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Bayesian Learning

⚫ A powerful approach in machine learning

⚫ Combine data seen so far with prior beliefs

– This is what has allowed us to do machine learning, have good 
inductive biases, overcome "No free lunch", and obtain good 
generalization on novel data

⚫ We use it in our own decision making all the time

– You hear a word which which could equally be “Thanks” or 
“Hanks”, which would you go with?

⚫ Combine sound likelihood and your prior knowledge 

– Texting Suggestions on phone

– Spell checkers, speech recognition, etc.

– Many applications



Bayesian Classification

⚫ P(c|x) - Posterior probability of output class c given the input vector x

⚫ The discriminative learning algorithms we have learned so far try to 
“approximate” this directly

⚫ P(c|x) = P(x|c)P(c)/P(x)   Bayes Rule – A true probability

⚫ Seems like more work but often calculating the right hand side 
probabilities can be reasonable and advantageous

⚫ P(c) - Prior probability of class c – How do we know?
– Just count up and get the probability for the Training Set – Easy!

⚫ P(x|c) - Probability “likelihood” of data vector x given that the output 
class is c

– Later we will discuss ways to calculate this likelihood

⚫ P(x) - Prior probability of the data vector x
– This is a normalizing term to get an actual probability.  In practice we drop it 

because it is the same for each class c (i.e. independent), and we are mostly 
interested in which class c maximizes P(c|x).
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Bayesian Classification Example

⚫ Assume we have 100 examples in our Training Set with two 
output classes Good and Bad, and 80 of the examples are of 
class good. We want to figure out P(c|x) ~ P(x|c)P(c)

⚫ Thus our priors are:
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Bayesian Classification Example

⚫ Assume we have 100 examples in our Training Set with two 
output classes Good and Bad, and 80 of the examples are of 
class good.

⚫ Thus our priors are:
– P(Good) = .8

– P(Bad) = .2

⚫ P(c|x) = P(x|c)P(c)/P(x)   Bayes Rule

⚫ Now we are given an input vector x which has the following 
likelihoods

– P(x|Good) = .3

– P(x|Bad) = .4

⚫ What should our output be?
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Bayesian Classification Example

⚫ Assume we have 100 examples in our Training Set with two 
output classes Good and Bad, and 80 of the examples are of 
class good.

⚫ Thus our priors are:
– P(Good) = .8

– P(Bad) = .2

⚫ P(c|x) = P(x|c)P(c)/P(x)   Bayes Rule

⚫ Now we are given an input vector x which has the following 
likelihoods

– P(x|Good) = .3

– P(x|Bad) = .4

⚫ What should our output be?

⚫ Try all possible output classes and see which one maximizes the 
posterior using Bayes Rule: P(c|x) = P(x|c)P(c)/P(x)

– Drop P(x) since it is the same for both

– P(Good|x) = P(x|Good)P(Good) = .3 · .8 = .24

– P(Bad|x) = P(x|Bad)P(Bad) = .4 · .2 = .08
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Bayesian Intuition

⚫ Bayesian vs. Frequentist

⚫ Bayesian allows us to talk about probabilities/beliefs even 

when there is little data, because we can use the prior

– What is the probability of a nuclear plant meltdown?

– What is the probability that BYU will win the national 

championship?

⚫ As the amount of data increases, Bayes shifts confidence 

from the prior to the likelihood

⚫ Requires reasonable priors in order to be helpful

⚫ We use priors all the time in our decision making

– Unknown coin: probability of heads? (over time?)
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Bayesian Learning of ML Models

⚫ Assume H is the hypothesis space, h a specific hypothesis from H, and 
D is all the training data

⚫ P(h|D) - Posterior probability of h, this is what we usually want to 
know in a learning algorithm – (i.e. model selection)

⚫ P(h|D) = P(D|h)P(h)/P(D)   Bayes Rule

⚫ P(h) - Prior probability of the hypothesis/model independent of D - do 
we usually know?

– Could assign equal probabilities

– Could assign probability based on an inductive bias (e.g. simple hypotheses 
have higher probability) – Thus regularization is in the equation!

