CHAPTER 5

Clustering

5.1 INTRODUCTION

5.2 SIMILARITY AND DISTANCE MEASURES

5.3 OUTLIERS

5.4 HIERARCHICAL ALGORITHMS

5.5 PARTITIONAL ALGORITHMS

5.6 CLUSTERING LARGE DATABASES

5.7 CLUSTERING WITH CATEGORICAL ATTRIBUTES
5.8 COMPARISON

5.9 EXERCISES

5.10 BIBLIOGRAPHIC NOTES

INTRODUCTION

Clustering is similar to classification in that data are grouped. However, unlike classifi-
cation, the groups are not predefined. Instead, the grouping is accomplished by finding
similarities between data according to characteristics found in the actual data. The groups
are called clusters. Some authors view clustering as a special type of classification. In
this text, however, we follow a more conventional view in that the two are different.
Many definitions for clusters have been proposed:

e Set of like elements. Elements from different clusters are not alike.

e The distance between points in a cluster is less than the distance between a point
in the cluster and any point outside it.

A term similar to clustering is database segmentation, where like tuples (records) in a
database are grouped together. This is done to partition or segment the database into
components that then give the user a more general view of the data. In this text, we do
not differentiate between segmentation and clustering. A simple example of clustering is
found in Example 5.1. This example illustrates the fact that determining how to do the
clustering is not straightforward.

EXAMPLE 5.1

An international online catalog company wishes to group its customers based on common
features. Company management does not have any predefined labels for these groups.
Based on the outcome of the grouping, they will target marketing and advertising cam-
paigns to the different groups. The information they have about the customers includes
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126 Chapter5 Clustering

TABLE 5.1: Sample Data for Example 5.1

Income Age Children Marital Status Education

$25,000 35 3 Single High school
$15,000 25 1 Married High school
$20,000 40 0 Single High school
$30,000 20 0 Divorced High school
$20,000 25 3 Divorced College
$70,000 60 0 Married College
$90,000 30 0 Married Graduate school
$200,000 45 5 Married Graduate school
$100,000 50 2 Divorced College

TR N ey

(a) Group of homes (b) Geographic distance-based (c) Size-based

FIGURE 5.1: Different clustering attributes.

income, age, number of children, marital status, and education. Table 5 shows some
tuples from this database for customers in the United States. Depending on the type of
advertising, not all attributes are important. For example, suppose the advertising is for
a special sale on children’s clothes. We could target the advertising only to the persons
with children. One possible clustering is that shown by the divisions of the table. The first
group of people have young children and a high school degree, while the second group is
similar but have no children. The third group has both children and a college degree. The
last two groups have higher incomes and at least a college degree. The very last group has
children. Different clusterings would have been found by examining age or marital status.

As illustrated in Figure 5.1, a given set of data may be clustered on different
attributes. Here a group of homes in a geographic area is shown. The first type of
clustering is based on the location of the home. Homes that are geographically close to
each other are clustered together. In the second clustering, homes are grouped based on
the size of the house.

Clustering has been used in many application domains, including biology, medicine,
anthropology, marketing, and economics. Clustering applications include plant and animal
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classification, disease classification, image processing, pattern recognition, and document
retrieval. One of the first domains in which clustering was used was biological taxonomy.
Recent uses include examining Web log data to detect usage patterns.

When clustering is applied to a real-world database, many interesting problems occur:

e Outlier handling is difficult. Here the elements do not naturally fall into any cluster.
They can be viewed as solitary clusters. However, if a clustering algorithm attempts
to find larger clusters, these outliers will be forced to be placed in some cluster.
This process may result in the creation of poor clusters by combining two existing
clusters and leaving the outlier in its own cluster.

¢ Dynamic data in the database implies that cluster membership may change over time.

e Interpreting the semantic meaning of each cluster may be difficult. With classifica-
tion, the labeling of the classes is known ahead of time. However, with clustering,
this may not be the case. Thus, when the clustering process finishes creating a set
of clusters, the exact meaning of each cluster may not be obvious. Here is where
a domain expert is needed to assign a label or interpretation for each cluster.

e There is no one correct answer to a clustering problem. In fact, many answers may
be found. The exact number of clusters required is not easy to determine. Again, a
domain expert may be required. For example, suppose we have a set of data about
plants that have been collected during a field trip. Without any prior knowledge of
plant classification, if we attempt to divide this set of data into similar groupings,
it would not be clear how many groups should be created.

e Another related issue is what data should be used for clustering. Unlike learning
during a classification process, where there is some a priori knowledge concern-
ing what the attributes of each classification should be, in clustering we have no
supervised learning to aid the process. Indeed, clustering can be viewed as similar
to unsupervised learning.

We can then summarize some basic features of clustering (as opposed to classification):
e The (best) number of clusters is not known.
e There may not be any a priori knowledge concerning the clusters.

e Cluster results are dynamic.

The clustering problem is stated as shown in Definition 5.1. Here we assume
that the number of clusters to be created is an input value, k. The actual content (and
interpretation) of each cluster, K, 1 < j <k, is determined as a result of the function
definition. Without loss of generality, we will view that the result of solving a clustering

problem is that a set of clusters is created: K = {K1, Ko, ..., Kk}
DEFINITION 5.1. Given a database D = {t1,1,...,1,} of tuples and an integer
value k, the clustering problem is to define a mapping f : D — {1, ..., k} where

each #; is assigned to one cluster K, 1 < j < k. A cluster, K, contains precisely
those tuples mapped to it; that is, K; = {t; | f(t:) = Kj,1 <i =mn, and t; € D}.

A classification of the different types of clustering algorithms is shown in Figure 5.2.
Clustering algorithms themselves may be viewed as hierarchical or partitional. With
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Clustering
Hierarchical Partitional Categorical Large DB
Agglomerative Divisive Sampling Compression

FIGURE 5.2: Classification of clustering algorithms.

hierarchical clustering, a nested set of clusters is created. Each level in the hierarchy has
a separate set of clusters. At the lowest level, each item is in its own unique cluster. At the
highest level, all items belong to the same cluster. With hierarchical clustering, the desired
number of clusters is not input. With partitional clustering, the algorithm creates only
one set of clusters. These approaches use the desired number of clusters to drive how the
final set is created. Traditional clustering algorithms tend to be targeted to small numeric
databases that fit into memory. There are, however, more recent clustering algorithms that
look at categorical data and are targeted to larger, perhaps dynamic, databases. Algorithms
targeted to larger databases may adapt to memory constraints by either sampling the
database or using data structures, which can be compressed or pruned to fit into memory
regardless of the size of the database. Clustering algorithms may also differ based on
whether they produce overlapping or nonoverlapping clusters. Even though we consider
only nonoverlapping clusters, it is possible to place an item in multiple clusters. In turn,
nonoverlapping clusters can be viewed as extrinsic or intrinsic. Extrinsic techniques use
labeling of the items to assist in the classification process. These algorithms are the
traditional classification supervised learning algorithms in which a special input training
set is used. Intrinsic algorithms do not use any a priori category labels, but depend
only on the adjacency matrix containing the distance between objects. All algorithms we
examine in this chapter fall into the intrinsic class.

The types of clustering algorithms can be furthered classified based on the imple-
mentation technique used. Hierarchical algorithms can be categorized as agglomerative
or divisive. “Agglomerative” implies that the clusters are created in a bottom-up fashion,
while divisive algorithms work in a top-down fashion. Although both hierarchical and
partitional algorithms could be described using the agglomerative vs. divisive label, it
typically is more associated with hierarchical algorithms. Another descriptive tag indi-
cates whether each individual element is handled one by one, serial (sometimes called
incremental), or whether all items are examined together, simultaneous. If a specific tuple
is viewed as having attribute values for all attributes in the schema, then clustering algo-
rithms could differ as to how the attribute values are examined. As is usually done with
decision tree classification techniques, some algorithms examine attribute values one at a
time, monothetic. Polythetic algorithms consider all attribute values at one time. Finally,
clustering algorithms can be labeled based on the mathematical formulation given to
the algorithm: graph theoretic or matrix algebra. In this chapter we generally use the
graph approach and describe the input to the clustering algorithm as an adjacency matrix
labeled with distance measures.
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We discuss many clustering algorithms in the following sections. This is only a
representative subset of the many algorithms that have been proposed in the literature.
Before looking at these algorithms, we first examine possible similarity measures and
examine the impact of outliers.

5.2 SIMILARITY AND DISTANCE MEASURES

There are many desirable properties for the clusters created by a solution to a specific
clustering problem. The most important one is that a tuple within one cluster is more
like tuples within that cluster than it is similar to tuples outside it. As with classification,
then, we assume the definition of a similarity measure, sim(%;, #;), defined between any
two tuples, t;,t; € D. This provides a more strict and alternative clustering definition, as
found in Definition 5.2. Unless otherwise stated, we use the first definition rather than the
second. Keep in mind that the similarity relationship stated within the second definition
is a desirable, although not always obtainable, property.

DEFINITION 5.2. Given a database D = {t1,%,...,1,} of tuples, a similarity
measure, sim(f;, #;), defined between any two tuples, #;,#; € D, and an integer
value k, the clustering problem is to define a mapping f : D — {1, ..., k} where

each t; is assigned to one cluster K;,1 < j <k, Given a cluster, K, Vtj1, tjm € K

and t; & K, sim(t;;, tim) > sim(tj;, ;).

A distance measure, dis(#;, #;), as opposed to similarity, is often used in clustering.
The clustering problem then has the desirable property that given a cluster, K, Vt;i,
tim € K; and t; € K, dis(#i, tim) < dis(ji, ).

