
CS 270 - Clustering 1

Unsupervised Learning and Clustering

⚫ In unsupervised learning you are given a data set with no output
classifications (labels)

⚫ Clustering is an important type of unsupervised learning
– PCA was another type of unsupervised learning

⚫ The goal in clustering is to find "natural" clusters (classes) into which
the data can be divided – a particular breakdown into clusters is a
clustering (aka grouping, partition)

⚫ How many clusters should there be (k)? – Either user-defined,
discovered by trial and error, or automatically derived

⚫ Example: Taxonomy of the species – one correct answer?

⚫ Generalization – After clustering, when given a novel instance, we just
assign it to the most similar cluster

Clustering

⚫ How do we decide which instances should be in which
cluster?

⚫ Typically put data which is "similar" into the same cluster
– Similarity is measured with some distance metric

⚫ Also try to maximize between-class dissimilarity

⚫ Seek balance of within-class similarity and between-class
dissimilarity

⚫ Similarity Metrics

– Euclidean Distance most common for real valued instances

– Can use (1,0) distance for nominal and unknowns like with k-NN

– Can create arbitrary distance metrics based on the task

– Important to normalize the features

CS 270 - Clustering 2

Outlier Handling

⚫ Outliers

– noise, or

– correct, but unusual data

⚫ Approaches to handle them
– become their own cluster

⚫ Problematic, e.g. when k is pre-defined (How about k = 2 above)

⚫ If k = 3 above then it could be its own cluster, rarely used, but at least
it doesn't mess up the other clusters

⚫ Could remove clusters with 1 or few elements as a post-process step

– Absorb into the closest cluster

⚫ Can significantly adjust cluster radius, and cause it to absorb other
close clusters, etc. – See above case

– Remove with pre-processing step

⚫ Detection non-trivial – when is it really an outlier?

⚫ Unsupervised Outlier detection algorithms available

CS 270 - Clustering 3

Distances Between Clusters

⚫ Easy to measure distance between instances (elements,

points), but how about the distance of an instance to another

cluster or the distance between 2 clusters

⚫ Can represent a cluster with

– Centroid – cluster mean

⚫ Then just measure distance to the centroid

– Medoid – an actual instance which is most typical of the cluster (e.g.

Medoid is point which would make the average distance from it to

the other points the smallest)

⚫ Other common distances between two Clusters A and B

– Single link – Smallest distance between any 2 points in A and B

– Complete link – Largest distance between any 2 points in A and B

– Average link – Average distance between points in A and points in B

CS 270 - Clustering 4

Distances Between Clusters

⚫ Other common distances between two Clusters A and B

– Single link – Smallest distance between any 2 points in A and B

– Complete link – Largest distance between any 2 points in A and B

– Average link – Average distance between points in A and points in B

CS 270 - Clustering 5

Hierarchical and Partitional Clustering

⚫ Two most common high-level approaches

⚫ Hierarchical clustering is broken into two approaches

– Agglomerative: Each instance is initially its own cluster. Most similar
instance/clusters are then progressively combined until all instances
are in one cluster. Each level of the hierarchy is a different
clustering/grouping of clusters. (e.g. HAC)

– Divisive: Start with all instances as one cluster and progressively
divide until all instances are their own cluster.

– You then decide which clustering you want to output.

⚫ With partitional clustering the algorithm creates one clustering
of the data (with multiple clusters), typically by minimizing
some objective function (e.g. K-means)

– Note that you could run the partitional algorithm again in a recursive
fashion on all the new clusters if you want to build a hierarchy

CS 270 - Clustering 6

Hierarchical Agglomerative Clustering (HAC)

⚫ Input is an n×n adjacency matrix giving the distance

between each pair of instances

⚫ Initialize each instance to be its own cluster

⚫ Repeat until there is just one cluster containing all

instances

– Merge the two "closest" remaining clusters into one cluster

⚫ Each iteration gives a potential clustering. Choose which

clustering you want from this set.