⚫ P(D|h) - Probability “likelihood” of data given the hypothesis
– Just use the accuracy of the model h on the data D

⚫ P(D) - Prior probability of the data

⚫ P(h|D) increases with P(D|h) and P(h).  In learning when seeking to 
discover the best h given a particular D, P(D) is the same and can be 
dropped.
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Bayesian Learning

⚫ Learning (finding) the best model the Bayesian way

⚫ For Machine Learning the likelihood P(D|h) is usually measured 
using the accuracy of the hypothesis on the training data

– If the hypothesis is very accurate on the data, that implies that the data 
is more likely given that particular hypothesis

⚫ Maximum a posteriori (MAP) hypothesis

⚫ hMAP = argmaxh∈HP(h|D) = argmaxh∈HP(D|h)P(h)/P(D) = 
argmaxh∈HP(D|h)P(h)

⚫ Maximum Likelihood (ML) Hypothesis hML = argmaxh∈HP(D|h)

⚫ MAP = ML if all priors P(h) are equally likely (uniform priors)

⚫ Note that the prior can be like an inductive bias (i.e. simpler 
hypotheses are more probable)

⚫ For Bayesian learning, overfitting handled in the equation. Note 
regularization similarities.
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Bayesian Learning (cont)

⚫ Brute force approach is to test each h ∈ H to see which 

maximizes P(D|h)P(h)

⚫ P(D|h)P(h) is called the Relative Posterior and is not the 

real probability without the normalizing P(D)

⚫ Can still get the real probability (if desired) by 

normalization if there is a limited number of hypotheses

– Assume only two possible hypotheses h1 and h2

– The true posterior probability of h1 would be

𝑃(ℎ1 
|𝐷) =

𝑃(𝐷|ℎ1)𝑃(ℎ1)

𝑃(𝐷|ℎ1) + 𝑃(𝐷|ℎ2)
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Example of MAP Hypothesis

⚫ Assume only 3 possible hypotheses in hypothesis space H

⚫ Given a data set D which h do we choose?

⚫ Maximum Likelihood (ML): argmaxhHP(D|h)

⚫ Maximum a posteriori (MAP): argmaxhHP(D|h)P(h)
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H Likelihood

P(D|h)

Prior

P(h)

Relative Posterior

P(D|h)P(h)

h1 .6 .3 .18

h2 .9 .2 .18

h3 .7 .5 .35



Example of MAP Hypothesis – True 

Posteriors

⚫ Assume only 3 possible hypotheses in hypothesis space H

⚫ Given a data set D
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H Likelihood

P(D|h)

Prior

P(h)

Relative Posterior

P(D|h)P(h)

True Posterior

P(D|h)P(h)/P(D)

h1 .6 .3 .18 .18/(.18+.18+.35) =

.18/.71 = .25

h2 .9 .2 .18 .18/.71 = .25

h3 .7 .5 .35 .35/.71 = .50



Prior Handles Overfit

⚫ Prior can make it so that less likely hypotheses (those 

likely to overfit) are less likely to be chosen

⚫ Similar to regularization

⚫ Minimize F(h) = Error(h) + λ·Complexity(h)

⚫ P(h|D) = P(D|h)P(h)

⚫ The challenge is

– Deciding on priors – subjective

– Maximizing across H which is usually infinite – approximate by 

searching over "best h's" in more efficient time
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Minimum Description Length

⚫ Information theory shows that the number of bits required to encode a 
message i is -log2pi

⚫ Call the minimum number of bits to encode message i with respect to 
code C: LC(i)

hMAP = argmaxhH P(h) P(D|h) = 

argminhH - log2P(h) - log2(D|h) =

argminhHLC1(h) + LC2(D|h)

⚫ LC1(h) is a representation of hypothesis 

⚫ LC2(D|h) is a representation of the data.  Since you already have h all 
you need is the data instances which differ from h, which are the lists 
of misclassifications

⚫ The h which minimizes the MDL equation will have a balance of a 
small representation (simple hypothesis) and a small number of errors



Bayes Optimal Classifier

⚫ Best question is what is the most probable classification c ∈ C for a 
new instance input x, rather than what is the most probable hypothesis 
for a data set

⚫ Let all possible hypotheses vote for the instance in question, weighted 
by their posterior (an ensemble approach) - better than the single best 
MAP hypothesis