Some clustering algorithms look only at numeric data, usually assuming metric
data points. Metric attributes satisfy the triangular inequality. The clusters can then
be described by using several characteristic values. Given a cluster, K, of N points
{tm1, tm2, - - . » tmn}, we make the following definitions [ZRL96]:

N
Z(tmi)
centroid = Cp = ’ill-v—— (5.1)
N
Z(tmi - Cm)2
radius = Ry = iN——— (5.2)
N N
Z Z(tmi - tmj)Z
diameter = D, = | == (5.3)
(N)(N-1)

Here the centroid is the “middle” of the cluster; it need not be an actual point in the
cluster. Some clustering algorithms alternatively assume that the cluster is represented by
one centrally located object in the cluster called a medoid. The radius is the square root
of the average mean squared distance from any point in the cluster to the centroid, and
the diameter is the square root of the average mean squared distance between all pairs
of points in the cluster. We use the notation My, to indicate the medoid for cluster K.
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Many clustering algorithms require that the distance between clusters (rather than
elements) be determined. This is not an easy task given that there are many interpretations
for distance between clusters. Given clusters K; and K, there are several standard
alternatives to calculate the distance between clusters. A representative list is:

e Single link: Smallest distance between an element in one cluster and an element
in the other. We thus have dis(K;, K;) = min(dis(ti;, tjm))Vti € K; ¢ K and
vt jm € K j ¢ K;.

o Complete link: Largest distance between an element in one cluster and an element
in the other. We thus have dis(K;, K;) = max(dis(fi, tim)Vti € Ki € Kj and
V? im € K; ¢ K;.

e Average: Average distance between an element in one cluster and an element in
the other. We thus have dis(K;, K;) = mean(dis(ti;, tjm))Vti € Ki € K; and
Vtim € K; & K;.

e Centroid: If clusters have a representative centroid, then the centroid distance
is defined as the distance between the centroids. We thus have dis(K;, K;) =
dis(C;, C;), where C; is the centroid for K; and similarly for C;.

e Medoid: Using a medoid to represent each cluster, the distance between the clusters
can be defined by the distance between the medoids: dis(K;, K;) = dis(M;, M;).

5.3 OUTLIERS

As mentioned earlier, outliers are sample points with values much different from those
of the remaining set of data. Outliers may represent errors in the data (perhaps a mal-
functioning sensor recorded an incorrect data value) or could be correct data values that
are simply much different from the remaining data. A person who is 2.5 meters tall is
much taller than most people. In analyzing the height of individuals, this value probably
would be viewed as an outlier.

Some clustering techniques do not perform well with the presence of outliers. This
problem is illustrated in Figure 5.3. Here if three clusters are found (solid line), the outlier
will occur in a cluster by itself. However, if two clusters are found (dashed line), the two
(obviously) different sets of data will be placed in one cluster because they are closer
together than the outlier. This problem is complicated by the fact that many clustering
algorithms actually have as input the number of desired clusters to be found.

Clustering algorithms may actually find and remove outliers to ensure that they
perform better. However, care must be taken in actually removing outliers. For example,
suppose that the data mining problem is to predict flooding. Extremely high water level
values occur very infrequently, and when compared with the normal water level values
may seem to be outliers. However, removing these values may not allow the data mining
algorithms to work effectively because there would be no data that showed that floods
ever actually occurred.

Outlier detection, or outlier mining, is the process of identifying outliers in a set
of data. Clustering, or other data mining, algorithms may then choose to remove or
treat these values differently. Some outlier detection techniques are based on statistical
techniques. These usually assume that the set of data follows a known distribution and that
outliers can be detected by well-known tests such as discordancy tests. However, these
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FIGURE 5.3: Outlier clustering problem.
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FIGURE 5.4: Dendrogram for Example 5.2.

tests are not very realistic for real-world data because real-world data values may not
follow well-defined data distributions. Also, most of these tests assume a single attribute
value, and many attributes are involved in real-world datasets. Alternative detection

techniques may be based on distance measures.

5.4 HIERARCHICAL ALGORITHMS

As mentioned earlier, hierarchical clustering algorithms actually creates sets of clusters.
Example 5.2 illustrates the concept. Hierarchical algorithms differ in how the sets are
created. A tree data structure, called a dendrogram, can be used to illustrate the hierar-
chical clustering technique and the sets of different clusters. The root in a dendrogram
tree contains one cluster where all elements are together. The leaves in the dendrogram
each consist of a single element cluster. Internal nodes in the dendrogram represent new
clusters formed by merging the clusters that appear as its children in the tree. Each level
in the tree is associated with the distance measure that was used to merge the clusters.
All clusters created at a particular level were combined because the children clusters had
a distance between them less than the distance value associated with this level in the
tree. A dendrogram for Example 5.2 is seen in Figure 5.4.

EXAMPLE 5.2

Figure 5.5 shows six elements, {(A,B,C,D,E,F}, to be clustered. Parts (a) to (e) of the
figure show five different sets of clusters. In part (a) each cluster is viewed to consist of
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FIGURE 5.5: Five levels of clustering for Example 5.2.

a single element. Part (b) illustrates four clusters. Here there are two sets of two-element
clusters. These clusters are formed at this level because these two elements are closer
to each other than any of the other elements. Part (c) shows a new cluster formed by
adding a close element to one of the two-element clusters. In part (d) the two-element
and three-element clusters are merged to give a five-element cluster. This is done because
these two clusters are closer to each other than to the remote element cluster, {F}. At the
last stage, part (e), all six elements are merged.

The space complexity for hierarchical algorithms is O (n?) because this is the space
required for the adjacency matrix. The space required for the dendrogram is O (kn),
which is much less than O(n?). The time complexity for hierarchical algorithms is
O (kn?) because there is one iteration for each level in the dendrogram. Depending on
the specific algorithm, however, this could actually be O (maxd n?) where maxd is the
maximum distance between points. Different algorithms may actually merge the closest
clusters from the next lowest level or simply create new clusters at each level with
progressively larger distances.

Hierarchical techniques are well suited for many clustering applications that natu-
rally exhibit a nesting relationship between clusters. For example, in biology, plant and
animal taxonomies could easily be viewed as a hierarchy of clusters.

Agglomerative Algorithms

Agglomerative algorithms start with each individual item in its own cluster and iteratively
merge clusters until all items belong in one cluster. Different agglomerative algorithms
differ in how the clusters are merged at each level. Algorithm 5.1 illustrates the typi-
cal agglomerative clustering algorithm. It assumes that a set of elements and distances
between them is given as input. We use an n x n vertex adjacency matrix, A, as input.
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Here the adjacency matrix, A, contains a distance value rather than a simple boolean
value: A[i, j] = dis(t, tj). The output of the algorithm is a dendrogram, DE, which we
represent as a set of ordered triples (d, k, K) where d is the threshold distance, k is the
number of clusters, and K is the set of clusters. The dendrogram in Figure 5.7(a) would
be represented by the following:

{(0, 5, {{A}, {B}, {C}, (D}, {E}}), (1,3, {{A, B}, {C, D}, {E}})
(2,2,{{A, B,C, D}, {E}}), 3,1, {{A, B, C, D, E}})}

Outputting the dendrogram produces a set of clusters rather than just one clustering. The
user can determine which of the clusters (based on distance threshold) he or she wishes

to use.

ALGORITHM 5.1

Input:

D= {t1,ta,..., tn} //Set of elements

A //Adjacencynmtrixshowingdistahcebetweenelements
Output:

DE // Dendrogram represented as a set of ordered triples
Agglomerative algorithm:

d=20;

k=n;

K={{t1},.... {tn}};
DE ={{d, k,K}; // Initially dendrogram contains each element

in its own cluster.

repeat '
oldk = k;
d=d+1;

Ag = Vertex adjacency matrix for graph with threshold
distance of d;
(k, K) = NewClusters(Ad, D) ;

if oldk # k then
DE=DEU(d, k,K); // New set of clusters added to dendrogram.

until k=1

This algorithm uses a procedure called NewClusters to determine how to create
the next level of clusters from the previous level. This is where the different types
of agglomerative algorithms differ. It is possible that only two clusters from the prior
level are merged or that multiple clusters are merged. Algorithms also differ in terms
of which clusters are merged when there are several clusters with identical distances.
In addition, the technique used to determine the distance between clusters may vary.
Single link, complete link, and average link techniques are perhaps the most well known
agglomerative techniques based on well-known graph theory concepts.

All agglomerative approaches experience excessive time and space constraints.
The space required for the adjacency matrix is O (n?) where there are n items to cluster.
Because of the iterative nature of the algorithm, the matrix (or a subset of it) must be
accessed multiple times. The simplistic algorithm provided in Algorithm 5.1 performs
at most maxd examinations of this matrix, where maxd is the largest distance between
any two points. In addition, the complexity of the NewClusters procedure could be
expensive. This is a potentially severe problem in large databases. Another issue with
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the agglomerative approach is that it is not incremental. Thus, when new elements are
added or old ones are removed or changed, the entire algorithm must be rerun. More
recent incremental variations, as discussed later in this text, address this problem.

Single Link Technique. The single link technique is based on the idea of finding
maximal connected components in a graph. A connected component is a graph in which
there exists a path between any two vertices. With the single link approach, two clusters
are merged if there is at least one edge that connects the two clusters; that is, if the
minimum distance between any two points is less than or equal to the threshold dis-
tance being considered. For this reason, it is often called the nearest neighbor clustering
technique. Example 5.3 illustrates this process.