⚫ HAC varies based on "Closeness definition"

– single, complete, average, and ward link distances common

CS 270 - Clustering 7

Dendrogram Representation

⚫ Standard HAC

– Input is an adjacency

matrix

– Output can include a

dendrogram which

visually shows

clusters and merge

distance CS 270 - Clustering 8

A

B

E

C

D

Ward Linkage

CS 270 - Clustering 9

Ward linkage measures variance of clusters. The distance

between two clusters, A and B, is how much the sum of squares

distance from each point to its centroid would increase if we

merged them. Merge the two clusters with minimum increase.

HAC Linkage Comparisons

⚫ Single link – (nearest neighbor) can lead to long chained clusters

where some points are quite far from each other

⚫ Complete link – (farthest neighbor) finds more compact clusters

⚫ Average link – Used less because have to re-compute the average each

time

⚫ Ward linkage – Can often be the most suitable method for quantitative

features

⚫ Once you have distances between clusters, always merge the closest

clusters in terms of the distance

CS 270 - Clustering 10

Linkage Methods

CS 270 - Clustering 11

HAC *Challenge Question*

⚫ For the data set below show 2 iterations (from 4 clusters

until 2 clusters remain) for HAC complete link (furthest).

– Repeat: Merge the 2 nearest clusters (using complete link distance)

– Use Manhattan distance

– Show the dendrogram, including properly labeled distances on the

vertical-axis of the dendrogram

CS 270 - Clustering 12

Pattern x y

a .8 .7

b 0 0

c 1 1

d 4 4

HAC Homework

⚫ For the data set below show all iterations (from 5 clusters

until 1 cluster remaining) for HAC single link.

– Show work

– Use Manhattan distance

– In case of ties go with the cluster containing the least alphabetical

instance.

– Show the dendrogram, including properly labeled distances on the

vertical-axis of the dendrogram.

CS 270 - Clustering 13

Pattern x y

a .8 .7

b -.1 .2

c .9 .8

d 0 .2

e .2 .1

HAC Summary

⚫ Complexity – Relatively expensive algorithm

– n2 space for the adjacency matrix

– mn2 time for the execution where m is the number of algorithm

iterations, since we have to compute new distances at each

iteration. m is usually ≈ n making the total time n3 (can be n2logn

with priority queue for distance matrix, etc.)

– All k (≈ n) clusterings returned in one run. No restart for different

k values. Must then decide which clustering you want.

⚫ Divisive – Starts with all the data in one cluster

– One approach is to compute the MST (minimum spanning tree - n2

time since it’s a fully connected graph) and then divide the cluster

at the tree edge with the largest distance – similar time complexity

as HAC, different clusterings obtained

– Could be more efficient than HAC if we want just a few clusters

CS 270 - Clustering 14

Which cluster level to choose?

⚫ Depends on goals

– May know beforehand how many clusters you want - or at least a

range (e.g. 2-10)

– Could analyze the dendrogram and data after the full clustering to

decide which subclustering level is most appropriate for the task at

hand

– Could use automated cluster validity metrics to help

⚫ Could do stopping criteria during clustering

CS 270 - Clustering 15

Automated Clustering Scores

CS 270 - Clustering 16

What would give us higher scores?

Cluster Validity Metrics - Compactness

⚫ One good goal is compactness – members of a cluster are all
similar and close together

– One measure of compactness of a cluster is the sum of squares
distance from each point to its cluster centroid (aka SSE)

– where c is the centroid of a cluster C, made up of instances Xc. Lower
is better.

– The overall compactness of a particular clustering is the sum of the
compactness of the individual clusters

– Gives us a numeric way to compare different clusterings by seeking
clusterings which minimize the compactness metric

⚫ However, for compactness, what clustering is always best?

CS 270 - Clustering 17

Comp(C) = (c
i=1

|X c |

å - x i)
2

Cluster Validity Metrics - Separability

⚫ Another good goal is separability – members of one cluster
are sufficiently different from members of another cluster
(cluster dissimilarity)

– One measure of the separability of two clusters is their squared
distance. The bigger the distance the better.

– distij = (ci - cj)
2 where ci and cj are two cluster centroids

– For a clustering which cluster distances should we compare?

CS 270 - Clustering 18

Cluster Validity Metrics - Separability

⚫ Another good goal is separability – members of one cluster
are sufficiently different from members of another cluster
(cluster dissimilarity)

– One measure of the separability of two clusters is their squared
distance. The bigger the distance the better.

