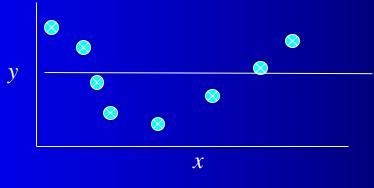
Overfit and Inductive Bias: How to generalize on novel data

Non-Linear Tasks

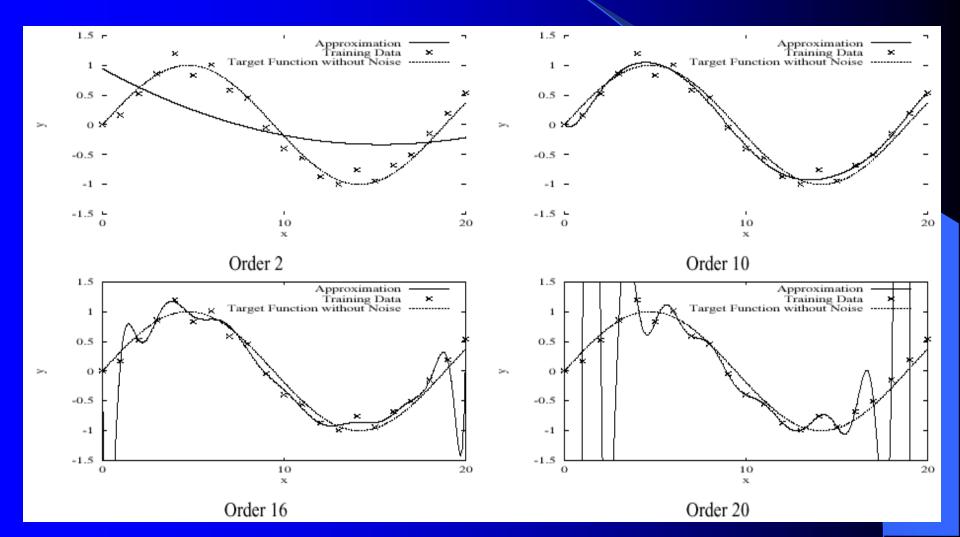
- Linear Regression will not generalize well to the task below
- Needs a non-linear surface Could use one of our future models
- Could also do a feature pre-process like with the quadric machine
 - For example, we could use an arbitrary polynomial in x
 - Thus, it is still linear in the coefficients, and can be solved with delta rule $Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \ldots + \beta_n X^n$
 - What order polynomial should we use? Overfit issues can occur



CS 270 - Inductive Bias

Overfitting

Typically try to learn a model just complex enough to do well and no more complex than that