EXAMPLE 5.3

Table 5.2 contains five sample data items with the distance between the elements indicated
in the table entries. When viewed as a graph problem, Figure 5.6(a) shows the general
graph with all edges labeled with the respective distances. To understand the idea behind
the hierarchical approach, we show several graph variations in Figures 5.6(b), (c), (d),
and (e). Figure 5.6(b) shows only those edges with a distance of 1 or less. There are
+ only two edges. The first level of single link clustering then will combine the connected
clusters (single elements from the first phase), giving three clusters: {A,B}, {C,D}, and
{E}. During the next level of clustering, we look at edges with a length of 2 or less. The
graph representing this threshold distance is shown in Figure 5.6(c). Note that we now
have an edge (actually three) between the two clusters {A,B} and {C,D}. Thus, at this
level of the single link clustering algorithm, we merge these two clusters to obtain a total
of two clusters: {A,B,C,D} and {E}. The graph that is created with a threshold distance
of 3 is shown in Figure 5.6(d). Here the graph is connected, so the two clusters from the
last level are merged into one large cluster that contains all elements. The dendrogram
for this single link example is shown in Figure 5.7(a). The labeling on the right-hand
side shows the threshold distarice used to merge the clusters at each level.

The single link algorithm is obtained by replacing the NewClusters procedure in
the agglomerative algorithm with a procedure to find connected components of a graph.
We assume that this connected components procedure has as input a graph (actually
represented by a vertex adjacency matrix and set of vertices) and as outputs a set of

TABLE 5.2: Sample Data for Example 5.3

B

C

Item D
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FIGURE 5.6: Graphs for Example 5.3.
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FIGURE 5.7: Dendrograms for Example 5.3.

connected components defined by a number (indicating the number of components) and
an array containing the membership of each component. Note that this is exactly what
the last two entries in the ordered triple are used for by the dendrogram data structure.

The single link approach is quite simple, but it suffers from several problems. This
algorithm is not very efficient because the connected components procedure, which is an
0 (n?) space and time algorithm, is called at each iteration. A more efficient algorithm
could be developed by looking at which clusters from an earlier level can be merged at
each step. Another problem is that the clustering creates clusters with long chains.

An alternative view to merging clusters in the single link approach is that two
clusters are merged at a stage where the threshold distance is d if the minimum distance
between any vertex in one cluster and any vertex in the other cluster is at most d.

There have been other variations of the single link algorithm. One variation, based
on the use of a minimum spanning tree (MST), is shown in Algorithm 5.2. Here we
assume that a procedure, MST, produces a minimum spanning tree given an adjacency
matrix as input. The clusters are merged in increasing order of the distance found in the
MST. In the algorithm we show that once two clusters are merged, the distance between
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them in the tree becomes oco. Alternatively, we could have replaced the two nodes and
edge with one node.

ALGORITHM 5.2

Input:

D={t1,t2,..., tn} //Set of elements

A //Adjacency matrix showing distance between elements
Output:

DE // Dendrogram represented as a set of ordered triples
MST single link algorithm:

d=20

k=n

K= {{t1},..., {ta}}
DE=(d, k,K); // Initially dendrogram contains each element in
its own cluster.

M= MST(&);
repeat
oldk =k;

Kji, Kj = two clusters closest together in MST;
K=K—{K;} - {K;} U{K; UK5};
k=o0ldk—1;
d=dis(X;, Kj);
DE=DEU(d, k,K); // New set of clusters added to dendrogram.
dis(K;i, Kj) =00 '
until k=1

We illustrate this algorithm using the data in Example 5.3. Figure 5.8 shows one
MST for the example. The algorithm will merge A and B and then C and D (or the
reverse). These two clusters will then be merged at a threshold of 2. Finally, E will
be merged at a threshold of 3. Note that we get exactly the same dendrogram as in
Figure 5.7(a).

The time complexity of this algorithm is O (n?) because the procedure to create
the minimum spanning tree is O (n?) and it dominates the time of the algorithm. Once
it is created having n — 1 edges, the repeat loop will be repeated only n — 1 times.

The single linkage approach is infamous for its chain effect; that is, two clusters
are merged if only two of their points are close to each other. There may be points in
the respective clusters to be merged that are far apart, but this has no impact on the
algorithm. Thus, resulting clusters may have points that are not related to each other at
all, but simply happen to be near (perhaps via a transitive relationship) points that are
close to each other.

FIGURE 5.8: MST for Example 5.3.
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Complete Link Algorithm. Although the complete link algorithm is similar to
the single link algorithm, it looks for cliques rather than connected components. A clique
is a maximal graph in which there is an edge between any two vertices. Here a procedure
is used to find the maximum distance between any clusters so that two clusters are merged
if the maximum distance is less than or equal to the distance threshold. In this algorithm,
we assume the existence of a procedure, clique, which finds all cliques in a graph. As
with the single link algorithm, this is expensive because it is an O (n?) algorithm.

Clusters found with the complete link method tend to be more compact than those
found using the single link technique. Using the data found in Example 5.3, Figure 5.7(b)
shows the dendrogram created. A variation of the complete link algorithm is called
the farthest neighbor algorithm. Here the closest clusters are merged where the dis-
tance is the smallest measured by looking at the maximum distance between any two

points.

Average Link. The average link technique merges two clusters if the average
distance between any two points in the two target clusters is below the distance threshold.
The algorithm used here is slightly different from that found in single and complete link
algorithms because we must examine the complete graph (not just the threshold graph)
at each stage. Thus, we restate this algorithm in Algorithm 5.3.

ALGORITHM 5.3

Input:

D={t1, t2,..., tn} //Set of elements

A //Adjacency matrix showing distance between elements
Output:

DE // Dendrogram represented as a set of ordered triples
Average link algorithm:

d=20;

k=n;

K={{t1},..., {tn}};
DE=(d, k,K); // Initially dendrogram contains each element

in its own cluster.

repeat
oldk = k;
d=d+0.5;

for each pair of Kj, Kj €K do
ave = average distance between all t; € K; and tj € Kj;
if ave <d, then
K=K—{Ki}— {K;} U {Ki UK;5};
k=o0ldk—-1;
DE=DEU(d, k,K); // New set of clusters added
to dendrogram.

until k=1

Note that in this algorithm we increment d by 0.5 rather than by 1. This is a rather
arbitrary decision based on understanding of the data. Certainly, we could have used
an increment of 1, but we would have had a dendrogram different from that seen in

Figure 5.7(c).
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5.4.2 Divisive Clustering

With divisive clustering, all items are initially placed in one cluster and clusters are
repeatedly split in two until all items are in their own cluster. The idea is to split up
clusters where some elements are not sufficiently close to other elements.

One simple example of a divisive algorithm is based on the MST version of the
single link algorithm. Here, however, we cut out edges from the MST from the largest
to the smallest. Looking at Figure 5.8, we would start with a cluster containing all
items: {A, B, C, D, E}. Looking at the MST, we see that the largest edge is between
D and E. Cutting this out of the MST, we then split the one cluster into two: {E} and
{A, B, C, D}. Next we remove the edge between B and C. This splits the one large
cluster into two: {A, B} and {C, D}. These will then be split at the next step. The order
depends on how a specific implementation would treat identical values. Looking at the
dendrogram in Figure 5.7(a), we see that we have created the same set of clusters as
with the agglomerative approach, but in reverse order.

5.5 PARTITIONAL ALGORITHMS

Nonhierarchical or partitional clustering creates the clusters in one step as opposed to
several steps. Only one set of clusters is created, although several different sets of clusters
may be created internally within the various algorithms. Since only one set of clusters is
output, the user must input the desired number, k, of clusters. In addition, some metric
or criterion function is used to determine the goodness of any proposed solution. This
measure of quality could be the average distance between clusters or some other metric.
The solution with the best value for the criterion function is the clustering solution used.
One common measure is a squared error metric, which measures the squared distance
from each point to the centroid for the associated cluster:

k
Z Z dis(Cp, tmi)? (5.4)

m=1ty; €Ky

A problem with partitional algorithms is that they suffer from a combinatorial
explosion due to the number of possible solutions. Clearly, searching all possible cluster-
ing alternatives usually would not be feasible. For example, given a measurement criteria,
a naive approach could look at all possible sets of k clusters. There are S(n, k) possible
combinations to examine. Here

1 & ,
S(n, k) = o Z(—D’H ( ]l‘ ) ()" (5.5)
ti=1

There are 11,259,666,000 different ways to cluster 19 items into 4 clusters. Thus, most
algorithms look only at a small subset of all the clusters using some strategy to identify
sensible clusters. Because of the plethora of partitional algorithms, we will look at only
a representative few. We have chosen some of the most well known algorithms as well
as some others that have appeared recently in the literature.

Minimum Spanning Tree

Since we have agglomerative and divisive algorithms based on the use of an MST,
we also present a partitional MST algorithm. This is a very simplistic approach, but it
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illustrates how partitional algorithms work. The algorithm is shown in Algorithm 5.4.
Since the clustering problem is to define a mapping, the output of this algorithm shows
the clusters as a set of ordered pairs (#;, j) where f(t) = K.

ALGORITHM 5.4

Input:
D={t1,t2,..., tn} //Set of elements
A //Adjacency matrix showing distance between elements
k //Number of desired clusters
Output:
£ //Mapping represented as a set of ordered pairs
Partitional MST algorithm:
M = MST(A)

identify inconsistent edges in M;
remove k—1 inconsistent edges;
create output representation;

The problem is how to define “inconsistent.” It could be defined as in the earlier
division MST algorithm based on distance. This would remove the largest k — 1 edges from
the starting completely connected graph and yield the same results as this corresponding
level in the dendrogram. Zahn proposes more reasonable inconsistent measures based on the
weight (distance) of an edge as compared to those close to it. For example, an inconsistent
edge would be one whose weight is much larger than the average of the adjacent edges.

