Association Analysis:
Basic Concepts and
Algorithms

Many business enterprises accumulate large quantities of data from their day-
to-day operations. For example, huge amounts of customer purchase data are
collected daily at the checkout counters of grocery stores. Table 6.1 illustrates
an example of such data, commonly known as market basket transactions.
Each row in this table corresponds to a transaction, which contains a unique
identifier labeled TID and a set of items bought by a given customer. Retail-
ers are interested in analyzing the data to learn about the purchasing behavior
of their customers. Such valuable information can be used to support a vari-
ety of business-related applications such as marketing promotions, inventory
management, and customer relationship management.

This chapter presents a methodology known as association analysis,
which is useful for discovering interesting relationships hidden in large data
sets. The uncovered relationships can be represented in the form of associa-

Table 6.1. An example of market basket transactions.

TID | Items

[Bread, Milk}
{Bread, Diapers, Beer, Eggs}
{Milk, Diapers, Beer, Cola}
{Bread, Milk, Diapers, Beer}
{Bread, Milk, Diapers, Cola}

U W N

328 Chapter 6 Association Analysis

tion rules or sets of frequent items. For example, the following rule can be
extracted from the data set shown in Table 6.1:

{Diapers} — {Beer}.

The rule suggests that a strong relationship exists between the sale of diapers
and beer because many customers who buy diapers also buy beer. Retailers
can use this type of rules to help them identify new opportunities for cross-
selling their products to the customers.

Besides market basket data, association analysis is also applicable to other
application domains such as bioinformatics, medical diagnosis, Web mining,
and scientific data analysis. In the analysis of Earth science data, for example,
the association patterns may reveal interesting connections among the ocean,
land, and atmospheric processes. Such information may help Earth scientists
develop a better understanding of how the different elements of the Earth
system interact with each other. Even though the techniques presented here
are generally applicable to a wider variety of data sets, for illustrative purposes,
our discussion will focus mainly on market basket data.

There are two key issues that need to be addressed when applying associ-
ation analysis to market basket data. First, discovering patterns from a large
transaction data set can be computationally expensive. Second, some of the
discovered patterns are potentially spurious because they may happen simply
by chance. The remainder of this chapter is organized around these two is-
sues. The first part of the chapter is devoted to explaining the basic concepts
of association analysis and the algorithms used to efficiently mine such pat-
terns. The second part of the chapter deals with the issue of evaluating the
discovered patterns in order to prevent the generation of spurious results.

6.1 Problem Definition

This section reviews the basic terminology used in association analysis and
presents a formal description of the task.

Binary Representation Market basket data can be represented in a binary
format as shown in Table 6.2, where each row corresponds to a transaction
and each column corresponds to an item. An item can be treated as a binary
variable whose value is one if the item is present in a transaction and zero
otherwise. Because the presence of an item in a transaction is often considered
more important than its absence, an item is an asymmetric binary variable.

6.1 Problem Definition 329

Table 6.2. A binary 0/1 representation of market basket data.

TID | Bread | Milk | Diapers | Beer | Eggs | Cola
1 1 1 0 0 0 0
2 1 0 1 1 1 0
3 0 1 1 1 0 1
4 1 1 1 1 0 0
5 1 1 1 0 0 1

This representation is perhaps a very simplistic view of real market basket data
because it ignores certain important aspects of the data such as the quantity
of items sold or the price paid to purchase them. Methods for handling such
non-binary data will be explained in Chapter 7.

Itemset and Support Count Let [= {%1,02,. . .,iq} be the set of all items
in a market basket data and T = {t1,%9,...,tn} be the set of all transactions.
Each transaction t; contains a subset of items chosen from I. In association
analysis, a collection of zero or more items is termed an itemset. If an itemset
contains k items, it is called a k-itemset. For instance, {Beer, Diapers, Milk}
is an example of a 3-itemset. The null (or empty) set is an itemset that does
not contain any items.