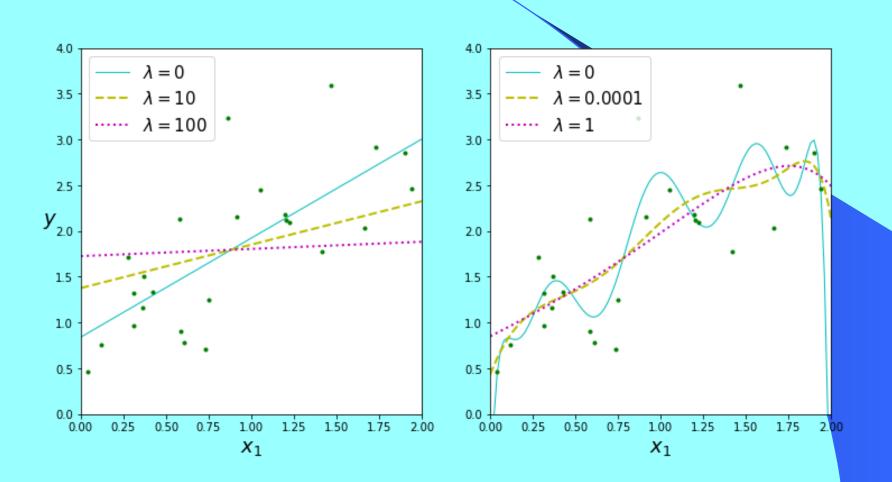


Linear Regression Regularization

• Keep the model as simple as possible while still being accurate

- For regression, keep the function smooth
- Regularization approach: updated loss function
 - Minimize $F(h) = Error(h) + \lambda \cdot Complexity(h)$
 - Tradeoff training accuracy vs complexity
- Ridge Regression (L2 regularization) Minimize:
 - $F(w) = TSS(w) + \lambda / |w|/^2 = \Sigma (predicted_i actual_i)^2 + \lambda \Sigma w_i^2$
 - Gradient of F(w): $Dw_i = c(t net)x_i w_i$ (Weight decay, not bias weight)
 - Linear regression with just the original features cannot overfit, but regularization useful when the features are a non-linear transform of the initial features (e.g. polynomials in *x*)
 - Lasso regression uses an L1 vs an L2 weight penalty: $\lambda \Sigma |w_i|$ and thus decay is just λ since derivative drops weight from the term
 - Sometimes called shrinkage models decrease/shrink weights

Ridge Regression Example



CS 270 - Inductive Bias

Hypothesis Space

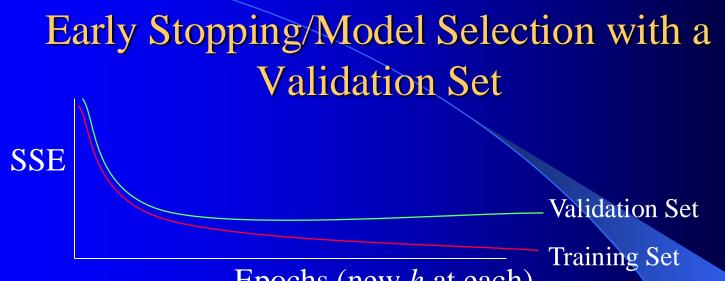
- The Hypothesis space *H* is the set of all possible models *h* which can be learned by the current learning algorithm
 - e.g. Set of possible weight settings for a perceptron
- Restricted hypothesis space
 - Can be easier to search
 - May avoid overfit since they are usually simpler (e.g. linear or low order decision surface)
 - Often will underfit e.g linear models
- Unrestricted Hypothesis Space
 - Can represent any possible function and thus can fit the training set well – Includes most of the powerful ML algorithms
 - However, mechanisms must be used to avoid overfit

Avoiding Overfit

- **Regularization:** *any modification we make to learning algorithm that is intended to reduce its generalization error but not its training error*
- Occam's Razor William of Ockham (c. 1287-1347)
 - Favor simplest explanation which fits the data
- General Key: Focus on patterns/rules that really matter and ignore others
- Simplest accurate model: accuracy vs. complexity trade-off. Find $h \in H$ which minimizes an objective function of the form:

 $F(h) = Error(h) + \lambda \cdot Complexity(h)$

- Complexity could be number of nodes, size of tree, magnitude of weights, etc.
- More Training Data (vs. overtraining on same data)
 - Data set augmentation Fake data, Can be very effective, Jitter, but take care...
 - Denoising add random noise to inputs during training can act as a regularizer
 - Adding noise to models. e.g. (Random Forests, Dropout, discuss with ensembles)
- *Early Stopping* Very common regularization approach: Start with simple model (small parameters/weights) and stop training as soon as we attain good generalization accuracy (and before parameters get large)
 - Common early stopping approach is to use a validation set (next slide)
- We will discuss other model specific approaches with specific models



Epochs (new *h* at each)

- There is a different model *h* after each epoch
- Select a model in the area where the validation set accuracy flattens
- Keep *bssf* (Best Solution So Far). Once you go *w* epochs with no improvement stop and use the parameters at the *bssf w* epochs ago.
- The validation set comes out of training set data
- Still need a separate test set to use after selecting model *h* to predict future accuracy
- Simple and unobtrusive, does not change objective function, etc
 - Can be done in parallel on a separate processor
 - Can be used alone or in conjunction with other regularization approaches

Inductive Bias

- The approach used to decide how to generalize novel cases
- A common approach is Occam's Razor The *simplest* hypothesis which *explains/fits* the data is usually the best
- Many other rationale biases and variations

**** Inductive Bias – Challenge Question ****

- The approach used to decide how to generalize novel cases
- A common approach is Occam's Razor The *simplest* hypothesis which *explains/fits* the data is usually the best
- Many other rationale biases and variations
- All the variables in the shown data set are binary
- $A = \text{True}, \overline{A} = \text{False}$
- You be the machine learner, learn the data set, and decide your inductive bias
- You then get the new input $\overline{A} B C$. What is your generalized output?
 - A. Z is false
 - B. Z is true
 - C. I can't decide