The time complexity of this algorithm is again dominated by the MST procedure,
which is O(nz). At most, k — 1 edges will be removed, so the last three steps of the
algorithm, assuming each step takes a constant time, is only O(k —1). Although deter-
mining the inconsistent edges in M may be quite complicated, it will not require a time
greater than the number of edges in M. When looking at edges adjacent to one edge,
there are at most k — 2 of these edges. In this case, then, the last three steps are 0(k2),
and the total algorithm is still O (n?).

Squared Error Clustering Algorithm

The squared error clustering algorithm minimizes the squared error. The squared error
for a cluster is the sum of the squared Euclidean distances between each element in the
cluster and the cluster centroid, Ci. Given a cluster K;, let the set of items mapped to

that cluster be {#;1, ti2, . . ., tim}. The squared error is defined as
m
sex; = Y lltij — Cil’® (5.6)
j=1
Given a set of clusters K = {K1, K2, ..., Ki}, the squared error for K is defined as
k
sex = ZS(—’Kj 5.7
j=1

In actuality, there are many different examples of squared error clustering algo-
rithms. They all follow the basic algorithm structure shown in Algorithm 5.5.
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ALGORITHM 5.5

Input:
D= {t1, ty,..., tn} //Set of elements
k //Number of desired clusters
Output:
K //Set of clusters

Squared error algorithm:
assign each item t; to a cluster;
calculate center for each cluster;
repeat
assign each item t; to the cluster which has the closest center;
- calculate new center for each cluster;
calculate squared error;
until the difference between successive squared errors
is below a threshold;

For each iteration in the squared error algorithm, each tuple is assigned to the
cluster with the closest center. Since there are k clusters and » items, this is an O (kn)
operation. Assuming ¢ iterations, this becomes an O (tkn) algorithm. The amount of space
may be only O(n) because an adjacency matrix is not needed, as the distance between
all items is not used.

5.5.3 K-Means Clustering

K-means is an iterative clustering algorithm in which items are moved among sets of clus-
ters until the desired set is reached. As such, it may be viewed as a type of squared error
algorithm, although the convergence criteria need not be defined based on the squared
error. A high degree of similarity among elements in clusters is obtained, while a high
degree of dissimilarity among elements in different clusters is achieved simultaneously.
The cluster mean of K; = {t;1, t;2, ..., tiym} is defined as

1 m
mi = — X;ti,- (5.8)
]:

This definition assumes that each tuple has only one numeric value as opposed to a
tuple with many attribute values. The K-means algorithm requires that some definition
of cluster mean exists, but it does not have to be this particular one. Here the mean
is defined identically to our earlier definition of centroid. This algorithm assumes that
the desired number of clusters, k, is an input parameter. Algorithm 5.6 shows the K-
means algorithm. Note that the initial values for the means are arbitrarily assigned. These
could be assigned randomly or perhaps could use the values from the first k input items
themselves. The convergence criteria could be based on the squared error, but they need
not be. For example, the algorithm could stop when no (or a very small) number of tuples
are assigned to different clusters. Other termination techniques have simply looked at a
fixed number of iterations. A maximum number of iterations may be included to ensure
stopping even without convergence.

ALGORITHM 5.6

Input:

D= {t1, ta,..., tn} //Set of elements
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k //Number of desired clusters

Output:
K //Set of clusters
K-means algorithm:
assign initial values for means my,mg, ..., Mk;

repeat
assign each item t; to the cluster which has the closest mean;

calculate new mean for each cluster;
until convergence criteria is met;

The K -means algorithm is illustrated in Example 54.

EXAMPLE 5.4
Suppose that we are given the following items to cluster:
(2,4,10,12, 3,20, 30, 11, 25} (5.9

and suppose that k = 2. We initially assign the means to the first two values: mj = 2
and my = 4. Using Buclidean distance, we find that initially K; = {2,3} and K3 =
{4, 10, 12, 20, 30, 11, 25}. The value 3 is equally close to both means, so we arbitrarily
choose K1. Any desired assignment could be used in the case of ties. We then recalculate
the means to get m; = 2.5 and mp = 16. We again make assignments to clusters to get
K1 =1{2,3,4} and K3 = {10, 12, 20, 30, 11, 25}. Continuing in this fashion, we obtain

the following:

mp ma K K>

3 18 {2,3,4,10} {12, 20, 30, 11, 25}
475 19.6 {2,3,4,10,11,12} {20,30,25}
7 25 (2,3,4,10,11,12} {20, 30, 25}

9~y Ty

Note that the clusters in the last two steps are identical. This will yield identical means,
and thus the means have converged. Our answer is thus K; = {2,3,4,10, 11,12} and

K, = {20, 30, 25}.

The time complexity of K-means is O(tkn) where ¢ is the number of iterations.
K-means finds a local optimum and may actually miss the global optimum. K-means
does not work on categorical data because the mean must be defined on the attribute
type. Only convex-shaped clusters are found. It also does not handle outliers well. One
variation of K-means, K-modes, does handle categorical data. Instead of using means, it
uses modes. A typical value for k is 2 to 10.

Although the K-means algorithm often produces good results, it is not time-efficient
and does not scale well. By saving distance information from one iteration to the next,
the actual number of distance calculations that must be made can be reduced.

Some K-means variations examine ways to improve the chances of finding the global
optimum. This often involves careful selection of the initial clusters and means. Another
variation is to allow clusters to be split and merged. The variance within a cluster is
examined, and if it is too large, a cluster is split. Similarly, if the distance between two
cluster centroids is less than a predefined threshold, they will be combined.
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5.5.4 Nearest Neighbor Algorithm

An algorithm similar to the single link technique is called the nearest neighbor algorithm.
With this serial algorithm, items are iteratively merged into the existing clusters that are
closest. In this algorithm a threshold, ¢, is used to determine if items will be added to
existing clusters or if a new cluster is created.

ALGORITHM 5.7

Input:

D={t1, ta,..., tn} //Set of elements

A //Adjacency matrix showing distance between elements
Output:

K //Set of clusters
Nearest neighbor algorithm:

ki ={t1};

K={K1};

k=1;

for i=2 to n do
find the tp in some cluster Ky in K such that dis(t;, tm) is
the smallest; '
if dis(ty, tm), <t then

Km = KnU t;
else

k=k+1;

K ={ti};

Example 5.5 shows the application of the nearest neighbor algorithm to the data
shown in Table 5.2 assuming a threshold of 2. Notice that the results are the same as
those seen in Figure 5.7(a) at the level of 2.

EXAMPLE 5.5

Initially, A is placed in a cluster by itself, so we have K; = {A}. We then look at B to
decide if it should be added to K or be placed in a new cluster. Since dis(A4, B) = 1,
which is less than the threshold of 2, we place B in K; to get K1 = {A, B}. When
looking at C, we see that its distance to both A and B is 2, so we add it to the cluster
to get K1 = {A, B, C}. The dis(D, C) = 1 < 2, so we get Ky = {A, B, C, D}. Finally,
looking at E, we see that the closest item in K; has a distance of 3, which is greater
than 2, so we place it in its own cluster: K, ={E}.

The complexity of the nearest neighbor algorithm actually depends on the number
of items. For each loop, each item must be compared to each item already in a cluster.
Obviously, this is n in the worst case. Thus, the time complexity is O (n?). Since we do

need to examine the distances between items often, we assume that the space requirement
is also O (n2).

5.5.5 PAM Algorithm

The PAM (partitioning around medoids) algorithm, also called the K-medoids algorithm,
represents a cluster by a medoid. Using a medoid is an approach that handles outliers
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well. The PAM algorithm is shown in Algorithm 5.8. Initially, a random set of k items
is taken to be the set of medoids. Then at each step, all items from the input dataset that
are not currently medoids are examined one by one to see if they should be medoids.
That is, the algorithm determines whether there is an item that should replace one of the
existing medoids. By looking at all pairs of medoid, non-medoid objects, the algorithm
chooses the pair that improves the overall quality of the clustering the best and exchanges
them. Quality here is measured by the sum of all distances from a non-medoid object
to the medoid for the cluster it is in. An item is assigned to the cluster represented by
the medoid to which it is closest (minimum distance). We assume that K; is the cluster
represented by medoid #;. Suppose ¢ is a current medoid and we wish to determine
whether it should be exchanged with a non-medoid #,. We wish to do this swap only
if the overall impact to the cost (sum of the distances to cluster medoids) represents an
improvement.

Following the lead in [NH94], we use Cj;, to be the cost change for an item ¢;
associated with swapping medoid # with non-medoid ,. The cost is the change to the
sum of all distances from items to their cluster medoids. There are four cases that must
be examined when calculating this cost:

1. tj € K;, but 3 another medoid 1, where dis(t;, t) < dis(¢;, tn);
2. tj € K;, but dis(t;, 1) < dis(t, tm)V other medoids #;

3. tj € Kn, € K;, and dis(zj, tm) < dis(¢;, t4); and

4. tj € Ky, ¢ K;, but dis(z;, tp) < dis(z;, tm)-

We leave it as an exercise to determine the cost of each of these cases. The total impact
to quality by a medoid change T C;j, then is given by

n
TCip = Z Cjin (5.10)
j=1
ALGORITHM 5.8
Input:
D={t1,ta,..., tn} //Set of elements
A //Adjacency matrix showing distance between elements
k //Number of desired clusters
Output:
K //Set of clusters

PAM algorithm:
arbitrarily select k medoids from D;
repeat
for each tp not a medoid do
for each medoid t; do
calculate TCip;
find i, h where TC;p is the smallest;
if TC;hp <0, then
replace medoid t; with tp;
until TC;p > 0;
for each t; € D do
assign t; to Ky, where dis(ti,tj)is the smallest over all medoids;
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Example 5.6 shows the application of the PAM algorithm to the data shown in
Table 5.2 assuming a threshold of 2.

