report
 - Time purposely available between Decision Tree and Instance Based projects to keep going on the group project
 - Gathering, Cleaning, Transforming the Data can be the most critical part of the project, so get that going early!!
 - Then plenty of time to try some different ML models and some iterations on your Features/ML approaches to get improvements
 - Final report and presentation

- Questions?
Association Analysis – Link Analysis

- Used to discover relationships in large databases
- Relationships represented as *association rules*
 - Unsupervised learning, any data set
- One example is *market basket analysis* which seeks to understand more about what items are bought together
 - This can then lead to improved approaches for advertising, product placement, etc.
 - Example Association Rule: \{Cereal\} \Rightarrow \{Milk\}

<table>
<thead>
<tr>
<th>Transaction ID and Info</th>
<th>Items Bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and (who, when, etc.)</td>
<td>{Ice cream, milk, eggs, cereal}</td>
</tr>
<tr>
<td>2</td>
<td>{Ice cream}</td>
</tr>
<tr>
<td>3</td>
<td>{milk, cereal, sugar}</td>
</tr>
<tr>
<td>4</td>
<td>{eggs, yogurt, sugar}</td>
</tr>
<tr>
<td>5</td>
<td>{Ice cream, milk, cereal}</td>
</tr>
</tbody>
</table>
Companies have large data warehouses of transactions
- Records of sales at a store
- On-line shopping
- Credit card usage
- Phone calls made and received
- Visits and navigation of web sites, etc…

Many/Most things recorded these days and there is potential information that can be mined to gain business improvements
- For better customer service/support and/or profits
Association Analysis – Link Analysis

- Used to discover relationships in large databases
- Relationships represented as *association rules*
 - Unsupervised learning, any data set
- One example is *market basket analysis* which seeks to understand more about what items are bought together
 - This can then lead to improved approaches for advertising, product placement, etc.
 - Example Association Rule: \(\{\text{Cereal}\} \Rightarrow \{\text{Milk}\} \)

<table>
<thead>
<tr>
<th>Transaction ID and Info</th>
<th>Items Bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 and (who, when, etc.)</td>
<td>{Ice cream, milk, eggs, cereal}</td>
</tr>
<tr>
<td>2</td>
<td>{Ice cream}</td>
</tr>
<tr>
<td>3</td>
<td>{milk, cereal, sugar}</td>
</tr>
<tr>
<td>4</td>
<td>{eggs, yogurt, sugar}</td>
</tr>
<tr>
<td>5</td>
<td>{Ice cream, milk, cereal}</td>
</tr>
</tbody>
</table>
Association Discovery

- Association rules are not causal, show correlations
- k-itemset is a subset of the possible items – $\{\text{Milk, Eggs}\}$ is a 2-itemset
- Which itemsets does transaction 3 contain
- Association Analysis/Discovery seeks to find frequent itemsets

<table>
<thead>
<tr>
<th>TID</th>
<th>Items Bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${\text{Ice cream, milk, eggs, cereal}}$</td>
</tr>
<tr>
<td>2</td>
<td>${\text{Ice cream}}$</td>
</tr>
<tr>
<td>3</td>
<td>${\text{milk, cereal, sugar}}$</td>
</tr>
<tr>
<td>4</td>
<td>${\text{eggs, yogurt, sugar}}$</td>
</tr>
<tr>
<td>5</td>
<td>${\text{Ice cream, milk, cereal}}$</td>
</tr>
</tbody>
</table>
Association Rule Quality

\[\text{support}(X) = \frac{|\{ t \in T : X \subseteq t \}|}{|T|} \]

\[\text{support}(X \Rightarrow Y) = \frac{|\{ t \in T : (X \cup Y) \subseteq t \}|}{|T|} \]

\[\text{confidence}(X \Rightarrow Y) = \frac{|\{ t \in T : (X \cup Y) \subseteq t \}|}{|\{ t \in T : X \subseteq t \}|} \]

\[\text{lift}(X \Rightarrow Y) = \frac{\text{confidence}(X \Rightarrow Y)}{\text{support}(Y)} \]