 $ABC \vartriangleright Z$ $A\overline{B}C \vartriangleright Z$ $AB\overline{C} \vartriangleright Z$ $AB\overline{C} \vartriangleright Z$ $A\overline{B}\overline{C} \vartriangleright Z$ $\overline{AB}\overline{C} \vartriangleright Z$

 $ABC \triangleright ?$

One Definition for Inductive Bias

Inductive Bias: Any basis for choosing one generalization over another, other than strict consistency with the observed training instances

Sometimes just called the *Bias* of the algorithm (don't confuse with the bias weight of a neural network).
Bias-Variance Trade-off – Will discuss in more detail when we discuss ensembles

Inductive Bias Approaches

- Restricted Hypothesis Space Can just try to minimize error since hypotheses are already simple
 - Linear or low order threshold function
 - k-DNF, k-CNF, etc.
 - Low order polynomial
- Preference Bias Use unrestricted hypothesis space, but "prefer" one hypothesis over another even though they have similar training accuracy
 - Occam's Razor
 - "Smallest" DNF representation which matches well
 - Shallow decision tree with high information gain
 - Neural Network with low validation error and small magnitude weights

2^{2^n} Boolean functions of *n* inputs

<u>x1</u>	x2	x3	Class	Possible Consistent Function Hypotheses
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	1	
1	0	0		
1	0	1		
1	1	0		
1	1	1	?	

2^{2^n} Boolean functions of *n* inputs

x 1	x2	x3	Class	Possible Consistent Function Hypotheses
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0		0
1	0	1		0
1	1	0		0
1	1	1	2	0

2^{2^n} Boolean functions of *n* inputs

<u>x1</u>	x2	x3	Class	Possible Consistent Function Hypotheses
0	0	0	1	1 1
0	0	1	1	1 1
0	1	0	1	1 1
0	1	1	1	1 1
1	0	0		0 0
1	0	1		0 0
1	1	0		0 0
1	1	1	?	0 1

2^{2^n} Boolean functions of *n* inputs

<u>x1</u>	x2	x3	Class	Possible Consistent Function Hypotheses															
0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
1	0	1		0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0		0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	1	?	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Without an Inductive Bias we have no rationale to choose one hypothesis over another and thus a random guess would be as good as any other option.

2^{2^n} Boolean functions of *n* inputs

<u>x1</u>	x2	x3	Class	Possible Consistent Function Hypotheses															
0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	0	0		0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
1	0	1		0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0		0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	1	?	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Inductive Bias guides which hypothesis we should prefer? What happens in this case if we use simplicity (Occam's Razor) as our inductive Bias (preference bias)?

Learnable Problems

- "Raster Screen" Problem
- Pattern Theory
 - Regularity in a task
 - Compressibility
- Don't care features and Impossible states
- Interesting/Learnable Problems
 - What we actually deal with
 - Can we formally characterize them?
- Learning a training set vs. generalizing
 - A function where each output is set randomly (coin-flip)
 - Output class is independent of all other instances in the data set
- Computability vs. Learnability (Optional)

Computable and Learnable Functions

- Can represent any function with a look-up table (Addition)
 - Finite function/table Fixed/capped input size
 - Infinite function/table arbitrary finite input size
 - All finite functions are computable Why?
 - Infinite addition computable because it has regularity which allows us to represent the infinite table with a finite representation/program
- Random function outputs are set randomly
 - Can we compute these?
 - Can we learn these?
 - Assume learnability means we can get better than random when classifying novel examples
- Arbitrary functions Which are computable?
- Arbitrary functions Which are learnable?