EXAMPLE 5.6

Suppose that the two medoids that are initially chosen are A and B. Based on the
distances shown in Table 5.2 and randomly placing items when distances are identical to
the two medoids, we obtain the clusters {A, C, D} and {B, E} The three non-medoids,
{C, D, E}, are then examined to see which (if any) should be used to replace A or B.
We thus have six costs to determine: TCac, TCap, TCag, TCpc, TCpp, and TCpE.
Here we use the name of the item instead of a numeric subscript value. We obtain the
following:

TCac = Caac +Cac +Ccac + Cpac +Cpac =14+0-2—-14+0=-2 (5.11)

Here A is no longer a medoid, and since it is closer to B, it will be placed in the cluster
with B as medoid, and thus its cost is C4ac = 1. The cost for B is 0 because it stays
a cluster medoid. C is now a medoid, so it has a negative cost based on its distance to
the old medoid; that is, Ccgp = —2. D is closer to C than it was to A by a distance
of 1, so its cost is Cpac = —1. Finally, E stays in the same cluster with the same
distance, so its cost change is 0. Thus, we have that the overall cost is a reduction of 2.
Figure 5.9 illustrates the calculation of these six costs. Looking at these, we see that
the minimum cost is 2 and that there are several ways to reduce this cost. Arbitrarily
choosing the first swap, we get C and B as the new medoids with the clusters being
{C, D} and {B, A, E}. This concludes the first iteration of PAM. At the next iteration,
we examine changing medoids again and pick the choice that best reduces the cost. The
iterations stop when no changes will reduce the cost. We leave the rest of this problem
to the reader as an exercise.

PAM does not scale well to large datasets because of its computational complexity.
For each iteration, we have k(n —k) pairs of objects i, z for which a cost, T C;, should be
determined. Calculating the cost during each iteration requires that the cost be calculated
for all other non-medoids ¢;. There are n — k of these. Thus, the total complexity per
iteration is k(n — k). The total number of iterations can be quite large, so PAM is not
an alternative for large databases. However, there are some clustering algorithms based
on PAM that are targeted to large datasets.

CLARA (Clustering LARge Applications) improves on the time complexity of PAM
by using samples of the dataset. The basic idea is that it applies PAM to a sample of the
underlying database and then uses the medoids found as the medoids for the complete
clustering. Each item from the complete database is then assigned to the cluster with the
medoid to which it is closest. To improve the CLARA accuracy, several samples can be
drawn with PAM applied to each. The sample chosen as the final clustering is the one
that performs the best. Because of the sampling, CLARA is more efficient than PAM for
large databases. However, it may not be as effective, depending on the sample size. Five
samples of size 40 4 2k seem to give good results [KR90].

CLARANS (clustering large applications based upon randomized search) improves
on CLARA by using multiple different samples. In addition to the normal input to PAM,
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FIGURE 5.9: Cost calculations for Example 5.6.

CLARANS requires two additional parameters: maxneighbor and numlocal. Maxneigh-
bor is the number of neighbors of a node to which any specific node can be com-
pared. As maxneighbor increases, CLARANS looks more and more like PAM because
all nodes will be examined. Numlocal indicates the number of samples to be taken.
Since a new clustering is performed on each sample, this also indicates the num-
ber of clusterings to be made. Performance studies indicate that numlocal = 2 and
maxneighbor = max((0.0125 x k(n — k)), 250) are good choices [NH94]. CLARANS is
shown to be more efficient than either PAM or CLARA for any size dataset. CLARANS
assumes that all data are in main memory. This certainly is not a valid assumption for
large databases.

5.5.6 Bond Energy Algorithm

The bond energy algorithm (BEA) was developed and has been used in the database
design area to determine how to group data and how to physically place data on a disk.
It can be used to cluster attributes based on usage and then perform logical or physical
design accordingly. With BEA, the affinity (bond) between database attributes is based
on common usage. This bond is used by the clustering algorithin as a similarity measure.
The actual measure counts the number of times the two attributes are used together in a
given time. To find this, all common queries must be identified.

The idea is that attributes that are used together form a cluster and should be stored
together. In a distributed database, each resulting cluster is called a vertical fragment and
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FIGURE 5.10: Clustered affinity matrix for BEA (modified from [OV99D).

may be stored at different sites from other fragments. The basic steps of this clustering
algorithm are:

1. Create an attribute affinity matrix in which each entry indicates the affinity between
the two associate attributes. The entries in the similarity matrix are based on the
frequency of common usage of attribute pairs.

2. The BEA then converts this similarity matrix to a BOND matrix in which the
entries represent a type of nearest neighbor bonding based on probability of co-
access. The BEA algorithm rearranges rows or columns so that similar attributes
appear close together in the matrix.

3. Finally, the designer draws boxes around regions in the matrix with high similarity.

The resulting matrix, modified from [OV99], is illustrated in Figure 5.10 The two shaded
boxes represent the attributes that have been grouped together into two clusters.

Two attributes A; and A; have a high affinity if they are frequently used together
in database applications. At the heart of the BEA algorithm is the global affinity measure.
Suppose that a database schema consists of n attributes {A1, A2, ..., Ay}. The global
affinity measure, AM, is defined as

n
AM = Z(bond(Ai, Aj_1) +bond(A;, A;11)) (5.12)
i=1

5.5.7 Clustering with Genetic Algorithms

There have been clustering techniques based on the use of genetic algorithms. To deter-
mine how to perform clustering with genetic algorithms, we first must determine how

to represent each cluster. One simple approach would be to use a bit-map representation

for each possible cluster. So, given a database with four items, {A, B, C, D}, we would
represent one solution to creating two clusters as 1001 and 0110. This represents the two
clusters {A, D} and {B, C}.
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Algorithm 5.9 shows one possible iterative refinement technique for clustering that
uses a genetic algorithm. The approach is similar to that in the squared error approach in
that an initial random solution is given and successive changes to this converge on a local
optimum. A new solution is generated from the previous solution using crossover and
mutation operations. Our algorithm shows only crossover. The use of crossover to create
a new solution from a previous solution is shown in Example 5.7. The new “solution”
must be created in such a way that it represents a valid k clustering. A fitness function
must be used and may be defined based on an inverse of the squared error. Because
of the manner in which crossover works, genetic clustering algorithms perform a global
search rather than a local search of potential solutions.

ALGORITHM 5.9

Input:
D={t1, ta,..., tn} //Set of elements
k //Number of desired clusters
Output:
K //Set of clusters

GA clustering algorithm:
randomly create an initial solution;
repeat
use crossover to create a new solution;
until termination criteria is met;

EXAMPLE 5.7

Suppose a database contains the following eight items {A, B, C, D, E, F, G, H}, which
are to be placed into three clusters. We could initially place the items into the three clusters
{A,C, E}, {B, F}, and {D, G, H}, which are represented by 10101000, 01000100, and
00010011, respectively. Suppose we choose the first and third individuals as parents and
do a simple crossover at point 4. This yields the new solution: 00011000, 01000100, and
10100011.

5.5.8 Clustering with Neural Networks

Neural networks (NNs) that use unsupervised learning attempt to find features in the
data that characterize the desired output. They look for clusters of like data. These types
of NNs are often called self-organizing neural networks. There are two basic types of
unsupervised learning: noncompetitive and competitive.

With the noncompetitive or Hebbian learning, the weight between two nodes is
changed to be proportional to both output values. That is

Awj; = ny;y (5.13)

With competitive learning, nodes are allowed to compete and the winner takes all.
This approach usually assumes a two-layer NN in which all nodes from one layer are
connected to all nodes in the other layer. As training occurs, nodes in the output layer
become associated with certain tuples in the input dataset. Thus, this provides a grouping
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of these tuples together into a cluster. Imagine every input tuple having each attribute
value input to a specific input node in the NN. The number of input nodes is the same
as the number of attributes. We can thus associate each weight to each output node with
one of the attributes from the input tuple. When a tuple is input to the NN, all output
nodes produce an output value. The node with the weights more similar to the input
tuple is declared the winner. Its weights are then adjusted. This process continues with
each tuple input from the training set. With a large and varied enough training set, over
time each output node should become associated with a set of tuples. The input weights
to the node are then close to an average of the tuples in this cluster.

Self-Organizing Feature Maps. A self-organizing feature map (SOFM) or self-
orgarizing map (SOM) is an NN approach that uses competitive unsupervised learning.
Learning is based on the concept that the behavior of a node should impact only those
nodes and arcs near it. Weights are initially assigned randomly and adjusted during the
learning process to produce better results. During this learning process, hidden features or
patterns in the data are uncovered and the weights are adjusted accordingly. SOFMs were
developed by observing how neurons work in the brain and in ANNs. That is [BS97]:

e The firing of neurons impact the firing of other neurons that are near it.
e Neurons that are far apart seem to inhibit each other.
e Neurons seem to have specific nonoverlapping tasks.

The term self-organizing indicates the ability of these NNs to organize the nodes into
clusters based on the similarity between them. Those nodes that are closer together are
more similar than those that are far apart. This hints at how the actual clustering is
performed. Over time, nodes in the output layer become matched to input nodes, and
patterns of nodes in the output layer emerge.

