
CS 270 - Decision Trees 1

Decision Trees

⚫ Highly used and successful

⚫ Iteratively split the Data Set into subsets one feature at a
time, using most informative features first
– Thus, constructively chooses which features to use and ignore

⚫ Continue until you can label each leaf node with a class

⚫ Attributes/Features – discrete/nominal (can extend to
continuous features)

⚫ Smaller/shallower trees generalize the best (i.e. using just
the most informative attributes)
– Searching for smallest tree takes exponential time

⚫ Typically use a greedy iterative approach to create the tree
by selecting the currently most informative attribute to use

CS 270 - Decision Trees 2

⚫ Assume A1 is nominal binary feature (Size: S/L)

⚫ Assume A2 is nominal 3 value feature (Color: R/G/B)

⚫ A goal is to get “pure” leaf nodes. What feature

might we split on?

Decision Tree Learning

A1

S L

A2

R

G

B

CS 270 - Decision Trees 3

⚫ Assume A1 is nominal binary feature (Size: S/L)

⚫ Assume A2 is nominal 3 value feature (Color: R/G/B)

⚫ Next step for left and right children?

Decision Tree Learning

A1

A2A2

A1

S L
A1

S L

R

G

B

R

G

B

CS 270 - Decision Trees 4

⚫ Assume A1 is nominal binary feature (Size: S/L)

⚫ Assume A2 is nominal 3 value feature (Color: R/G/B)

⚫ Decision surfaces are axis aligned Hyper-Rectangles

Decision Tree Learning

A1

A2

A2A2

A1

S L
A1

S L

R

G

B

R

G

B

CS 270 - Decision Trees 5

⚫ Assume A1 is nominal binary feature (Size: S/L)

⚫ Assume A2 is nominal 3 value feature (Color: R/G/B)

⚫ Decision surfaces are axis aligned Hyper-Rectangles

⚫ Label leaf nodes with their majority class

Decision Tree Learning

A1

A2

A2A2

R

G

B

R

G

B

A1

S L
A1

S L

Decision Tree Algorithms

⚫ J Ross Quinlan – Australia, ML researcher

– ID3 (Iterative Dichotimiser 3) – 1986

– C4.5 – Upgrade of ID3, (Version 4.5 written in C) 1993, Handles

real valued inputs

– C5.0 – More efficient implementation

⚫ Leo Breiman - UC Berkeley

– CART (Classification and Regression Trees) – 1984

⚫ This is the decision tree approach currently supported in Sklearn

– Random Forests - 2001

⚫ Independently discovered

CS 270 - Decision Trees 6

CS 270 - Decision Trees 7

ID3/C4.5 Learning Approach

⚫ S is a set of examples

⚫ A test on attribute/feature A partitions S into {Si, S2,...,S|A|}

where |A| is the number of values A can take on

⚫ Start with the training set as S and first find a good A for

the root

⚫ Continue recursively until either all subsets well classified,

you run out of attributes, or some stopping criteria is

reached

CS 270 - Decision Trees 8

Which Attribute/Feature to split on

⚫ Twenty Questions - what are good questions, ones

which when asked decrease the information remaining

⚫ Regularity required

⚫ What would be good attribute tests for a DT

⚫ Let’s come up with our own approach for scoring the

quality of each possible attribute – then pick highest

CS 270 - Decision Trees 9

Which Attribute to split on

⚫ Twenty Questions - what are good questions, ones

which when asked decrease the information remaining

⚫ Regularity required

⚫ What would be good attribute tests for a DT

⚫ Let’s come up with our own approach for scoring the

quality of each possible attribute – then pick highest

 Purity

nmajority

ntotal

CS 270 - Decision Trees 10

Which Attribute to split on

⚫ Twenty Questions - what are good questions, ones

which when asked decrease the information remaining

⚫ Regularity required

⚫ What would be good attribute tests for a DT

⚫ Let’s come up with our own approach for scoring the

quality of each possible attribute – then pick highest

– Want both purity and statistical significance (e.g. SS#)