𝑃 𝑐𝑗 𝐷, 𝐻, 𝑥 = 

ℎ𝑖∈𝐻

𝑃 𝑐𝑗 𝑥, ℎ𝑖 𝑃(ℎ𝑖|𝐷) = 

ℎ𝑖∈𝐻

𝑃 𝑐𝑗 𝑥, ℎ𝑖 𝑃(𝐷|ℎ𝑖)𝑃(ℎ𝑖)

𝑃(𝐷)

⚫ Bayes Optimal Classification:

𝑐𝐵𝑎𝑦𝑒𝑠𝑂𝑝𝑡𝑖𝑚𝑎𝑙 = argmax
𝑐𝑗∈𝐶



ℎ𝑖∈𝐻

𝑃 𝑐𝑗 𝑥, ℎ𝑖 𝑃(ℎ𝑖|𝐷)

= argmax
𝑐𝑗∈𝐶



ℎ𝑖∈𝐻

𝑃 𝑐𝑗 𝑥, ℎ𝑖 𝑃(𝐷|ℎ𝑖)𝑃(ℎ𝑖)

⚫ Also known as the posterior predictive
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Bayes Optimal Classifier

⚫ Best question is what is the most probable classification c ∈ C for a 
new instance input x, rather than what is the most probable hypothesis 
for a data set

⚫ Let all possible hypotheses vote for the instance in question, weighted 
by their posterior (an ensemble approach) - better than the single best 
MAP hypothesis

⚫ Also known as the posterior predictive
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Example of Bayes Optimal Classification

𝑐𝐵𝑎𝑦𝑒𝑠𝑂𝑝𝑡𝑖𝑚𝑎𝑙 = argmax
𝑐𝑗∈𝐶



ℎ𝑖∈𝐻

𝑃 𝑐𝑗 𝑥, ℎ𝑖 𝑃(𝐷|ℎ𝑖)𝑃(ℎ𝑖)

⚫ Assume same 3 hypotheses with priors and posteriors as shown for a data 
set D with 2 possible output classes (A and B)

⚫ Assume novel input instance x where h1 and h2 output B and h3 outputs A 
as class – 1/0 output case. Which class wins and what are the probabilities?
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H Likelihood

P(D|h)

Prior

P(h)

Posterior

P(D|h)P(h)

P(A) P(B)

h1 .6 .3 .18 0·.18 = 0 1·.18 = .18

h2 .9 .2 .18

h3 .7 .5 .35

Sum



Example of Bayes Optimal Classification
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H Likelihood

P(D|h)

Prior

P(h)

Posterior

P(D|h)P(h)

P(A) P(B)

h1 .6 .3 .18 0·.18 = 0 1·.18 = .18

h2 .9 .2 .18 0·.18 = 0 1·.18 = .18

h3 .7 .5 .35 1·.35 = .35 0·.35 = 0

Sum .35 .36

𝑐𝐵𝑎𝑦𝑒𝑠𝑂𝑝𝑡𝑖𝑚𝑎𝑙 = argmax
𝑐𝑗∈𝐶



ℎ𝑖∈𝐻

𝑃 𝑐𝑗 𝑥, ℎ𝑖 𝑃(𝐷|ℎ𝑖)𝑃(ℎ𝑖)

⚫ Assume same 3 hypotheses with priors and posteriors as shown for a data 
set D with 2 possible output classes (A and B)

⚫ Assume novel input instance x where h1 and h2 output B and h3 outputs A 
as class – 1/0 output case. Which class wins and what are the probabilities?



Example of Bayes Optimal Classification

⚫ Assume probabilistic outputs from the hypotheses for new 
a instance x
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H Likelihood

P(D|h)

Prior

P(h)

Posterior

P(D|h)P(h)

P(A) P(B)

h1 .6 .3 .18 .3·.18 = .054 .7·.18 = .126

h2 .9 .2 .18 .4·.18 = .072 .6·.18 = .108

h3 .7 .5 .35 .9·.35 = .315 .1·.35 = .035

Sum .441 .269

H P(A) P(B)

h1 .3 .7

h2 .4 .6

h3 .9 .1



Bayes Optimal Classifiers (Cont.)