Perhaps the most common example of a SOFM is the Kohonen self-organizing
map, which is used extensively in commercial data mining products to perform clustering.
There is one input layer and one special layer, which produces output values that compete.
In effect, multiple outputs are created and the best one is chosen. This extra layer is
not technically either a hidden layer or an output layer, so we refer to it here as the
competitive layer. Nodes in this layer are viewed as a two-dimensional grid of nodes as
seen in Figure 5.11. Each input node is connected to each node in this grid. Propagation
occurs by sending the input value for each input node to each node in the competitive
layer. As with regular NNs, each arc has an associated weight and each node in the
competitive layer has an activation function. Thus, each node in the competitive layer
produces an output value, and the node with the best output wins the competition and is
determined to be the output for that input. An attractive feature of Kohonen nets is that
the data can be fed into the multiple competitive nodes in parallel. Training occurs by
adjusting weights so that the best output is even better the next time this input is used.
“Best” is determined by computing a distance measure.

A common approach is to initialize the weights on the input arcs to the com-
petitive layer with normalized values. The similarity between output nodes and input
vectors is then determined by the dot product of the two vectors. Given an input tuple
X = (x1, ..., xp) and weights on arcs input to a competitive node i as wy;, ..., Wp;, the
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FIGURE 5.11: Kohonen network.

similarity between X and i can be calculated by

h
sim(X, ) = ) " x; wy; (5.14)
j=1

The competitive node most similar to the input node wins the competitive. Based on this,
the weights coming into i as well as those for the nodes immediately surrounding it in
the matrix are increased. This is the learning phase. Given a node i, we use the notation
N; to represent the union of i and the nodes near it in the matrix. Thus, the learning
process uses

(5.15)

) el - wgj) if jeN;
Awgj = { 0 otherwise

In this formula, ¢ indicates the learning rate and may actually vary based on the node rather
than being a constant. The basic idea of SOM learning is that after each input tuple in the
training set, the winner and its neighbors have their weights changed to be closer to that of
the tuple. Over time, a pattern on the output nodes emerges, which is close to that of the
training data. At the beginning of the training process, the neighborhood of a node may be
defined to be large. However, the neighborhood may decrease during the processing.

5.6 CLUSTERING LARGE DATABASES

The clustering algorithms presented in the preceding sections are some of the classic clus-
tering techniques. When clustering is used with dynamic databases, these algorithms may
not be appropriate. First, they all assume that [because most are O (n?)] sufficient main
memory exists to hold the data to be clustered and the data structures needed to support
them. With large databases containing thousands of items (or more), these assumptions
are not realistic. In addition, performing I/Os continuously through the multiple itera-
tions of an algorithm is too expensive. Because of these main memory restrictions, the
algorithms do not scale up to large databases. Another issue is that some assume that the
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data are present all at once. These techniques are not appropriate for dynamic databases.
Clustering techniques should be able to adapt as the database changes.

The algorithms discussed in the following subsections each examine an issue asso-
ciated with performing clustering in a database environment. It has been argued that to
perform effectively on large databases, a clustering algorithm should [BFR98]:

1. require no more (preferably less) than one scan of the database.

2. have the ability to provide status and “best” answer so far during the algorithm
execution. This is sometimes referred to as the ability to be online.

3. be suspendable, stoppable, and resumable.

4. be able to update the results incrementally as data are added or removed from the
database.

5. work with limited main memory.

6. be capable of performing different techniques for scanning the database. This may
include sampling.

7. process each tuple only once.

Recent research at Microsoft has examined how to efficiently perform the clustering

algorithms with large databases [BFR98]. The basic idea of this scaling approach is as
follows:

Read a subset of the database into main memory.
Apply clustering technique to data in memory.
Combine results with those from prior samples.

The in-memory data are then divided into three different types: those items that
will always be needed even when the next sample is brought in, those that can
be discarded with appropriate updates to data being kept in order to answer the
problem, and those that will be saved in a compressed format. Based on the type,
each data item is then kept, deleted, or compressed in memory.

5. If termination criteria are not met, then repeat from step 1.

b=

This approach has been applied to the K-means algorithm and has been shown to be
effective.

BIRCH

BIRCH (balanced iterative reducing and clustering using hierarchies) is designed for
clustering a large amount of metric data. It assumes that there may be a limited amount
of main memory and achieves a linear I/O time requiring only one database scan. It is
incremental and hierarchical, and it uses an outlier handling technique. Here points that
are found in sparsely populated areas are removed. The basic idea of the algorithm is that
a tree is built that captures needed information to perform clustering. The clustering is
then performed on the tree itself, where labelings of nodes in the tree contain the needed
information to calculate distance values. A major characteristic of the BIRCH algorithm
is the use of the clustering feature, which is a triple that contains information about a
cluster (see Definition 5.3). The clustering feature provides a summary of the information
about one cluster. By this definition it is clear that BIRCH applies only to numeric data.
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This algorithm uses a tree called a CF tree as defined in Definition 5.4. The size of the
tree is determined by a threshold value, T, associated with each leaf node. This is the
maximum diameter allowed for any leaf. Here diameter is the average of the pairwise
distance between all points in the cluster. Each internal node corresponds to a cluster
that is composed of the subclusters represented by its children.

DEFINITION 5.3. A clustering feature (SIF) is a triple (N, L—}S, SS), where the
number of the points in the cluster is N, LS is the sum of the points in the cluster,
and SS is the sum of the squares of the points in the cluster.

DEFINITION 5.4. A CF tree is a balanced tree with a branching factor (maximum
number of children a node may have) B. Each internal node contains a CF triple
for each of its children. Each leaf node also represents a cluster and contains a CF
entry for each subcluster in it. A subcluster in a leaf node must have a diameter
no greater than a given threshold value 7.

Unlike a dendrogram, a CF tree is searched in a top-down fashion. Each node in
the CF tree contains clustering feature information about its subclusters. As points are
added to the clustering problem, the CF tree is built. A point is inserted into the cluster
(represented by a leaf node) to which it is closest. If the diameter for the leaf node is
greater than T, then a splitting and balancing of the tree is performed (similar to that
used in a B-tree). The algorithm adapts to main memory size by changing the threshold
value. A larger threshold, T', yields a smaller CF tree. This process can be performed
without rereading the data. The clustering feature data provides enough information to
perform this condensation. The complexity of the algorithm is O (n).

ALGORITHM 5.10

Input:.

D={t1, t2,..., tn} //Set of elements

T // Threshold for CF tree construction
Output:

K //Set of clusters

BIRCH clustering algorithm:
for each t; € D do
determine correct leaf node for t; insertion;
if threshold condition is not violated, then
add t; to cluster and update CF triples;

else
if room to insert t;, then
insert t; as single cluster and update CF triples;

else
split leaf node and redistribute CF features;

Algorithm 5.10 outlines the steps performed in BIRCH. Not shown in this algorithm
are the parameters needed for the CF tree construction, such as its branching factor, the
page block size, and memory size. Based on size, each node has room for a fixed number,
B, of clusters (i.e., CF triples). The first step creates the CF tree in memory. The threshold
value can be modified if necessary to ensure that the tree fits into the available memory
space. Insertion into the CF tree requires scanning the tree from the root down, choosing
the node closest to the new point at each level. The distance here is calculated by looking
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at the distance between the new point and the centroid of the cluster. This can be easily

calculated with most distance measures (e.g., Euclidean or Manhattan) using the CF ‘
triple. When the new item is inserted, the CF triple is appropriately updated, as is each |
triple on the path from the root down to the leaf. It is then added to the closest leaf node
found by adjusting the CF value for that node. When an item is inserted into a cluster at
the leaf node of the tree, the cluster must satisfy the threshold value. If it does, then the
CF entry for that cluster is modified. If it does not, then that item is added to that node
as a single-item cluster.

Node splits occur if no space exists in a given node. This is based on the size of
the physical page because each node size is determined by the page size. An attractive
feature of the CF values is that they are additive; that is, if two clusters are merged, the
resulting CF is the addition of the CF values for the starting clusters. Once the tree is
built, the leaf nodes of the CF tree represent the current clusters.

In reality, this algorithm, Algorithm 5.10, is only the first of several steps proposed
for the use of BIRCH with large databases. The complete outline of steps is:

1. Create initial CF tree using a modified version of Algorithm 5.10. This in effect
“loads” the database into memory. If there is insufficient memory to construct the }
CF tree with a given threshold, the threshold value is increased and a new smaller !
CF tree is constructed. This can be done by inserting the leaf nodes of the previous }
tree into the new small tree.

2. The clustering represented by the CF tree may not be natural because each entry
has a limited size. In addition, the input order can negatively impact the results.
These problems can be overcome by another global clustering approach applied
to the leaf nodes in the CF tree. Here each leaf node is treated as a single point
for clustering. Although the original work proposes a centroid-based agglomer- |
ative hierarchical clustering algorithm to cluster the subclusters, other clustering '
algorithms could be used. I

\
|
|

3. The last phase (which is optional) reclusters all points by placing them in the clus-
ter that has the closest centroid. Outliers, points that are too far from any centroid,
can be removed during this phase.

BIRCH is linear in both space and I/O time. The choice of threshold value is
imperative to an efficient execution of the algorithm. Otherwise, the tree may have to be
rebuilt many times to ensure that it can be memory-resident. This gives the worst-case
time complexity of O (n?).

5.6.2 DBSCAN

The approach used by DBSCAN (density-based spatial clustering of applications with
noise) is to create clusters with a minimum size and density. Density is defined as a
minimum number of points within a certain distance of each other. This handles the
outlier problem by ensuring that an outlier (or a small set of outliers) will not create a
cluster. One input parameter, MinPts, indicates the minimum number of points in any
cluster. In addition, for each point in a cluster there must be another point in the cluster
whose distance from it is less than a threshold input value, Eps. The Eps-neighborhood |
or neighborhood of a point is the set of points within a distance of Eps. The desired

number of clusters, k, is not input but rather is determined by the algorithm itself.
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FIGURE 5.12: DBSCAN example.