nmajority

ntotal

CS 270 - Decision Trees 11

Which Attribute to split on

⚫ Twenty Questions - what are good questions, ones

which when asked decrease the information remaining

⚫ Regularity required

⚫ What would be good attribute tests for a DT

⚫ Let’s come up with our own approach for scoring the

quality of each possible attribute – then pick highest

– Want both purity and statistical significance

– Laplacian, where |C| is the number of output classes

nmajority

ntotal

nmaj +1

ntotal+ |C |

CS 270 - Decision Trees 12

Which Attribute to split on

⚫ Twenty Questions - what are good questions, ones

which when asked decrease the information remaining

⚫ Regularity required

⚫ What would be good attribute tests for a DT

⚫ Let’s come up with our own approach for scoring the

quality of each possible attribute – then pick highest

– This is just for one node

– Best attribute will be good across many/most of its partitioned

nodes

nmajority

ntotal

nmaj +1

ntotal+ |C |

CS 270 - Decision Trees 13

Which Attribute to split on

⚫ Twenty Questions - what are good questions, ones

which when asked decrease the information remaining

⚫ Regularity required

⚫ What would be good attribute tests for a DT

⚫ Let’s come up with our own approach for scoring the

quality of each possible attribute – then pick highest

– Now we just try each attribute to see which gives the highest

score, and we split on that attribute and repeat at the next level

nmajority

ntotal

nmaj +1

ntotal+ |C |

ntotal,i

ntotal
×
nmaj,i +1

ntotal,i+ |C |
i=1

|A |

å

CS 270 - Decision Trees 14

Which Attribute to split on

⚫ Twenty Questions - what are good questions, ones

which when asked decrease the information remaining

⚫ Regularity required

⚫ What would be good attribute tests for a DT

⚫ Let’s come up with our own approach for scoring the

quality of each possible attribute – then pick highest

– Sum of Laplacians – a reasonable and common approach

– Another approach (often used by ID3/C4.5): Entropy

⚫ Just replace Laplacian part with information(node)

nmajority

ntotal

nmaj +1

ntotal+ |C |

ntotal,i

ntotal
×
nmaj,i +1

ntotal,i+ |C |
i=1

|A |

å

CS 270 - Decision Trees 15

Information

⚫ Information of a message in bits: I(m) = -log2(pm)

⚫ If there are 16 equiprobable messages, I for each message is -
log2(1/16) = 4 bits

⚫ If the messages are not equiprobable then could we represent
them with less bits?

– Highest disorder (randomness) requires maximum information

⚫ If there is a dataset S of c classes, then information for one class
is: I(c) = -log2(pc)

⚫ Total info of the data set is just the sum of the info per class
times the proportion of that class

⚫ Info(S) = Entropy(S) = - pi
i=1

|C|

å log2 (pi)

CS 270 - Decision Trees 16

Information Gain Metric

⚫ Info(S) is the average amount of information needed to identify the
class of an example in set S

⚫ Info(S) = Entropy(S) =

⚫ 0  Info(S)  log2(|C|), |C| is # of output classes

⚫ pi is the probability of each output class

⚫ Expected Information after partitioning using A:

⚫ InfoA(S) = where |A| is # of values
 for attribute A

⚫ Mostly pure sets have Info(S) = Entropy(S) ≈ 0

⚫ Gain(A) = Info(S) - InfoA(S) (i.e. minimize InfoA(S))

⚫ Gain/Entropy does not handle the statistical significance issue
– more on that later

| Si |

| S |
Info(Si)

i=1

|A |

å

- pi
i=1

|C|

å log2 (pi)

prob
0 1

Info

log2(|C|)

17

ID3/C4.5 Learning Algorithm

𝐼𝑛𝑓𝑜 𝑆 = −෍

𝑖=1

|𝐶|

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝐼𝑛𝑓𝑜𝐴 𝑆 =෍

𝑗=1

𝐴
𝑆𝑗

𝑆
𝐼𝑛𝑓𝑜 𝑆𝑗 = ෍

𝑗=1

𝐴
𝑆𝑗

𝑆
∙ −෍

𝑖=1

|𝐶|

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

1. S = Training Set

2. Calculate gain for each remaining attribute: Gain(A) = Info(S) - InfoA(S)

3. Select attribute with highest gain and create a new node for each partition

4. For each new child node

– if pure (one class), or if no attributes remain, or if stopping criteria met, then label

node with majority class and end

⚫ Stopping criteria include pure enough, too small a number of examples remaining, not

enough information gain, max depth reached, etc.