⚫ No other classification method using the same hypothesis space can 
outperform a Bayes optimal classifier on average, given the available data 
and prior probabilities over the hypotheses

⚫ Large or infinite hypothesis spaces make this impractical in general

⚫ Also, it is only as accurate as our knowledge of the priors (background 
knowledge) for the hypotheses, which we often do not know

– But if we do have insights, priors can really help

– For example, it would automatically handle overfit, with no need for a validation 
set, early stopping, etc.

– Note that using accuracy, etc. for likelihood P(D|h) is also an approximation

⚫ If our priors are bad, then Bayes optimal will not be optimal for the actual 
problem.  For example, if we just assumed uniform priors, then you might 
have a situation where the many lower posterior hypotheses could 
dominate the fewer high posterior ones.

⚫ However, Bayes optimal is an important theoretical concept, and it leads to 
many practical algorithms which are simplifications based on the concepts 
of full Bayes optimality (e.g. ensembles)
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Naïve Bayes

Revisit Bayesian Classification

⚫ P(c|x) = P(x|c)P(c)/P(x)

⚫ P(c) - Prior probability of class c – How do we know?

– Just count up and get the probability for the Training Set – Easy!

⚫ P(x|c) - Probability “likelihood” of data vector x given that 
the output class is c

– We use 𝑃 𝑥1, … , 𝑥𝑛 𝑐𝑗  as short for 𝑃 𝑥1 = 𝑣𝑎𝑙1, … ,
𝑥𝑛 = 𝑣𝑎𝑙𝑛 𝑐𝑗

– How do we really do this?

– If x is real valued?

– If x is nominal we can just look at the training set and count to see 
the probability of x given the output class c but how often will all 
x’s values be the same?

⚫ Which will also be the problem if we bin real valued inputs
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Naïve Bayes Classifier
𝑐𝑀𝐴𝑃 = argmax

𝑐𝑗∈𝐶
 𝑃 𝑐𝑗 𝑥1, … , 𝑥𝑛 = argmax

𝑐𝑗∈𝐶
 𝑃 𝑥1, … , 𝑥𝑛 𝑐𝑗 𝑃(𝑐𝑗)

⚫ Note we are not considering h ∈ H, rather just collecting statistics 
from the data set

⚫ Given a training set, P(cj) is easy to calculate

⚫ How about P(x1, … , xn|cj)?  Most cases would be either 0 or 1

⚫ Key "Naïve" leap: Assume conditional independence of the 
attributes

𝑃 𝑥1, … , 𝑥𝑛 𝑐𝑗 = ෑ

𝑖

𝑃(𝑥𝑖|𝑐𝑗)

𝑐𝑁𝐵 = argmax
𝑐𝑗∈𝐶

𝑃 𝑐𝑗 ෑ

𝑖

𝑃 𝑥𝑖 𝑐𝑗

– P(Thin, Red, Meat | Good) = P(Thin | Good) * P(Red | Good) * P(Meat | Good)

– There is usually sufficient data to get accurate values for independent terms
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Naïve Bayes Classifier

⚫ While conditional independence is not typically a 

reasonable assumption… (heart rate and blood pressure)

– Low complexity simple approach

– Need only store all P(cj) and P(xi|cj) terms

– Assume nominal features for the moment

– Easy to calculate the |attribute values|  |classes| terms

– There is usually enough data to make the independent 

terms reasonably accurate

– Effective and common for many large applications 

(Document classification, etc.)
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Naïve Bayes Example
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For the given training set: 

1. Create a table of the statistics 

needed to do Naïve Bayes

2. What would be the best output for 

a new instance which is Large and 

Blue? (e.g. the class which wins 

the argmax)

3. What is the true probability for 

each output class (P or N) for 

Large and Blue?

𝑐𝑁𝐵 = argmax
𝑐𝑗∈𝐶

𝑃(𝑐𝑗) ෑ

𝑖

𝑃(𝑥𝑖|𝑐𝑗)

Size

(L, S) 

Color

(R,G,B)

Output

(P,N)

L R N

S B P

S G N

L R N

L G P

What do we need?



