CS 472 - Machine Learning

Data Representation
Basic testing and evaluation schemes
Projects
Programming Your Project Models

- Program in Python, the most popular language for ML
 - NumPy – Great with arrays, etc.
- Project Code MUST be your own! – Better learning
 - Don't use code from web/book to do your code development
- Optional tools and libraries
 - Colab – Google IDE for Python and Jupyter notebooks
 - Jupyter Notebooks
 - Pandas – Data Frames
 - Matplotlib
Data Set Features

Data Types
- Nominal (aka Categorical, Discrete)
- Continuous (aka Real, Numeric)
- Linear (aka Ordinal) – Is usually just treated as continuous, so that ordering info is maintained

Consider a Task: Classifying the quality of pizza
- What features might we use? Do one of each versions above.

How to represent those features?
- Will usually depend on the learning model we are using

Classification assumes the output class is nominal. If output is continuous, then we are doing *regression*.
Fitting Data to the Model

- Continuous -> Nominal
 - Discretize into bins – more on this later

- Nominal -> Continuous (Perceptron expects continuous)
 a) One input node for each nominal value where one of the nodes is set to 1 and the other nodes are set to 0 – One Hot
 - Can also explode the variable into \(n-1 \) input nodes where the most common value is not explicitly represented (i.e. the all 0 case)
 b) Use 1 node but with a different continuous value representing each nominal value
 c) Distributed – \(\log_b n \) nodes can uniquely represent \(n \) nominal values (e.g. 3 binary nodes could represent 8 values)
 d) If there is a very large number of nominal values, could cluster (discretize) them into a more manageable number of values and then use one of the techniques above

- Linear data is already in continuous form
What would happen if you used two input features in an astronomical task as follows:

- Weight of the planet in grams
- Diameter of the planet in light-years
Data Normalization

What would happen if you used two input features in an astronomical task as follows:
- Weight of the planet in grams
- Diameter of the planet in light-years

Normalize the Data between 0 and 1 (or similar bounds)
- For a specific instance, could get the normalized feature as follows:
 \[f_{\text{normalized}} = \frac{f_{\text{original}} - \text{Minvalue}_{TS}}{\text{Maxvalue}_{TS} - \text{Minvalue}_{TS}} \]

Use these same Max and Min values to normalize data in novel instances

Note that a novel instance may have a normalized value outside 0 and 1
- Why? Is it a big issue?
ARFF Files

- An ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a Machine Learning dataset (or relation).
 - Developed at the University of Waikato (NZ) for use with the Weka machine learning software (http://www.cs.waikato.ac.nz/~ml/weka).
 - We will commonly use the ARFF format for CS 472

- ARFF files have two distinct sections:
 - Metadata information
 - Name of relation (Data Set)
 - List of attributes and domains
 - Data information
 - Actual instances or rows of the relation

- Optional comments may also be included which give information about the Data Set (lines prefixed with %)
Sample ARFF File

% 1. Title: Pizza Database
% 2. Sources:
% (a) Creator: BYU CS 472 Class…
% (b) Statistics about the features, etc.

@RELATION Pizza

@ATTRIBUTE Weight CONTINUOUS
@ATTRIBUTE Crust {Pan, Thin, Stuffed}
@ATTRIBUTE Cheesiness CONTINUOUS
@ATTRIBUTE Meat {True, False}
@ATTRIBUTE Quality {Good, Great}

@DATA
.9, Stuffed, 99, True, Great
.1, Thin, 2, False, Good
?, Thin, 60, True, Good
.6, Pan, 60, True, Great

- Any column could be the output, but we will assume that the last column(s) is the output
- Assume cheesiness is linear (an integer between 0 and 100)
- What would you do to this data before using it with a perceptron and what would the perceptron look like? – Show an updated ARFF row
ARFF Files

- More details and syntax information for ARFF files can be found at our website.
- Also have a small arff library to help you out.
- Data sets that we have already put into the ARFF format can also be found at our website and linked to from the LS content page.

 http://axon.cs.byu.edu/data/

- You will use a number of these in your simulations throughout the semester – Always read about the task, features, etc, rather than just plugging in the numbers.
- You will create your own ARFF files in some projects, and particularly with the group project.
There are a number of ways to measure the performance of a learning algorithm:
- Predictive accuracy of the induced model (or error)
- Size of the induced model
- Time to compute the induced model
- etc.