– else recurse to 2 with remaining attributes and training set

Where S is the remaining training set at the node

|A| is the number of attribute values for the feature

|C| is the number of output classes for the task

18

C4.5 Learning Algorithm

1. S = Training Set

2. Calculate gain for each remaining attribute: Gain(A) = Info(S) - InfoA(S)

3. Select attribute with highest gain and create a new node for each partition

4. For each new child node

– if pure (one class), or if no attributes remain, or if stopping criteria met (e.g. pure

enough, too small a number of examples remaining, not enough information gain,

max depth reached), then label node with majority class and end

– else recurse to 2 with remaining attributes and training set

Meat

N,Y

Crust

D,S,T

Veg

N,Y

Quality

B,G,Gr

Y Thin N Great

N Deep N Bad

N Stuffed Y Good

Y Stuffed Y Great

Y Deep N Good

Y Deep Y Great

N Thin Y Good

Y Deep N Good

N Thin N Bad

𝐼𝑛𝑓𝑜 𝑆 = −෍

𝑖=1

|𝐶|

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝐼𝑛𝑓𝑜𝐴 𝑆 =෍

𝑗=1

𝐴
𝑆𝑗

𝑆
𝐼𝑛𝑓𝑜 𝑆𝑗 = ෍

𝑗=1

𝐴
𝑆𝑗

𝑆
∙ −෍

𝑖=1

|𝐶|

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

Where S is the remaining training set at the node

|A| is the number of attribute values for the feature

|C| is the number of output classes for the task

Example

⚫ Info(S) = - 2/9·log22/9 - 4/9·log24/9 -3/9·log23/9 = 1.53

– Not necessary, but gain can be used as a stopping criteria

⚫ Starting with all instances, calculate gain for each attribute

⚫ Let’s do Meat:

⚫ InfoMeat(S) = ?

– Information Gain is ?

CS 270 - Decision Trees 19

Meat

N,Y

Crust

D,S,T

Veg

N,Y

Quality

B,G,Gr

Y Thin N Great

N Deep N Bad

N Stuffed Y Good

Y Stuffed Y Great

Y Deep N Good

Y Deep Y Great

N Thin Y Good

Y Deep N Good

N Thin N Bad

𝐼𝑛𝑓𝑜 𝑆 = −෍

𝑖=1

|𝐶|

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝐼𝑛𝑓𝑜𝐴 𝑆 =෍

𝑗=1

𝐴
𝑆𝑗

𝑆
𝐼𝑛𝑓𝑜 𝑆𝑗 = ෍

𝑗=1

𝐴
𝑆𝑗

𝑆
∙ −෍

𝑖=1

|𝐶|

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

Where S is the remaining training set at the node

|A| is the number of attribute values for the feature

|C| is the number of output classes for the task

Example

⚫ Info(S) = - 2/9·log22/9 - 4/9·log24/9 -3/9·log23/9 = 1.53

– Not necessary, but gain can be used as a stopping criteria

⚫ Starting with all instances, calculate gain for each attribute

⚫ Let’s do Meat:

⚫ InfoMeat(S) = 4/9·(-2/4log22/4 - 2/4·log22/4 - 0·log20/4) +

 5/9·(-0/5·log20/5 - 2/5·log22/5 - 3/5·log23/5) = .98

– Information Gain is 1.53 - .98 = .55

CS 270 - Decision Trees 20

Meat

N,Y

Crust

D,S,T

Veg

N,Y

Quality

B,G,Gr

Y Thin N Great

N Deep N Bad

N Stuffed Y Good

Y Stuffed Y Great

Y Deep N Good

Y Deep Y Great

N Thin Y Good

Y Deep N Good

N Thin N Bad

𝐼𝑛𝑓𝑜 𝑆 = −෍

𝑖=1

|𝐶|

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝐼𝑛𝑓𝑜𝐴 𝑆 =෍

𝑗=1

𝐴
𝑆𝑗

𝑆
𝐼𝑛𝑓𝑜 𝑆𝑗 = ෍

𝑗=1

𝐴
𝑆𝑗

𝑆
∙ −෍

𝑖=1

|𝐶|

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

Where S is the remaining training set at the node

|A| is the number of attribute values for the feature

|C| is the number of output classes for the task

Challenge Question

⚫ What is the information for crust InfoCrust(S) :

A. .98

B. 1.35

C. .12

D. 1.41

E. None of the Above

⚫ Is it a better attribute to split on than Meat?