CS 270 - Bayesian Learning 24

P(P)

P(N)

P(Size=L|P)

P(Size=S|P)

P(Size=L|N)

P(Size=S|N)

P(Color=R|P)

P(Color=G|P)

P(Color=B|P)

P(Color=R|N)

P(Color=G|N)

P(Color=B|N)𝑐𝑁𝐵 = argmax
𝑐𝑗∈𝐶

𝑃(𝑐𝑗) ෑ

𝑖

𝑃(𝑥𝑖|𝑐𝑗)

𝑃(𝑥𝑖|𝑐𝑗)

𝑃(𝑐𝑗)

Size

(L, S) 

Color

(R,G,B)

Output

(P,N)

L R N

S B P

S G N

L R N

L G P



Size

(L, S) 

Color

(R,G,B)

Output

(P,N)

L R N

S B P

S G N

L R N

L G P
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P(P) 2/5

P(N) 3/5

P(Size=L|P) 1/2

P(Size=S|P) 1/2

P(Size=L|N) 2/3

P(Size=S|N)

P(Color=R|P)

P(Color=G|P)

P(Color=B|P)

P(Color=R|N)

P(Color=G|N)

P(Color=B|N)𝑐𝑁𝐵 = argmax
𝑐𝑗∈𝐶

𝑃(𝑐𝑗) ෑ

𝑖

𝑃(𝑥𝑖|𝑐𝑗)

𝑃(𝑥𝑖|𝑐𝑗)

𝑃(𝑐𝑗)**Challenge Question**
Finish and give the true

Probabilities of P and N for

Size = L and Color = B

P(P) = 2/5 * 1/2 * P(Color = B|P) = ? P(N) = ? 



Size

(L, S) 

Color

(R,G,B)

Output

(P,N)

L R N

S B P

S G N

L R N

L G P
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P(P) 2/5

P(N) 3/5

P(Size=L|P) 1/2

P(Size=S|P) 1/2

P(Size=L|N) 2/3

P(Size=S|N) 1/3

P(Color=R|P) 0/2

P(Color=G|P) 1/2

P(Color=B|P) 1/2

P(Color=R|N) 2/3

P(Color=G|N) 1/3

P(Color=B|N) 0/3𝑐𝑁𝐵 = argmax
𝑐𝑗∈𝐶

𝑃(𝑐𝑗) ෑ

𝑖

𝑃(𝑥𝑖|𝑐𝑗)

𝑃(𝑥𝑖|𝑐𝑗)

𝑃(𝑐𝑗)**Challenge Question**
Finish and give the true

Probabilities of P and N for

Size = L and Color = B

P(P) = 2/5 * 1/2 * 1/2 = 1/10 P(N) = 3/5 * 2/3 * 0/3 = 0 

True Probabilities

P(P) = .1/(.1+0) = 1

P(N) = 0/(.1+0) = 0



Naïve Bayes Homework
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For the given training set: 

1. Create a table of the statistics 

needed to do Naïve Bayes

2. What would be the best output for 

a new instance which is Small and 

Blue? (e.g. the class which wins 

the argmax)

3. What is the true probability for 

each output class (P or N) for 

Small and Blue?

𝑐𝑁𝐵 = argmax
𝑐𝑗∈𝐶

𝑃(𝑐𝑗) ෑ

𝑖

𝑃(𝑥𝑖|𝑐𝑗)

Size

(L, S) 

Color

(R,G,B)

Output

(P,N)

L R P

S B P

S B N

L R N

L B P

L G N

S B P



Naïve Bayes (cont.)

⚫ Can normalize to get the actual naïve Bayes probability

⚫ Continuous data? - Can discretize a continuous feature into 

bins, thus changing it into a nominal feature and then 

gather statistics normally

– How many bins? - More bins is good, but need sufficient data to 

make statistically significant bins.  Thus, base it on data available

– Could also assume data is Gaussian and compute the mean and 

variance for each feature given the output class, then each P(xi|cj) 

becomes 𝒩(xi|μxi|cj, σ
2
xi|cj)

⚫ Not good if data is multi-modal
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Infrequent Data Combinations

⚫ Would if there are 0 or very few cases of a particular xi=v|cj 

(nv/n)?  (nv is the number of instances with output cj where 

xi = attribute value v and n is the total number of instances 

with output cj)

⚫ Should usually allow every case at least some finite 

probability since it could occur in the test set, else the 0 

terms will dominate the product

⚫ Could replace nv/n with the Laplacian:  (nv+1)/(n+|V|)

– Where |V| is the number of possible attribute values

⚫ Thus if nv/n is 0/10 and xi has three attribute values, the 

Laplacian would be 1/13.
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Naïve Bayes (cont.)