Computability and Learnability – Finite Problems

- Finite problems assume finite number of mappings (Finite Table)
 - Fixed input size arithmetic
 - Random memory in a RAM
- Learnable: Can do better than random on novel examples

Computability and Learnability – Finite Problems

- Finite problems assume finite number of mappings (Finite Table)
 - Fixed input size arithmetic
 - Random memory in a RAM
- Learnable: Can do better than random on novel examples

Finite Problems All are Computable

Learnable Problems: Those with Regularity

Computability and Learnability – Infinite Problems

- Infinite number of mappings (Infinite Table)
 - Arbitrary input size arithmetic
 - Halting Problem (no limit on input size)
 - Do two arbitrary strings match

Computability and Learnability – Infinite Problems

- Infinite number of mappings (Infinite Table)
 - Arbitrary input size arithmetic
 - Halting Problem (no limit on input size)
 - Do two arbitrary strings match

Infinite Problems

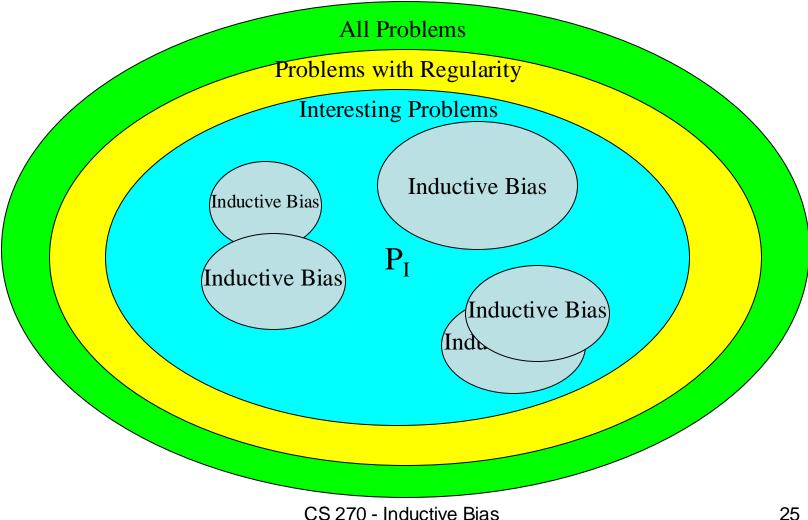
Learnable Problems: A reasonably queried infinite subset has sufficient regularity to be represented with a finite model

Computable Problems: Only those where all but a finite set of mappings have regularity

No Free Lunch

- Any inductive bias chosen will have equal accuracy compared to any other bias over *all* possible functions/tasks, assuming all functions are equally likely. If a bias is correct on some cases, it must be incorrect on equally many cases.
- Is this a problem?
 - Random vs. Regular
 - Anti-Bias? (even though regular)
 - The "Interesting" Problems subset of learnable?
- Are all functions equally likely in the real world?

Interesting Problems and Biases



More on Inductive Bias

- Inductive Bias requires some set of prior assumptions about the tasks being considered and the learning approaches available
- Tom Mitchell's definition: Inductive Bias of a learner is the set of additional assumptions sufficient to justify its inductive inferences as deductive inferences
- We consider standard ML algorithms/hypothesis spaces to be different inductive biases: C4.5 (Greedy best attributes), Backpropagation (simple to complex), etc.

Which Bias is Best?

- Not one Bias that is best on all problems
- Our experiments
 - Over 50 real world problems
 - Over 400 inductive biases mostly variations on critical variable biases vs. similarity biases
- Different biases were a better fit for different problems
- Given a data set, which Learning model (Inductive Bias) should be chosen?

Automatic Discovery of Inductive Bias

- Defining and characterizing the set of Interesting/Learnable problems
- To what extent do current biases cover the set of interesting problems
- Automatic feature selection
- Automatic selection of Bias (before and/or during learning), including all learning parameters
- Dynamic Inductive Biases (in time and space)
- Combinations of Biases Ensembles, Oracle Learning

Dynamic Inductive Bias in Time

- Can be discovered as you learn
- May want to learn general rules first followed by true exceptions
- Can be based on ease of learning the problem
- Example: SoftProp From Lazy Learning to Backprop