CS 270 - Decision Trees 21

Meat

N,Y

Crust

D,S,T

Veg

N,Y

Quality

B,G,Gr

Y Thin N Great

N Deep N Bad

N Stuffed Y Good

Y Stuffed Y Great

Y Deep N Good

Y Deep Y Great

N Thin Y Good

Y Deep N Good

N Thin N Bad

𝐼𝑛𝑓𝑜 𝑆 = −෍

𝑖=1

|𝐶|

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝐼𝑛𝑓𝑜𝐴 𝑆 =෍

𝑗=1

𝐴
𝑆𝑗

𝑆
𝐼𝑛𝑓𝑜 𝑆𝑗 = ෍

𝑗=1

𝐴
𝑆𝑗

𝑆
∙ −෍

𝑖=1

|𝐶|

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

Where S is the remaining training set at the node

|A| is the number of attribute values for the feature

|C| is the number of output classes for the task

Decision Tree Example

⚫ InfoMeat(S) = 4/9·(-2/4log22/4 - 2/4·log22/4 - 0·log20/4) +

 5/9·(-0/5·log20/5 - 2/5·log22/5 - 3/5·log23/5) = .98

⚫ InfoCrust(S) = 4/9·(-1/4log21/4 - 2/4·log22/4 - 1/4·log21/4) +

 2/9·(-0/2·log20/2 - 1/2·log21/2 - 1/2·log21/2) +

 3/9·(-1/3·log21/3 - 1/3·log21/3 - 1/3·log21/3) = 1.41

⚫ Meat leaves less info (higher gain) and thus is the better of

these two

CS 270 - Decision Trees 22

Meat

N,Y

Crust

D,S,T

Veg

N,Y

Quality

B,G,Gr

Y Thin N Great

N Deep N Bad

N Stuffed Y Good

Y Stuffed Y Great

Y Deep N Good

Y Deep Y Great

N Thin Y Good

Y Deep N Good

N Thin N Bad

𝐼𝑛𝑓𝑜 𝑆 = −෍

𝑖=1

|𝐶|

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝐼𝑛𝑓𝑜𝐴 𝑆 =෍

𝑗=1

𝐴
𝑆𝑗

𝑆
𝐼𝑛𝑓𝑜 𝑆𝑗 = ෍

𝑗=1

𝐴
𝑆𝑗

𝑆
∙ −෍

𝑖=1

|𝐶|

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

Decision Tree Homework

⚫ Finish the first level, find the best attribute and split

⚫ Then find the best attribute for the left most node at the

second level and split the node accordingly

– Assume sub-nodes are sorted alphabetically left to right by

attribute

– Label any leaf nodes with their majority class

– You could continue with the other nodes to get more practice

CS 270 - Decision Trees 23

Meat

N,Y

Crust

D,S,T

Veg

N,Y

Quality

B,G,Gr

Y Thin N Great

N Deep N Bad

N Stuffed Y Good

Y Stuffed Y Great

Y Deep N Good

Y Deep Y Great

N Thin Y Good

Y Deep N Good

N Thin N Bad

𝐼𝑛𝑓𝑜 𝑆 = −෍

𝑖=1

|𝐶|

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

𝐼𝑛𝑓𝑜𝐴 𝑆 =෍

𝑗=1

𝐴
𝑆𝑗

𝑆
𝐼𝑛𝑓𝑜 𝑆𝑗 = ෍

𝑗=1

𝐴
𝑆𝑗

𝑆
∙ −෍

𝑖=1

|𝐶|

𝑝𝑖𝑙𝑜𝑔2𝑝𝑖

CS 270 - Decision Trees 24

C4.5 Notes

⚫ Attributes which best discriminate between classes are

chosen

⚫ If the same ratios are found in a partitioned set, then

gain is 0

⚫ Complexity:

– At each tree node with a set of instances the work is

⚫ O(|Instances| * |remaining attributes|), which is Polynomial

– Total complexity is empirically polynomial

⚫ O(|TrainingSet| * |attributes| * |nodes in the tree|)

⚫ where the number of nodes is bound by the number of attributes

and can be kept smaller through stopping criteria, etc.