– distij = (ci - cj)
2 where ci and cj are two cluster centroids

– For a clustering which cluster distances should we compare?

– For each cluster we add in the distance to its closest neighbor cluster

– We would like to find clusterings where separability is maximized

⚫ However, separability is usually maximized when there are
are very few clusters

– squared distance amplifies larger distances

19

Separability = min
j
distij

i=1

|C |

å (ci,c j)

CS 270 - Clustering

Silhouette

⚫ We want techniques that find a balance between inter-cluster

similarity and intra-cluster dissimilarity

⚫ Silhouette is one good popular approach

⚫ Scores any clustering with an arbitrary number of unique

clusters. Clustering can come from any clustering algorithm.

⚫ a(i) = average dissimilarity of instance i to all other instances in

the cluster to which i is assigned – Want it small

– Dissimilarity could be Euclidian distance, etc.

⚫ b(i) = the smallest average dissimilarity of instance i to

instances in other clusters – Want it large

⚫ b(i) is smallest for the best different cluster that i could be

assigned to – the best cluster that you would move i to if needed

CS 270 - Clustering 20

Silhouette

CS 270 - Clustering 21

s(i) =

1- a(i) / b(i) if a(i) < b(i)

0 if a(i) = b(i)

b(i) / a(i)-1 if a(i) > b(i)

ì

í
ï

î
ï

s(i) =
b(i)-a(i)

max{a(i),b(i)}

-1£ s(i) £1

or 1– 4/7 = 3/7

Silhouette

⚫ s(i) is close to one when “within” similarity is much smaller
than smallest “between” similarity

⚫ s(i) is 0 when i is right on the border between two clusters

⚫ s(i) is negative when i probably belongs in another cluster

⚫ By definition, s(i) = 0 if it is the only node in the cluster

⚫ The quality of a single cluster can be measured by the average
silhouette score of its members, (close to 1 is best)

⚫ The quality of a total clustering can be measured by the average
silhouette score of all the instances

⚫ To find best clustering, compare total silhouette scores across
clusterings with different k values and choose the highest

CS 270 - Clustering 22

s(i) =

1- a(i) / b(i) if a(i) < b(i)

0 if a(i) = b(i)

b(i) / a(i)-1 if a(i) > b(i)

ì

í
ï

î
ï

s(i) =
b(i)-a(i)

max{a(i),b(i)}

-1£ s(i) £1

Visualizing Silhouette

CS 270 - Clustering 23

Width is quality of cluster, height is size of cluster

Dashed line is average silhouette score for clustering

CS 270 - Clustering 24

CS 270 - Clustering 25

Silhouette

⚫ Best case graph for silhouette?

CS 270 - Clustering 26

Silhouette

⚫ Best case graph for silhouette?

⚫ Clusters are wide – Scores close to 1

⚫ Not many small silhouette instances

⚫ Depending on your goals:

– Clusters are similar in size

– Cluster size and/or number are close to what you want

CS 270 - Clustering 27

Silhouette

⚫ Could just use total silhouette average to decide best clustering
but best to do silhouette analysis with a visualization tool and
use score along with other aspects of the clustering

– Cluster sizes

– Number of clusters

– Shape of clusters

– Etc.

⚫ Note when task dimensions are > 3 (typical and no longer
visualizable for us), silhouette graph still easy to visualize

⚫ O(n2) complexity due to b(i) computation

⚫ There are other cluster metrics out there

⚫ These metrics are rough guidelines and should be "taken with a
grain of salt"

CS 270 - Clustering 28

Silhouette Homework

⚫ Assume a clustering with {a,b} in cluster 1 and {c,d,e} in

cluster 2. What would the Silhouette score be for a) each

instance, b) each cluster, and c) the entire clustering. d)

Sketch the Silhouette visualization for this clustering. Use

Manhattan distance for your distance calculations.