DBSCAN uses a new concept of density. We first must look at some definitions
from [EKSX96]. Definition 5.5 defines directly density-reachable. The first part of the
definition ensures that the second point is “close enough” to the first point. The second
portion of the definition ensures that there are enough core points close enough to each
! other. These core points form the main portion of a cluster in that they are all close to
each other. A directly density-reachable point must be close to one of these core points,
but it need not be a core point itself. In that case, it is called a border point. A point is
said to be density-reachable from another point if there is a chain from one to the other
that contains only points that are directly density-reachable from the previous point. This
guarantees that any cluster will have a core set of points very close to a large number of
other points (core points) and then some other points (border points) that are sufficiently
close to at least one core point.

DEFINITION 5.5. Given values Eps and MinPts, a point p is directly density-
reachable from g if

i o dis(p, q) < Eps
\ ' and

\\ o | {r | dis(r,q) < Eps} |> MinPts

Figure 5.12 illustrates the concepts used by DBSCAN. This figure shows 12 points.
1 The assumed Eps value is illustrated by the straight line. In part (a) it is shown that there
are 4 points within the neighborhood of point p. As is seen, p is a core point because
it has 4 (MinPts value) points within its neighborhood. Part (b) shows the 5 core points
in the figure. Note that of the 4 points that are in the neighborhood of p, only 3 are
themselves core points. These 4 points are said to be directly density-reachable from p.
Point ¢ is not a core point and is thus called a border point. We have partitioned the
points into a core set of points that are all close to each other; then border points, which
are close to at least one of the core points; and finally the remaining points, which are
T not close to any core point. Part (C) shows that even though point r is not a core point,
: it is density-reachable from g.
Algorithm 5.11 outlines the DBSCAN algorithm. Because of the restrictions on
what constitutes a cluster when the algorithm finishes, there will be points not assigned
to a cluster. These are defined as noise.




154 Chapter 5 Clustering

ALGORITHM 5.11

Input:

D={t1, t2,..., tn} //Set of elements

MinPts // Number of points in cluster

Eps // Maximum distance for density measure
Output:

K={Ki,Kz,..., Kk} //Set of clusters
DBSCAN algorithm:

k=0; // Initially there are no clusters.

for 1=1 to n do
if t; is not in a cluster, then
x={tj|ty is density-reachable from t;};
if X is a valid cluster, then
k=k+1;
Kr = X;

The expected time complexity of DBSCAN is O (n [g n). It is possible that a border
point could belong to two clusters. The stated algorithm will place this point in whichever
cluster is generated first. DBSCAN was compared with CLARANS and found to be more
efficient by a factor of 250 to 1900 [EKSX96]. In addition, it successfully found all
clusters and noise from the test dataset, whereas CLARANS did not.

5.6.3 CURE Algorithm

One objective for the CURE (Clustering Using REpresentatives) clustering algorithm is to
handle outliers well. It has both a hierarchical component and a partitioning component.
First, a constant number of points, ¢, are chosen from each cluster. These well-scattered
points are then shrunk toward the cluster’s centroid by applying a shrinkage factor, a.
When « is 1, all points are shrunk to just one—the centroid. These points represent the
cluster better than a single point (such as a medoid or centroid) could. With multiple rep-
resentative points, clusters of unusual shapes (not just a sphere) can be better represented.
CURE then uses a hierarchical clustering algorithm. At each step in the agglomerative
algorithm, clusters with the closest pair of representative points are chosen to be merged.
The distance between them is defined as the minimum distance between any pair of
points in the representative sets from the two clusters.

The basic approach used by CURE is shown in Figure 5.13. The first step shows
a sample of the data. A set of clusters with its representative points exists at each step
in the processing. In Figure 5.13(b) there are three clusters, each with two representative
points. The representative points are shown as darkened circles. As discussed in the
following paragraphs, these representative points are chosen to be far from each other as
well as from the mean of the cluster. In part (c), two of the clusters are merged and two
new representative points are chosen. Finally, in part (d), these points are shrunk toward
the mean of the cluster. Notice that if one representative centroid had been chosen for
the clusters, the smaller cluster would have been merged with the bottom cluster instead
of with the top cluster.

CURE handles limited main memory by obtaining a random sample to find the
initial clusters. The random sample is partitioned, and each partition is then partially
clustered. These resulting clusters are then completely clustered in a second pass. The
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FIGURE 5.13: CURE example.

sampling and partitioning are done solely to ensure that the data (regardless of database
size) can fit into available main memory. When the clustering of the sample is complete,
the labeling of data on disk is performed. A data item is assigned to the cluster with the

closest representative points. The basic steps of CURE for large databases are:

1. Obtain a sample of the database.
2. Partition the sample into p partitions of size Z. This is done to speed up the

n
D"

algorithm because clustering is first performed on each partition.

3. Partially cluster the points in each partition using the hierarchical algorithm (see
Algorithm 5.12). This provides a first guess at what the clusters should be. The

n

number of clusters is -~ for some constant g.

pq

4. Remove outliers. Outliers are eliminated by the use of two different techniques.
The first technique eliminates clusters that grow very slowly. When the number of
clusters is below a threshold, those clusters with only one or two items are deleted.
It is possible that close outliers are part of the sample and would not be identified
by the first outlier elimination technique. The second technique removes very small

clusters toward the end of the clustering phase.
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S. Completely cluster all data in the sample using Algorithm 5.12. Here, to ensure
processing in main memory, the input includes only the cluster representatives from
the clusters found for each partition during the partial clustering step (3).

6. Cluster the entire database on disk using ¢ points to represent each cluster. An item
in the database is placed in the cluster that has the closest representative point to
it. These sets of representative points are small enough to fit into main memory,
so each of the n points must be compared to ck representative points.

The time complexity of CURE is O(n? g n), while space is O(n). This is worst-
case behavior. The improvements proposed for main memory processing certainly
improve on this time complexity because the entire clustering algorithm is performed
against only the sample. When clustering is performed on the complete database, a time
complexity of only O(n) is required. A heap and k-D tree data structure are used to
ensure this performance. One entry in the heap exists for each cluster. Each cluster has
not only its representative points, but also the cluster that is closest to it. Entries in the
heap are stored in increasing order of the distances between clusters. We assume that
each entry u in the heap contains the set of representative points, u.rep; the mean of
the points in the cluster, u.mean; and the cluster closest to it, u.closest. We use the heap
operations: heapify to create the heap, min to extract the minimum entry in the heap,
insert to add a new entry, and delete to delete an entry. A merge procedure is used to
merge two clusters. It determines the new representative points for the new cluster. The
basic idea of this process is to first find the point that is farthest from the mean. Sub-
sequent points are then chosen based on being the farthest from those points that were
previously chosen. A predefined number of points is picked. A k-D tree is a balanced
binary tree that can be thought of as a generalization of a binary search tree. It is used to
index data of k dimensions where the i level of the tree indexes the i** dimension. In
CURE, a k-D tree is used to assist in the merging of clusters. It stores the representative
points for each cluster. Initially, there is only one representative point for each cluster,
the sole item in it. Operations performed on the tree are: delete to delete an entry form
the tree, insert to insert an entry into it, and build to initially create it. The hierarchical
clustering algorithm itself, which is from [GRS98], is shown in Algorithm 5.12. We do
not include here either the sampling algorithms or the merging algorithm.

ALGORITHM 5.12

Input:
D={ti1, ty,..., tn} //Set of elements
k // Desired number of clusters
Output:
o //Heap containing one entry for each cluster
CURE algorithm:
T=build(D);
Q= heapify(D); // Initially build heap with one entry per item;
repeat

u=min(Q);
delete(Q, u.close);
w = merge(u, v);
delete(T, u);
delete(T, v);
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insert(T, w);
for each xe€ QO do
x.close=find closest cluster to x;
if x is closest to w, then
w.close = x;
insert(Q, w);
until number of nodes in Q is k;

Performance experiments compared CURE to BIRCH and the MST approach
[GRS98]. The quality of the clusters found by CURE is better. While the value of
the shrinking factor & does impact results, with a value between 0.2 and 0.7, the correct
clusters are still found. When the number of representative points per cluster is greater
than five, the correct clusters are still always found. A random sample size of about 2.5%
and the number of partitions is greater than one or two times k seem to work well. The
results with large datasets indicate that CURE scales well and outperforms BIRCH.

5.7 CLUSTERING WITH CATEGORICAL ATTRIBUTES

Traditional algorithms do not always work with categorical data. Example 5.8 illus-
trates some problems that exist when clustering categorical data. This example uses a
hierarchical-based centroid algorithm to illustrate the problems. The problem illustrated
here is that the centroid tends to weaken the relationship between the associated cluster
and other clusters. The problems worsens as more and more clusters are merged. The
number of attributes appearing in the mean increases, while the individual values actually
decreases. This makes the centroid representations very similar and makes distinguishing
between clusters difficult.

EXAMPLE 5.8

Consider an information retrieval system where documents may contain keywords {book,
water, sun, sand, swim, read}. Suppose there are four documents, where the first contains
the word {book}, the second contains {water, sun, sand, swim}, the third contains {water,
sun, swim, read}, and the fourth contains {read, sand}. We can represent the four books
using the following boolean points: (1, 0, 0, 0, 0, 0), (0, 1, 1, 1,1, 0), (0, 1, 1, 0, 1, 1),
0, 0,0, 1, 0, 1). We can use the Euclidean distance to develop the following adjacency
matrix of distances:

1 2 3 4
1 0 224 224 173
2 224 0 141 2
| 3 224 141 O 2
| 4 173 2 2 0

The distance between points 2 and 3 is the smallest (1.41), and thus they are merged.
When they are merged, we get a cluster containing {(0,1,1,1,1,0),(0,1,1,0, 1, 1)}
with a centroid of (0, 1, 1, 0.5, 1, 0.5). At this point we have a distance from this new
cluster centroid to the original points 1 and 4 being 2.24 and 1.73, respectively, while the
distance between original points 1 and 4 is 1.73. Thus, we could next merge these points
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even though they have no keywords in common. So with k = 2 we have the following
clusters: {{1, 4}, {2, 3}}.