Dynamic Inductive Bias in Space

 $\overset{}{\swarrow}$

 \bigstar

__ کہ (

X

 $\stackrel{\wedge}{\bowtie}$

 \bigstar

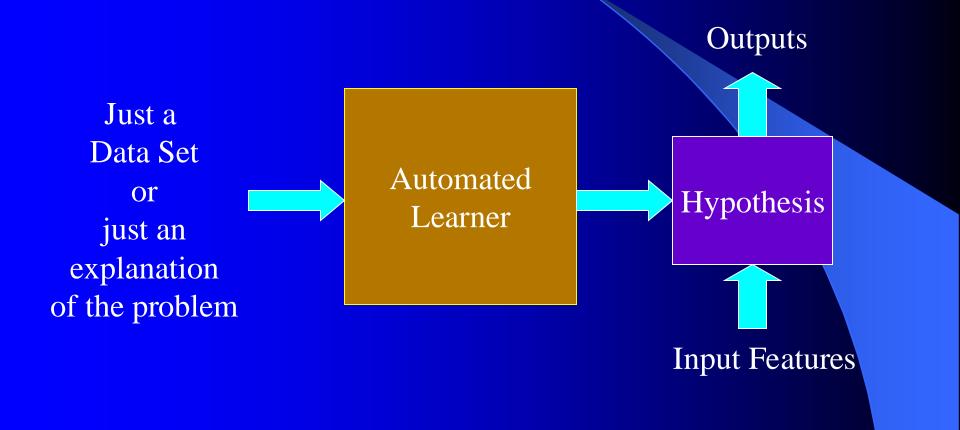
 $\overline{\mathbf{M}}$

 $\overset{\wedge}{\boxtimes}$

 $\overset{\wedge}{\swarrow}$

 $\overleftarrow{}$

ML Holy Grail: We want all aspects of the learning mechanism automated, including the Inductive Bias



BYU Neural Network and Machine Learning Laboratory Work on Automatic Discover of Inductive Bias

- Proposing New Learning Algorithms (Inductive Biases)
- Theoretical issues
 - Defining the set of Interesting/Learnable problems
 - Analytical/empirical studies of differences between biases
- Ensembles Wagging, Mimicking, Oracle Learning, etc.
- Meta-Learning A priori decision regarding which learning model to use
 - Features of the data set/application
 - Learning from model experience
- Automatic selection of Parameters
 - Constructive Algorithms ASOCS, DMPx, etc.
 - Learning Parameters Windowed momentum, Automatic improved distance functions (IVDM)
- Automatic Bias in time SoftProp
- Automatic Bias in space Overfitting, sensitivity to complex portions of the space: DMP, higher order features

Your Project Proposals

- Examples Look at Irvine Data Set to get a feel of what data sets look like
- Stick with supervised classification problems for the most part for the project proposals
- Tasks which interest you
- Too hard vs Too Easy
 - Data should be able to be gathered in a relatively short time
 - And, want you to have to battle with the data/features a bit
- See description in Learning Suite
 - Remember your example instance!

Feature Selection, Preparation, and Reduction

- Learning accuracy depends on the data!
 - Is the data representative of future novel cases critical
 - Relevance
 - Amount
 - Quality
 - Noise
 - Missing Data
 - Skew
 - Proper Representation
 - How much of the data is labeled (output target) vs. unlabeled
 - Is the number of features/dimensions reasonable?
 - Reduction

Gathering Data

- Consider the task What kinds of features could help
- Data availability
 - Significant diversity in cost of gathering different features
 - More the better (in terms of number of instances, not necessarily in terms of number of dimensions/features)
 - The more features you have the more data you need
 - Data augmentation, Jitter Increased data can help with overfit handle with care!
- Labeled data is best
- If not labeled
 - Could set up studies/experts to obtain labeled data
 - Use unsupervised and semi-supervised techniques
 - Clustering
 - Active Learning, Bootstrapping, Oracle Learning, etc.

Feature Selection - Examples

• Invariant Data

- For character recognition: Size, Rotation, Translation Invariance
 - Especially important for visual tasks
- Chess board features
 - Is vector of board state invariant?
- Character Recognition Class Assignment Example
 - Assume we want to draw a character with an electronic pen and have the system output which character it is
 - What features should we use and how would we train/test the system?

When to Gather More Data

- When trying to improve performance, you may need
 - More Data
 - Better Input Features
 - Different Machine learning models or hyperparameters
 - Etc.
- One way to decide if you need more/better data
 - Compare your accuracy on training and test set
 - If bad training set accuracy then you probably need better data, features, noise handling, etc., or you might need a different learning model/hyperparameters
 - If test set accuracy is much worse than training set accuracy then gathering more data is usually a good direction, though overfit or learning model/hyperparameters could still be a major issue