- \(t \in T \), the set of all transactions, and \(X \) and \(Y \) are itemsets
- Rule quality measured by support and confidence
 - Without sufficient support (frequency), rule will probably overfit, and also of little interest, since it is rare
 - Note \(\text{support}(X \Rightarrow Y) = \text{support}(Y \Rightarrow X) = \text{support}(X \cup Y) \)
 - Note that \(\text{support}(X \cup Y) \) is support for itemsets where both \(X \) and \(Y \) occur
 - Confidence measures reliability of the inference (to what extent does \(X \) imply \(Y \))
 - \(\text{confidence}(X \Rightarrow Y) \neq \text{confidence}(Y \Rightarrow X) \)
 - Support and confidence range between 0 and 1
 - Lift: Lift is high when \(X \Rightarrow Y \) has high confidence and the consequent \(Y \) is less common, Thus lift suggests ability for \(X \) to infer a less common value with good probability

<table>
<thead>
<tr>
<th>TID</th>
<th>Items Bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{Ice cream, milk, eggs, cereal}</td>
</tr>
<tr>
<td>2</td>
<td>{Ice cream}</td>
</tr>
<tr>
<td>3</td>
<td>{milk, cereal, sugar}</td>
</tr>
<tr>
<td>4</td>
<td>{eggs, yogurt, sugar}</td>
</tr>
<tr>
<td>5</td>
<td>{Ice cream, milk, cereal}</td>
</tr>
</tbody>
</table>
Association Rule Discovery Defined

- User supplies two thresholds
 - $minsup$ (Minimum required support level for a rule)
 - $minconf$ (Minimum required confidence level for a rule)

- Association Rule Discovery: Given a set of transactions T, find all rules having support $\geq minsup$ and confidence $\geq minconf$

- How do you find the rules?
- Could simply try every possible rule and just keep those that pass
 - Number of candidate rules is exponential in the size of the number of items

- Standard Approaches - Apriori
 - 1st find frequent itemsets (Frequent itemset generation)
 - Then return rules within those frequent itemsets that have sufficient confidence (Rule generation)
 - Both steps have an exponential number of combinations to consider
 - Number of itemsets exponential in number of items m (power set: 2^m)
 - Number of rules per itemset exponential in number of items in itemset ($n!$)
Apriori Algorithm

The support for the rule $X \Rightarrow Y$ is the same as the support of the itemset $X \cup Y$

- Assume $X = \{\text{milk, eggs}\}$ and $Y = \{\text{cereal}\}$. $C = X \cup Y$
- All the possible rule combinations of itemset C have the same support
 (# of possible rules exponential in width of itemset: $|C|!$)
 - $\{\text{milk, eggs}\} \Rightarrow \{\text{cereal}\}$
 - $\{\text{milk}\} \Rightarrow \{\text{cereal, eggs}\}$
 - $\{\text{eggs}\} \Rightarrow \{\text{milk, cereal}\}$
 - $\{\text{milk, cereal}\} \Rightarrow \{\text{eggs}\}$
 - $\{\text{cereal, eggs}\} \Rightarrow \{\text{milk}\}$
 - $\{\text{cereal}\} \Rightarrow \{\text{milk, eggs}\}$

Do they have the same confidence?

So rather than find common rules we can first just find all itemsets with support $\geq \text{minsup}$

- These are called frequent itemsets
- After that we can find which rules within the common itemsets have sufficient confidence to be kept
Support-based Pruning

- Apriori Principle: If an itemset is frequent, then all subsets of that itemset will be frequent
 - Note that subset refers to the items in the itemset
- If an itemset is not frequent, then any superset of that itemset will also not be frequent

![Diagram](image_url)

Figure 6.3. An illustration of the Apriori principle. If \(\{c, d, e\} \) is frequent, then all subsets of this itemset are frequent.

Figure 6.4. An illustration of support-based pruning. If \(\{a, b\} \) is infrequent, then all supersets of \(\{a, b\} \) are infrequent.
Example transaction DB with 5 items and 10 transactions

- Minsup = 30%, at least 3 transaction must contain the itemset
- For each itemset at the current level of the tree (depth k) go through each of the n transactions and update tree itemset counts accordingly
- All 1-itemsets are kept since all have support $\geq 30\%$

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>a: 7</td>
<td></td>
</tr>
<tr>
<td>b: 3</td>
<td></td>
</tr>
<tr>
<td>c: 7</td>
<td></td>
</tr>
<tr>
<td>d: 6</td>
<td></td>
</tr>
<tr>
<td>e: 7</td>
<td></td>
</tr>
</tbody>
</table>
Generate level 2 of the tree (all possible 2-itemsets)

Normally use lexical ordering in itemsets to generate/count candidates more efficiently

- (a,b), (a,c), (a,d), (a,e), (b,c), (b,d), ..., (d,e)
- When looping through n transactions for (a,b), can stop if a not first in the set, etc.