We will focus mostly on accuracy.

Fundamental Assumption:

Future novel instances are drawn from the same/similar distribution as the training instances
Training/Testing Alternatives

- Four methods that we commonly use:
 - Training set method
 - But mostly these 3 cross-validation (CV) methods
 - Static split test set CV
 - Random split test set CV
 - N-fold cross-validation

- Cross-Validation (CV) – Validate results using data not used for training (i.e. cross-validate)
Training Set Method

Procedure
- Build model from the training set
- Compute accuracy on the same training set

Simple but least reliable estimate of future performance on unseen data (a rote learner could score 100%!)

Not used as a performance metric but it is often important information in understanding how a machine learning model learns

This is information which you will report in your write-ups and then compare it with how the learner does on a test set/CV method
Static Training/Test Set

- **Static Split Approach – A type of CV**
 - The data owner makes available to the machine learner two distinct datasets:
 - One is used for learning/training (i.e., inducing a model), and
 - One is used exclusively for testing

- **Note that this gives you a way to do repeatable tests**

- **Can be used for challenges (e.g. to see how everyone does on one particular unseen set, method we use for helping grade your labs.)**

- **Be careful not to overfit the Test Set (“Gold Standard”)**
Random Training/Test Set Approach

- Random Split CV Approach (aka holdout method)
 - The data owner makes available to the machine learner a single dataset
 - The machine learner splits the dataset into a training and a test set, such that:
 - Instances are randomly assigned to either set
 - The distribution of instances (with respect to the target class) is hopefully similar in both sets due to randomizing the data before the split
 - Stratification is an option to ensure proper distribution
 - Typically 60% to 90% of instances is used for training and the remainder for testing – the more data there is the more that can be used for training and still get statistically significant test predictions
 - Useful quick estimate for computationally intensive learners
 - Not statistically optimal (high variance, unless lots of data)
 - Could get a lucky or unlucky test set
 - Best to do multiple training runs with different random splits. Train and test \(m \) different splits and then average the accuracy over the \(m \) runs to get a more statistically accurate prediction of generalization accuracy.
N-fold Cross-validation

- Use all the data for both training and testing
 - Statistically more reliable
 - All data can be used which is good, especially for small data sets
- Procedure
 - Partition the randomized dataset (call it D) into N equally-sized subsets S_1, …, S_N
 - For $k = 1$ to N
 - Let M_k be the model induced from $D - S_k$
 - Let a_k be the accuracy of M_k on the instances of the test fold S_k
 - Return $(a_1+a_2+…+a_N)/N$
N-fold Cross-validation (cont.)

- The larger N is, the smaller the variance in the final result.
- The limit case where $N = |D|$ is known as *leave-one-out* and provides the most reliable estimate. However, it is typically only practical for small instance sets.
- Commonly, a value of $N=10$ is considered a reasonable compromise between time complexity and reliability.
- Still must choose an actual model to use during execution – how?
N-fold Cross-validation (cont.)

- The larger N is, the smaller the variance in the final result.
- The limit case where $N = |D|$ is known as *leave-one-out* and provides the most reliable estimate. However, it is typically only practical for small instance sets.
- Commonly, a value of $N=10$ is considered a reasonable compromise between time complexity and reliability.
- Still must choose an actual model to use during execution - how?
 - Could select the one model that was best on its fold?
 - All data! With any of the approaches.
- Note that N-fold CV is just a better way to estimate how well we will do on novel data, rather than a way to do *model selection*.
scikit-learn

- One of the most used and powerful machine learning toolkits out there
- Lots of implemented models and tools to use for machine learning applications
- Python Library to call from your Python code
- Familiarize yourself with the scikit-learn website as you will be using it for all labs
Perceptron Project

- Content Section of LS (Learning Suite) for project specifications
 - Review carefully the introductory part regarding all projects
- For each project carefully read the specifications for the lab in the Jupyter notebook on GitHub