CS 270 - Decision Trees 25

Decision Tree Overfit Avoidance

⚫ Noise can cause inability to converge 100% or can lead to overly
complex decision trees (overfitting). Thus, we usually allow leafs with
multiple classes.

– Can select the majority class as the output, or output a confidence vector

⚫ Also, may not have sufficient attributes to perfectly divide data

⚫ Even if no noise, statistical chance can lead to overfit, especially when
the training set is not large. (e.g. some irrelevant attribute may happen
to cause a perfect split in terms of info gain on the training set, but will
generalize poorly)

⚫ Common approach is to not split when the number of examples at the
node are less than a threshold and just label this leaf node with its
majority class – early stopping

⚫ Could use a validation set and only add a new node if improvement (or
no decrease) in accuracy on the validation set – checked independently
at each branch of the tree using data set from parent

– But shrinking data problem with decision trees

CS 270 - Decision Trees 26

C4.5 Overfit Avoidance

⚫ Use Chi-square test to decide confidence in whether attribute is

irrelevant. Approach used in original ID3. (Takes amount of data into

account)

⚫ C4.5 allows tree to be changed into a rule set. Rules can then be

pruned in other ways.

⚫ If testing a truly irrelevant attribute, then the class proportion in the

partitioned sets should be similar to the initial set, with a small info

gain. Could only split if information gain exceeds some threshold.

However, in DTs, this type of early stopping can miss later higher order

combinations that would have helped.

⚫ C4.5 handles overfit by first filling out complete tree and then pruning

any nodes which don’t help validation set accuracy

CS 270 - Decision Trees 27

Reduced Error Pruning

⚫ Pruning a full tree (one where all possible nodes have been added)

– Prune any nodes which would not hurt accuracy

– Could allow some higher order combinations that would have been

missed with early stopping

– Can simultaneously consider all nodes for pruning rather than just the

current frontier

1. Train tree out fully (empty or consistent partitions or no more
attributes)

2. For EACH non-leaf node, test accuracy on a validation set for a
modified tree where the sub-trees of the node are removed and the
node is assigned the majority class based on the instances it
represents from the training set

3. Keep pruned tree which does best on the validation set and does at
least as well as the current tree on the validation set

4. Repeat until no pruned tree does as well as the current tree

Reduced Error Pruning Example

CS 270 - Decision Trees 28

CS 270 - Decision Trees 29

Missing Values: C4.5 Approach

⚫ Can use any of the methods we discussed previously – new attribute
value very natural and effective with typical nominal data

⚫ Another approach, particular to decision trees:
– When arriving at an attribute test for which the attribute is missing do the following:

– Each branch has a probability of being taken based on what percentage of examples
at that parent node have the branch's value for the missing attribute

– Take all branches, but carry a weight representing that probability. These weights
could be further modified (multiplied) by other missing attributes in the current
example as they continue down the tree.

– Thus, a single instance gets broken up and appropriately distributed down the tree
but its total weight throughout the tree will always sum to 1

⚫ Results in multiple active leaf nodes. For execution, set output as leaf
with highest weight, or sum weights for each output class, and output
the class with the largest sum, (or output the class confidence).

⚫ During learning, scale instance contribution by instance weights.

⚫ This approach could also be used for labeled probabilistic inputs with
subsequent probabilities tied to outputs

CS 270 - Decision Trees 30

Real Valued Features

⚫ C4.5: Continuous data is handled by testing all n-1 possible binary

thresholds for each continuous feature to see which gives best

information gain. The split point with highest gain gives the score for

that feature which then competes with all other features.

– More efficient to just test thresholds where there is a change of

classification.