Number of tree nodes will grow exponentially if not pruned

Which ones can we prune assuming minsup = .3?
Generate level 2 of the tree (all possible 2-itemsets)

- Use lexical ordering in itemsets to generate/count candidates more efficiently
 - (a,b), (a,c), (a,d), (a,e), (b,c), (b,d), …, (d,e)
 - When looping through n transactions for (a,b), can stop if a not first in the set, etc.

Number of tree nodes will grow exponentially if not pruned

Which ones can we prune assuming minsup = .3?
Generate level 3 of the tree (all 3-itemsets with frequent parents)

Before calculating the counts, check to see if any of these newly generated 3-itemsets, contain an infrequent 2-itemset. If so we can prune it before we count since it must be infrequent

- A k-itemset contains k subsets of size $k-1$
- It's parent in the tree is only one of those subsets
- Are there any candidates we can delete?
Apriori: Breadth First Search

1: \{a, d, e\}
2: \{b, c, d\}
3: \{a, c, e\}
4: \{a, c, d, e\}
5: \{a, e\}
6: \{a, c, d\}
7: \{b, c\}
8: \{a, c, d, e\}
9: \{c, b, e\}
10: \{a, d, e\}

- The item sets \{b, c, d\} and \{b, c, e\} can be pruned, because
 - \{b, c, d\} contains the infrequent item set \{b, d\} and
 - \{b, c, e\} contains the infrequent item set \{b, e\}.
Apriori: Breadth First Search

1: \{a, d, e\}
2: \{b, c, d\}
3: \{a, c, e\}
4: \{a, c, d, e\}
5: \{a, e\}
6: \{a, c, d\}
7: \{b, c\}
8: \{a, c, d, e\}
9: \{c, b, e\}
10: \{a, d, e\}

- Only the remaining four item sets of size 3 are evaluated.
Apriori: Breadth First Search

1: \{a, d, e\}
2: \{b, c, d\}
3: \{a, c, e\}
4: \{a, c, d, e\}
5: \{a, e\}
6: \{a, c, d\}
7: \{b, c\}
8: \{a, c, d, e\}
9: \{c, b, e\}
10: \{a, d, e\}

- Minimum support: 30\%, i.e., at least 3 transactions must contain the item set.
- Infrequent item set: \{c, d, e\}.
Apriori: Breadth First Search

1: \{a, d, e\}
2: \{b, c, d\}
3: \{a, c, e\}
4: \{a, c, d, e\}
5: \{a, e\}
6: \{a, c, d\}
7: \{b, c\}
8: \{a, c, d, e\}
9: \{c, b, e\}
10: \{a, d, e\}

- Generate candidate item sets with 4 items (parents must be frequent).
- Before counting, check whether the candidates contain an infrequent item set.
Frequent itemsets are: \{a, c\}, \{a, c, d\}, \{a, c, e\}, \{a, d\}, \{a, d, e\}, \{a, e\}, \{b, c\}, \{c, d\}, \{c, e\}, \{d, e\}

- The item set \{a, c, d, e\} can be pruned, because it contains the infrequent item set \{c, d, e\}.
- Consequence: No candidate item sets with four items.
- Fourth access to the transaction database is not necessary.
Rule Generation

- Frequent itemsets were: \{a,c\}, \{a,c,d\}, \{a,c,e\}, \{a,d\}, \{a,d,e\}, \{a,e\}, \{b,c\}, \{c,d\}, \{c,e\}, \{d,e\}

- For each frequent itemset generate the possible rules and keep those with confidence \geq minconf

- First itemset \{a,c\} gives possible rules
 - \{a\} \Rightarrow \{c\} with confidence 4/7 and
 - \{c\} \Rightarrow \{a\} with confidence 4/7

- Second itemset \{a,c,d\} leads to six possible rules

- Just as with frequent itemset generation, we can use pruning and smart lexical ordering to make rule generation more efficient
 - Project? – Search pruning tricks (312) vs ML
Illustrative Training Set

Would if we had real valued data? What are steps for this example?