CS 270 - Clustering 29

Pattern x y

a .8 .7

b .9 .8

c .6 .6

d 0 .2

e .2 .1

K-means

⚫ Perhaps the most well-known clustering algorithm

– Partitioning algorithm

– Must choose a k beforehand

– Thus, typically try a spread of different k's (e.g. 2-10), run multiple times,
and compare to decide which is the best clustering

⚫ Could use cluster validity metrics (e.g. Silhouette) to help in the decision

1. Randomly choose k instances from the data set to be the initial k
centroids

2. Repeat until no (or negligible) more changes occur

a) Group each instance with its closest centroid

b) Recalculate the centroid based on its new cluster

⚫ Time complexity is O(mkn) where m is # of iterations and space is
O(n), both much better than HAC time and space (n3 and n2)

CS 270 - Clustering 30

K-means Example

CS 270 - Clustering 31

K-means Continued

⚫ Type of EM (Expectation-Maximization) algorithm, Gradient
descent

– Can struggle with local minima, unlucky random initial centroids, and
outliers

⚫ K-medoids finds medoid (median) centers rather than average centers and
is thus less effected by outliers

– Local minima, empty clusters: Can just re-run with different initial
centroids

⚫ Could compare different solutions for a specific k value by seeing which
clusterings minimize the overall SSE to the cluster centers (i.e.
compactness), or use silhouette, etc.

⚫ And test solutions with different k values using Silhouette or other metric

⚫ Can do further refinement of HAC results using any k

centroids from HAC as starting centroids for k-means

CS 270 - Clustering 32

** K-means Challenge Question **

⚫ For the data below, show the centroid values and which
instances are closest to each centroid after centroid calculation
for two iterations of K-means using Manhattan distance

⚫ By 2 iterations I mean 2 centroid changes after the initial
centroids

⚫ Assume k = 2 and that the first two instances are the initial
centroids

CS 270 - Clustering 33

Pattern x y

a 3 1

b 4 0

c 0 0

d 0 1

Iteration Centroid 1 and

instances

Centroid 2 and

instances

0

1

2

1.Repeat until no more changes occur
a)Group each instance with its closest centroid
b)Recalculate the centroid based on its new cluster

** K-means Challenge Question **

⚫ For the data below, show the centroid values and which
instances are closest to each centroid after centroid calculation
for two iterations of K-means using Manhattan distance

⚫ By 2 iterations I mean 2 centroid changes after the initial
centroids

⚫ Assume k = 2 and that the first two instances are the initial
centroids

CS 270 - Clustering 34

Pattern x y

a 3 1

b 4 0

c 0 0

d 0 1

Iteration Centroid 1 and

instances

Centroid 2 and

instances

0 3, 1 {a, c, d} 4, 0 {b}

1 1, 2/3 {c, d} 4, 0 {a, b}

2 0, .5 {c, d} 3.5, .5 {a, b}

3 0, .5 {c, d} 3.5, .5 {a, b}

K-means Homework

⚫ For the data below, show the centroid values and which
instances are closest to each centroid after centroid calculation
for two iterations of K-means using Manhattan distance

⚫ By 2 iterations I mean 2 centroid changes after the initial
centroids

⚫ Assume k = 2 and that the first two instances are the initial
centroids

CS 270 - Clustering 35

Pattern x y

a .9 .8

b .2 .2

c .7 .6

d -.1 -.6

e .5 .5

Other Unsupervised Models

⚫ Vector Quantization – Discretize into codebooks

⚫ K-medoids

⚫ Conceptual Clustering (Symbolic AI) – Cobweb, Classit, etc.

– Incremental vs Batch

⚫ Density based clustering, DBSCAN, OPTICS

⚫ Outlier detection models

⚫ Special models for large data bases – n2 space?, disk I/O

– Sampling – Bring in enough data to fill memory and then cluster

– Once initial prototypes found, can iteratively bring in more data to

adjust/fine-tune current prototypes as desired

– Linear algorithms

CS 270 - Clustering 36

Semi-Supervised Learning Examples

CS 270 - Clustering 37

Combine labeled and unlabeled data with assumptions about typical

data to find better solutions than just using the labeled data

Summary

⚫ Standard clustering highly used

⚫ Can also use clustering as a discretization technique on
continuous data for many other models which favor
nominal or discretized data

– Including supervised learning models (Decision trees, Naïve
Bayes, etc.)