– Is binary split sufficient? Attribute may need to be split again lower in the

tree, no longer have a strict depth bound

DT Interpretability

⚫ Intelligibility of DT – When trees get large, intelligibility

drops off

⚫ C4.5 rules - transforms tree into prioritized rule list with

default (most common output for examples not covered by

rules). It does simplification of superfluous attributes by

greedy elimination strategy (based on statistical error

confidence as in error pruning). Prunes less productive

rules within rule classes

⚫How critical is intelligibility in general?

– Will truly hard problems have a simple explanation?

CS 270 - Decision Trees 31

CS 270 - Decision Trees 32

Information gain favors attributes with

many attribute values

⚫ If A has random values (SS#), but ends up with only 1 example in

each partition, it would have maximum information gain, though a

terrible choice.

⚫ Occam’s razor would suggest seeking trees with less overall nodes.

Thus, attributes with less possible values might be given some kind

of preference.

⚫ Binary attributes (CART) are one solution, but lead to deeper trees,

and somewhat higher complexity in possible ways of splitting

attributes

⚫ Can use a penalty for attributes with many values such as Laplacian:

(nc+1)/(n+|C|)), though real issue is splits with little data

⚫ Gain Ratio is the approach used in original ID3/C4.5

CS 270 - Decision Trees 33

C4.5 - Gain Ratio Criteria

⚫ The main problem is splits with little data – What might we do?
– Laplacian or variations common: (nc+1)/(n+|C|) where nc is the majority

class and |C| is the number of output classes

⚫ Gain Ratio: Split information of an attribute SI(A) =

⚫ What is the information content of “splitting on attribute A” - does not
ask about output class

⚫ SI(A) or “Split information” is larger for a) many valued attributes and
b) when A evenly partitions data across values. SI(A) is log2(|A|) when
partitions are all of equal size.

⚫ Want to minimize "waste" of this information. When SI(A) is high then
Gain(A) should be high to take advantage. Maximize Gain Ratio:
Gain(A)/SI(A)

⚫ However, somewhat unintuitive since it also maximizes ratio for trivial
partitions (e.g. |S|≈|Si| for one of the partitions), so.... Gain must be at
least average of different A before considering gain ratio, so that very
small SI(A) does not inappropriately skew Gain ratio.

-
Si

| S |
log 2

Si

| S |
i=1

|A |

å

CART – Classification and Regression Trees

⚫ Binary Tree – Considers all possible splits, also with nominals

– Color = blue (vs not blue), Height >= 60 inches

– Recursive binary splitting – Same feature could be split multiple times

– No preset limit on depth like with C4.5 with nominal features

⚫ Does avoid bushy split problem of C4.5 (SS#)

CS 270 - Decision Trees 34

Titanic Survival Dataset

CS 270 - Decision Trees 35

Gini Impurity

⚫ For classification CART uses Gini impurity for node score

⚫ Gini score for a node is: 𝐺 = 1 − σ
𝑖=1
|𝐶|

𝑝𝑖
2

– pi is percentage of leaf's instances with output class i

– Best case is 0 (all one class), worse is 1-1/|C| (equal percentage of

each)

⚫ Total score for a given split is the weighted sum of the two

sub-node G’s

CS 270 - Decision Trees 36

Purity vs Gini Purity vs Entropy

⚫ Purity vs Gini examples – Just consider Gini purity part

𝐺 = 1 −෍

𝑖=1

|𝐶|

𝑝𝑖
2

– If all of one class they are the same, (10, 0, 0) both give 1

– If (5, 5) both give .5

– Which split would we prefer between (6, 4, 0) and (6, 2, 2)?

– Purity and Gini scores? Big win for later in the decision tree.

⚫ Entropy has the same advantages as Gini

⚫ Gini Impurity vs Entropy

– They are similar in terms of the values they return and often lead to

the same overall results, though they differ in some situations

– Gini avoids the log computation which some like

CS 270 - Decision Trees 37

nmajority

ntotal

CART Overfit Avoidance

⚫ Most common approach is to stop when there are only a

small number of examples at a node which is a type of

early stopping

– Hyperparameter - don’t split further when less than (e.g. 5, 10)

⚫ Can also constrain the tree to be smaller (max nodes, max

depth, etc.) but could cause underfit! (like using less

hidden nodes in a MLP

⚫ Can use pruning after full learning for regularization

– Sklearn has a different pruning algorithm for CART than Reduced

Error Pruning

CS 270 - Decision Trees 38

CART Regression

⚫ Regression Tree – The output value for a leaf is just the average

of the outputs of the instances represented by that leaf

– Could adjust for outliers, etc.