Risk Assessment for Loan Applications

<table>
<thead>
<tr>
<th>Client #</th>
<th>Credit History</th>
<th>Debt Level</th>
<th>Collateral</th>
<th>Income Level</th>
<th>RISK LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bad</td>
<td>High</td>
<td>None</td>
<td>Low</td>
<td>HIGH</td>
</tr>
<tr>
<td>2</td>
<td>Unknown</td>
<td>High</td>
<td>None</td>
<td>Medium</td>
<td>HIGH</td>
</tr>
<tr>
<td>3</td>
<td>Unknown</td>
<td>Low</td>
<td>None</td>
<td>Medium</td>
<td>MODERATE</td>
</tr>
<tr>
<td>4</td>
<td>Unknown</td>
<td>Low</td>
<td>None</td>
<td>Low</td>
<td>HIGH</td>
</tr>
<tr>
<td>5</td>
<td>Unknown</td>
<td>Low</td>
<td>None</td>
<td>High</td>
<td>LOW</td>
</tr>
<tr>
<td>6</td>
<td>Unknown</td>
<td>Low</td>
<td>Adequate</td>
<td>High</td>
<td>LOW</td>
</tr>
<tr>
<td>7</td>
<td>Bad</td>
<td>Low</td>
<td>None</td>
<td>Low</td>
<td>HIGH</td>
</tr>
<tr>
<td>8</td>
<td>Bad</td>
<td>Low</td>
<td>Adequate</td>
<td>High</td>
<td>MODERATE</td>
</tr>
<tr>
<td>9</td>
<td>Good</td>
<td>Low</td>
<td>None</td>
<td>High</td>
<td>LOW</td>
</tr>
<tr>
<td>10</td>
<td>Good</td>
<td>High</td>
<td>Adequate</td>
<td>High</td>
<td>LOW</td>
</tr>
<tr>
<td>11</td>
<td>Good</td>
<td>High</td>
<td>None</td>
<td>Low</td>
<td>HIGH</td>
</tr>
<tr>
<td>12</td>
<td>Good</td>
<td>High</td>
<td>None</td>
<td>Medium</td>
<td>MODERATE</td>
</tr>
<tr>
<td>13</td>
<td>Good</td>
<td>High</td>
<td>None</td>
<td>High</td>
<td>LOW</td>
</tr>
<tr>
<td>14</td>
<td>Bad</td>
<td>High</td>
<td>None</td>
<td>Medium</td>
<td>HIGH</td>
</tr>
</tbody>
</table>
Running Apriori (I)

Choose \textit{MinSupport} = .4 and \textit{MinConfidence} = .8

1-Itemsets (Level 1):

- (CH=Bad, .29) (CH=Unknown, .36) (CH=Good, .36)
- (DL=Low, .5) (DL=High, .5)
- (C=None, .79) (C=Adequate, .21)
- (IL=Low, .29) (IL=Medium, .29) (IL=High, .43)
- (RL=High, .43) (RL=Moderate, .21) (RL=Low, .36)
Running Apriori (II)

1-Itemsets = \{(DL=Low, .5); (DL=High, .5); (C=None, .79); (IL=High, .43); (RL=High, .43)\}

2-Itemsets = \{(DL=High + C=None, .43)\}

3-Itemsets = {}

Two possible rules:
- DL=High \(\Rightarrow \) C=None
- C=None \(\Rightarrow \) DL=High

Confidences:
- Conf(DL=High \(\Rightarrow \) C=None) = .86 \(\text{Retain} \)
- Conf(C=None \(\Rightarrow \) DL=High) = .54 \(\text{Ignore} \)
Summary

- Association Analysis useful in many real world tasks
 - Not a classification approach, but a way to understand relationships in data and use this knowledge to advantage
- Also standard classification and other approaches
- Data Mining continues to grow as a field
 - Data and features issues
 - Gathering, Selection and Transformation, Preparation, Cleaning, Storing
 - Data visualization and understanding
 - Outlier detection and handling
 - Time series prediction
 - Web mining
 - etc.
Companies have large data warehouses of transactions
- Records of sales at a store
- On-line shopping
- Credit card usage
- Phone calls made and received
- Visits and navigation of web sites, etc…

Many/Most things recorded these days and there is potential information that can be mined to gain business improvements
- For better customer service/support and/or profits

Data Warehouse (DWH)
- Separate from the operational data (OLTP – Online transaction processing)
- Data comes from heterogeneous company sources
- Contains static records of data which can be used and manipulated for analysis and business purposes
- Old data is rarely modified, and new data is continually added
- OLAP (Online Analytical Processing) – Front end to DWH allowing basic data base style queries
 - Useful for data analysis and data gathering and creating the task data base
The Big Picture: DBs, DWH, OLAP & DM

Data Warehouse

- Extract
- Transform
- Load
- Refresh

OLAP Server

Serve

Analysis, Query, Reports, Create Data Base for Data mining

Data Storage

OLAP Engine

Front-End Tools

other sources

Operational DBs

CS 270- Data Mining