⚫ With so much (unlabeled) data out there, opportunities to
do unsupervised learning are growing

– Semi-Supervised learning is becoming very important

– Use unlabeled data to augment the more limited labeled data to
improve accuracy of a supervised learner

⚫ Deep Learning – Unsupervised training of early layers is
an important approach in some deep learning models

CS 270 - Clustering 38

Clustering Project

⚫ Last individual project

CS 270 - Clustering 39

Neural Network Clustering

⚫ Single layer network
– Bit like a chopped off RBF, where prototypes become adaptive output nodes

⚫ Arbitrary number of output nodes (cluster prototypes) – User defined

⚫ Locations of output nodes (prototypes) can be initialized randomly
– Could set them at locations of random instances, etc.

⚫ Each node computes distance to the current instance

⚫ Competitive Learning style – winner takes all – closest node decides
the cluster during execution

⚫ Closest node is also the node which usually adjusts during learning

⚫ Node adjusts slightly (learning rate) towards the current example

CS 270 - Clustering 40

x

y

x y

21
× 1

× 2

Neural Network Clustering

⚫ What would happen in this situation?

⚫ Could start with more nodes than probably needed and
drop those that end up representing none or few instances
– Could start them all in one spot – However…

⚫ Could dynamically add/delete nodes

– Local vigilance threshold

– Global vs local vigilance

– Outliers

CS 270 - Clustering 41

x

y

x y

21
× 1

× 2

Example Clusterings with Vigilance

CS 270 - Clustering 42

Self-Organizing Maps

⚫ Output nodes which are close to each other represent similar
classes – Biological plausibility

⚫ Neighbors of winning node also update in the same direction
(scaled by a learning rate), as the winner

⚫ Self organizes to a topological class map (e.g. vowel sounds)
– Can interpolate, k value less critical, different 2 or 3-dimensional

topologies

CS 270 - Clustering 43

Association Analysis – Link Analysis

⚫ Used to discover relationships/rules in large databases

⚫ Relationships represented as association rules
– Unsupervised learning, can give significant business advantages, and

also good for many other large data areas: astronomy, etc.

⚫ One example is market basket analysis which seeks to
understand more about what items are bought together

– This can then lead to improved approaches for advertising, product
placement, etc.

– Example Association Rule: {Cereal}  {Milk}

CS 270 - Clustering 44

Transaction ID and Info Items Bought

1 and (who, when, etc.) {Ice cream, milk, eggs, cereal}

2 {Ice cream}

3 {milk, cereal, sugar}

4 {eggs, yogurt, sugar}

5 {Ice cream, milk, cereal}

	Slide 1: Unsupervised Learning and Clustering
	Slide 2: Clustering
	Slide 3: Outlier Handling
	Slide 4: Distances Between Clusters
	Slide 5: Distances Between Clusters
	Slide 6: Hierarchical and Partitional Clustering
	Slide 7: Hierarchical Agglomerative Clustering (HAC)
	Slide 8: Dendrogram Representation
	Slide 9: Ward Linkage
	Slide 10: HAC Linkage Comparisons
	Slide 11: Linkage Methods
	Slide 12: HAC *Challenge Question*
	Slide 13: HAC Homework
	Slide 14: HAC Summary
	Slide 15: Which cluster level to choose?
	Slide 16: Automated Clustering Scores
	Slide 17: Cluster Validity Metrics - Compactness
	Slide 18: Cluster Validity Metrics - Separability
	Slide 19: Cluster Validity Metrics - Separability
	Slide 20: Silhouette
	Slide 21: Silhouette
	Slide 22: Silhouette
	Slide 23: Visualizing Silhouette
	Slide 24
	Slide 25
	Slide 26: Silhouette
	Slide 27: Silhouette
	Slide 28: Silhouette
	Slide 29: Silhouette Homework
	Slide 30: K-means
	Slide 31: K-means Example
	Slide 32: K-means Continued
	Slide 33: ** K-means Challenge Question **
	Slide 34: ** K-means Challenge Question **
	Slide 35: K-means Homework
	Slide 36: Other Unsupervised Models
	Slide 37: Semi-Supervised Learning Examples
	Slide 38: Summary
	Slide 39: Clustering Project
	Slide 40: Neural Network Clustering
	Slide 41: Neural Network Clustering
	Slide 42: Example Clusterings with Vigilance
	Slide 43: Self-Organizing Maps
	Slide 44: Association Analysis – Link Analysis