The ROCK (RObust Clustering using linKs) clustering algorithm is targeted to both
boolean data and categorical data. A novel approach to identifying similarity is based
on the number of links between items. A pair of items are said to be neighbors if their
similarity exceeds some threshold. This need not be defined based on a precise metric,
but rather a more intuitive approach using domain experts could be used. The number of
links between two items is defined as the number of common neighbors they have. The
objective of the clustering algorithm is to group together points that have more links.
The algorithm is a hierarchical agglomerative algorithm using the number of links as the
similarity measure rather than a measure based on distance.

Instead of using a Euclidean distance, a different distance, such as the Jaccard
coefficient, has been proposed. One proposed similarity measure based on the Jaccard
coefficient is defined as
6Nt |

sim(ti,tj) = % Ut |
! J

(5.16)
If the tuples are viewed to be sets of items purchased (i.e., market basket data), then we
look at the number of items they have in common divided by the total number in both.
The denominator is used to normalize the value to be between 0 and 1.

The number of links between a pair of points can be viewed as the number of
unique paths of length 2 between them. The authors argue that the use of links rather
than similarity (distance) measures provides a more global approach because the similarity
between points is impacted by other points as well. Example 5.9 illustrates the use of links
by the ROCK algorithm using the data from Example 5.8 using the Jaccard coefficient.
Note that different threshold values for neighbors could be used to get different results.
Also note that a hierarchical approach could be used with different threshold values for
each level in the dendrogram.

EXAMPLE 5.9

Using the data from Example 5.8, we have the following table of similarities (as opposed
to the distances given in the example):

1 2 3 4
1 1 0 0 0
2 0 1 06 0.2
30 06 1 0.2
4 0 02 02 1

Suppose we say that the threshold for a neighbor is 0.6, then we have the following are the
neighbors: {(2, 3), (2,4), (3, 4)}. Note that in the following we add to these that a point is
a neighbor of itself so that we have the additional neighbors: {(1, 1), (2, 2), (3, 3), (4, 4)}.
The following table shows the number of links (common neighbors between points)
assuming that the threshold for a neighbor is 0.6:
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1 2 3 4
1 1.0 0 O
2 0 3 3 3
3 0 3 3 3
4 0 3 3 3

In this case, then, we have the following clusters: {{1}, {2, 3, 4}}. Comparing this to the
set of clustering found with a traditional Euclidean distance, we see that a “better” set

of clusters has been created.

The ROCK algorithm is divided into three general parts:

1. Obtaining a random sample of the data.
2. Performing clustering on the data using the link agglomerative approach. A good-
ness measure is used to determine which pair of points is merged at each step.

3. Using these clusters the remaining data on disk are assigned to them.

The goodness measure used to merge clusters is:
1ink(Ki s Kj)

1127 @) _nl P @ 7@

(5.17)

g(Ki, Kj) =

(ni +nj)

Here link(K;, K;) is the number of links between the two clusters. Also, n; and n; are

the number of points in each cluster. The denominator is used to normalize the number

of links because larger clusters would be expected to have more links simply because

they are larger. n ll +2/(®) {5 an estimate for the number of links between pairs of points in

K; when the threshold used for the similarity measure is ®. The function f(®) depends

on the data, but it is found to satisfy the property that each item in K; has approximately

nlf ©) neighbors in the cluster. Obviously, if all boints in the cluster are connected,
f(©®) = 1. Then n? is the number of links between points in K.

The first step in the algorithm converts the adjacency matrix into a boolean matrix
where an entry is 1 if the two corresponding points are neighbors. As the adjacency matrix
is of size n2, this is an O (n?) step. The next step converts this into a matrix indicating the
links. This can be found by calculating S x S, which can be done in 0 (n?37) [GRS99].
The hierarchical clustering portion of the algorithm then starts by placing each point in
the sample in a separate cluster. It then successively merges clusters until k clusters are
found. To facilitate this processing, both local and global heaps are used. A local heap,
g, is created to represent each cluster. Here g contains every cluster that has a nonzero
link to the cluster that corresponds to this cluster. Initially, a cluster is created for each
point, #;. The heap for 7, q[t;], contains every cluster that has a nonzero link to {#}
The global heap contains information about each cluster. All information in the heap is
ordered based on the goodness measure, which is shown in Equation 5.17.

5.8 COMPARISON

The different clustering algorithms discussed in this chapter are compared in Table 5.3.
Here we include a classification of the type of algorithm, space and time complexity,
and general notes concerning applicability.
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TABLE 5.3: Comparison of Clustering Algorithms

Algorithm Type Space Time Notes
Single link Hierarchical 0(n?) O (kn?) Not incremental
Average link Hierarchical 0 (n?) O (kn?) Not incremental
Complete link Hierarchical 0(n?) 0 (kn?) Not incremental
MST Hierarchical/ 0 (n?) 0 n?) Not incremental
partitional
Squared error Partitional 0O(n) O (tkn) Iterative
K-means Partitional O(n) O (tkn) Iterative; No categorical
Nearest neighbor Partitional 0 (n?) 0(n?) Tterative
PAM Partitional 0(n? Otk — k)?) TIterative; Adapted agglo-
merative; Outliers
BIRCH Partitional O(n) O(n) CF-tree; Incremental;
(no rebuild)  Outliers
CURE Mixed O(n) O (n) Heap; k-D tree; Incre-
' mental; Outliers;
Sampling
ROCK Agglomerative O (n?) 0 (n?Ign) Sampling; Categorical;
Links
DBSCAN Mixed 0 n?) Om?) °  Sampling; Outliers

|
r
|
The single link, complete link, and average link techniques are all hierarchical tech- |
niques with O (n?) time and space complexity. While we discussed the agglomerative l
versions of these are also divisive versions, which create the clusters in a top-down man-
ner. They all assume the data are present and thus are not incremental. There are several l
clustering algorithms based on the construction of an MST. There are both hierarchical \
and partitional versions. Their complexity is identical to that for the other hierarchical 1
techniques, and since they depend on the construction of the MST, they are not incre- |
mental. Both K-means and the squared error techniques are iterative, requiring O (tkn) |
time. The nearest neighbor is not iterative, but the number of clusters is not prede-
termined. Thus, the worst-case complexity can be O (n?). BIRCH appears to be quite
efficient, but remember that the CF-tree may need to be rebuilt. The time complexity ’
in the table assumes that the tree is not rebuilt. CURE is an improvement on these by |
using sampling and partitioning to handle scalability well and uses multiple points rather
than just one point to represent each cluster. Using multiple points allows the approach
to detect nonspherical clusters. With sampling, CURE obtains an O (r) time complexity. |
However, CURE does not handle categorical data well. This also allows it to be more
resistant to the negative impact of outliers. K-means and PAM work by iteratively reas-
signing items to clusters, which may not find a global optimal assignment. The results
of the K-means algorithm is quite sensitive to the presence of outliers. Through the use
of the CF-tree, Birch is both dynamic and scalable. However, it detects only spherical
type clusters. DBSCAN is a density-based approach. The time complexity of DBSCAN
can be improved to O(nlgn) with appropriate spatial indices. We have not included
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the genetic algorithms in this table because their performance totally depends on the
technique chosen to represent individuals, how crossover is done, and the termination
condition used.

5.9 EXERCISES

1.

2.

10.

A major problem with the single link algorithm is that clusters consisting of long
chains may be created. Describe and illustrate this concept.

Show the dendrogram created by the single, complete, and average link clustering
algorithms using the following adjacency matrix:

Item A B C D
A 0O 1 4 5
B 1 0 2 6
C 4 2 0 3
D 5 6 3 0

Construct a graph showing all edges for the data in Exercise 2. Find an MST for
this graph. Is the MST single link hierarchical clustering the same as that found
using the traditional single link algorithm?

Convert Algorithm 5.1 to a generic divisive algorithm. What technique would be
used to split clusters in the single link and complete link versions?

Trace the results of applying the squared error Algorithm 5.5 to the data from
Example 5.4 into two clusters. Indicate the convergence threshold you have used.

Use the K-means algorithm to cluster the data in Example 5.4 into three clusters.

Trace the use of the nearest neighbor algorithm on the data of Exercise 2 assuming
a threshold of 3. '

Determine the cost Cj;; for each of the four cases given for the PAM algorithm.
Finish the application of PAM in Example 5.6.

(Research) Perform a survey of recently proposed clustering algorithms. Identify
where they fit in the classification tree in Figure 5.2. Describe their approach and
performance.

5.10 BIBLIOGRAPHIC NOTES

There are many excellent books examining the concept of clustering. In [JD88], a thor-
ough treatment of clustering algorithms, including application domains, and statement
of algorithms, is provided. This work also looks at a different classification of cluster-
ing techniques. Other clustering and prediction books include [Har75], [JS71], [SS73],
[TB70], and [WI98].

A survey article of clustering with a complete list of references was “published

in 1999 [JMF99]. It covers more clustering techniques than are found in this chapter.
Included are fuzzy clustering, evolutionary techniques, and a comparison of the two.
An excellent discussion of applications is also included. Fuzzy clustering associates a

membership function with every item and every cluster. Imagine that each cluster is