⚫ No training - Just gather the statistics from the data 
set and then apply the Naïve Bayes classification 
equation to any new instance

⚫ Easier to have many attributes since not building a 
model (eg MLP), and the amount of statistics gathered 
grows linearly with the number of attribute values (# 
attribute values  # classes) - Thus natural for 
applications like text classification which can be 
represented with huge numbers of input attributes.

⚫ Though Naïve Bayes is limited by first order 
assumptions, it is still often used and gives reasonable 
results in many large real-world applications
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Text Classification Example

⚫ A text classification approach

– Want P(class|document) – How to represent document?
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Text Classification Example

⚫ A text classification approach

– Want P(class|document) - Use a "Bag of Words" approach – order independence 
assumption (valid?)

⚫ Variable length input of query document is fine

– Calculate bag of words for every word/token in the language and each output 
class based on the training data.  Words that occur in testing but do not occur in 
the training data are ignored.

– Good empirical results.  Can drop filler words (the, and, etc.) and words found 
less than z times in the training set.
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Text Classification Example

⚫ A text classification approach

– Want P(class|document) - Use a "Bag of Words" approach – order independence 
assumption (valid?)

⚫ Variable length input of query document is fine

– Calculate bag of words for every word/token in the language and each output 
class based on the training data.  Words that occur in testing but do not occur in 
the training data are ignored.

– Good empirical results.  Can drop filler words (the, and, etc.) and words found 
less than z times in the training set.

– P(class|document) ≈ P(class|BagOfWords)  //assume word order independence

 = P(BagOfWords|class)*P(class)/P(document)     //Bayes Rule

     // But BagOfWords usually unique

     // P(document) same for all classes

  ≈ P(class)*ΠP(word|class)  // Thus Naïve Bayes
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Text Classification Example

⚫ A text classification approach

– Want P(class|document) - Use a "Bag of Words" approach – order independence 
assumption (valid?)

⚫ Variable length input of query document is fine

– Calculate bag of words for every word/token in the language and each output 
class based on the training data.  Words that occur in testing but do not occur in 
the training data are ignored.

– Good empirical results.  Can drop filler words (the, and, etc.) and words found 
less than z times in the training set.

– P(class|document) ≈ P(class|BagOfWords)  //assume word order independence

 = P(BagOfWords|class)*P(class)/P(document)     //Bayes Rule

     // But BagOfWords usually unique

     // P(document) same for all classes

  ≈ P(class)*ΠP(word|class)  // Thus Naïve Bayes
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Less Naïve Bayes

⚫ NB uses just 1st order features - assumes conditional independence

– calculate statistics for all P(xi|cj))

– |attributes|  |attribute values|  |output classes| 

⚫ nth order - P(xi,…,xn|cj) - assumes full conditional dependence

– |attributes|n  |attribute values|  |output classes|

– Too computationally expensive - exponential

– Not enough data to get reasonable statistics - most cases occur 0 or 1 time

⚫ 2nd order? - compromise - P(xixk|cj) - assume only low order dependencies

– |attributes|2  |attribute values|  |output classes|

– More likely to have cases where number of xixk|cj occurrences are 0 or few, could 
just use the higher order features which occur often in the data

– 3rd order, etc.

⚫ How might you test if a problem is conditionally independent?

– Could just compare against 2nd or higher order.  How far off on average is our 
assumption

P(xixk|cj) = P(xi|cj) P(xk|cj)?



Bayesian Belief Nets

⚫ Can explicitly specify where there is significant conditional dependence - 
intermediate ground (all dependencies would be too complex and not all 
are truly dependent). If you can get both of these correct (or close) then it 
can be a powerful representation. Important research area - CS 677

⚫ Specify causality in a DAG and give conditional probabilities from 
immediate parents (causal)

– Still can work even if causal links are not that accurate, but more difficult to get 
accurate conditional probabilities

⚫ Belief networks represent the full joint probability function for a set of 
random variables in a compact space - Product of recursively derived 
conditional probabilities

⚫ If given a subset of observable variables, then you can infer probabilities 
on the unobserved variables - general approach is NP-complete - 
approximation methods are used

⚫ Gradient descent learning approaches for conditionals.  Greedy approaches 
to find network structure.
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