– Could do the same with C4.5

⚫ For regression the score for a node is not GINI impurity, but is

the SSE of instances represented by the node

⚫ The feature score for a potential split is the weighted sum of the

two child nodes scores (SSE)

⚫ Then, just like with classification, we choose the lowest score

amongst all possible feature splits

⚫ As long as there is significant variance in node examples,

splitting will continue

CS 270 - Decision Trees 39

CS 270 - Decision Trees 40

Decision Trees - Conclusion

⚫ Good Empirical Results

⚫ Comparable application robustness and accuracy with MLPs

⚫ Fast learning since no iterations

⚫ MLPs can be more natural with continuous inputs, while DT

natural with nominal inputs

⚫ One of the most used and well known of current symbolic systems

⚫ Can be used as a feature filter for other algorithms – Attributes

higher in the tree are best, those rarely used can be dropped

⚫ Higher order attribute tests - C4.5 can do greedy merging into

value sets, based on whether that improves gain ratio. Executes

the tests at each node expansion allowing different value sets at

different parts of the tree. Exponential time based on order.

CS 270 - Decision Trees 41

Decision Tree Lab

⚫ Nominals – SK CART only accepts numeric features - Fits

CART fine since that is how CART thinks of nominal

features anyways, breaking them into separate one-hot

features for each possible feature value

⚫ So a nominal attribute Color with 3 attribute values (Red,

Green, Blue), would be represented as 3 one-hot features

– Is-Red, Is-Green, Is-Blue

– Binary features can just be represented as 0/1

⚫ Note that Color could appear multiple times in a branch

unlike in C4/5. A not Is-Read branch could later consider

Is-Blue or Is-Green.

Midterm and Class Business

⚫ Double check that all is correct with groups and e-mail me

if not

⚫ E-mail me for group member contact info if needed

⚫ Working on DT lab early is great exam prep

⚫ Midterm Exam overview – See Study Guide

CS 270 - Decision Trees 42

	Slide 1: Decision Trees
	Slide 2: Decision Tree Learning
	Slide 3: Decision Tree Learning
	Slide 4: Decision Tree Learning
	Slide 5: Decision Tree Learning
	Slide 6: Decision Tree Algorithms
	Slide 7: ID3/C4.5 Learning Approach
	Slide 8: Which Attribute/Feature to split on
	Slide 9: Which Attribute to split on
	Slide 10: Which Attribute to split on
	Slide 11: Which Attribute to split on
	Slide 12: Which Attribute to split on
	Slide 13: Which Attribute to split on
	Slide 14: Which Attribute to split on
	Slide 15: Information
	Slide 16: Information Gain Metric
	Slide 17: ID3/C4.5 Learning Algorithm
	Slide 18: C4.5 Learning Algorithm
	Slide 19: Example
	Slide 20: Example
	Slide 21: *Challenge Question*
	Slide 22: Decision Tree Example
	Slide 23: Decision Tree Homework
	Slide 24: C4.5 Notes
	Slide 25: Decision Tree Overfit Avoidance
	Slide 26: C4.5 Overfit Avoidance
	Slide 27: Reduced Error Pruning
	Slide 28: Reduced Error Pruning Example
	Slide 29: Missing Values: C4.5 Approach
	Slide 30: Real Valued Features
	Slide 31: DT Interpretability
	Slide 32: Information gain favors attributes with many attribute values
	Slide 33: C4.5 - Gain Ratio Criteria
	Slide 34: CART – Classification and Regression Trees
	Slide 35: Titanic Survival Dataset
	Slide 36: Gini Impurity
	Slide 37: Purity vs Gini Purity vs Entropy
	Slide 38: CART Overfit Avoidance
	Slide 39: CART Regression
	Slide 40: Decision Trees - Conclusion
	Slide 41: Decision Tree Lab
	Slide 42: Midterm and Class Business