The transaction width is defined as the number of items present in a trans-
action. A transaction t; is said to contain an itemset X if X is a subset of
tj. For example, the second transaction shown in Table 6.2 contains the item-
set {Bread, Diapers} but not {Bread, Milk}. An important property of an
itemset is its support count, which refers to the number of transactions that
contain a particular itemset. Mathematically, the support count, o(X), for an
itemset X can be stated as follows:

o(X) = [{tilX Cti, ti € T},
where the symbol | - | denote the number of elements in a set. In the data set

shown in Table 6.2, the support count for {Beer, Diapers, Milk} is equal to
two because there are only two transactions that contain all three items.

Association Rule An association rule is an implication expression of the
form X — Y, where X and Y are disjoint itemsets, i.e., X NY = (). The
strength of an association rule can be measured in terms of its support and
confidence. Support determines how often a rule is applicable to a given

330 Chapter 6 Association Analysis

data set, while confidence determines how frequently items in Y appear in
transactions that contain X. The formal definitions of these metrics are

o(XUY)
N Y
o(XUY)

Confidence, ¢(X — V) = o) (6.2)

Support, s(X — Y) (6.1)

Example 6.1. Consider the rule {Milk, Diapers} — {Beer}. Since the
support count for {Milk, Diapers, Beer} is 2 and the total number of trans-
actions is 5, the rule’s support is 2/5 = 0.4. The rule’s confidence is obtained
by dividing the support count for {Milk, Diapers, Beer} by the support count
for {Milk, Diapers}. Since there are 3 transactions that contain milk and di-
apers, the confidence for this rule is 2/3 = 0.67.]

Why Use Support and Confidence? Support is an important measure
because a rule that has very low support may occur simply by chance. A
low support rule is also likely to be uninteresting from a business perspective
because it may not be profitable to promote items that customers seldom buy
together (with the exception of the situation described in Section 6.8). For
these reasons, support is often used to eliminate uninteresting rules. As will
be shown in Section 6.2.1, support also has a desirable property that can be
exploited for the efficient discovery of association rules.

Confidence, on the other hand, measures the reliability of the inference
made by a rule. For a given rule X — Y, the higher the confidence, the more
likely it is for Y to be present in transactions that contain X. Confidence also
provides an estimate of the conditional probability of Y given X.

Association analysis results should be interpreted with caution. The infer-
ence made by an association rule does not necessarily imply causality. Instead,
it suggests a strong co-occurrence relationship between items in the antecedent
and consequent of the rule. Causality, on the other hand, requires knowledge
about the causal and effect attributes in the data and typically involves rela-
tionships occurring over time (e.g., ozone depletion leads to global warming).

Formulation of Association Rule Mining Problem The association

- rule mining problem can be formally stated as follows:

Definition 6.1 (Association Rule Discovery). Given a set of transactions
T, find all the rules having support > minsup and confidence > minconf,

where minsup and minconf are the corresponding support and confidence
thresholds.

6.1 Problem Definition 331

A brute-force approach for mining association rules is to compute the sup-
port and confidence for every possible rule. This approach is prohibitively
expensive because there are exponentially many rules that can be extracted
from a data set. More specifically, the total number of possible rules extracted
from a data set that contains d items is

R=3%_-29 1. (6.3)

The proof for this equation is left as an exercise to the readers (see Exercise 5
on page 405). Even for the small data set shown in Table 6.1, this approach
requires us to compute the support and confidence for 36 — 27+ 1 = 602 rules.
More than 80% of the rules are discarded after applying minsup = 20% and
minconf = 50%, thus making most of the computations become wasted. To
avoid performing needless computations, it would be useful to prune the rules
early without having to compute their support and confidence values.

An initial step toward improving the performance of association rule min-
ing algorithms is to decouple the support and confidence requirements. From
Equation 6.2, notice that the support of a rule X — Y depends only on
the support of its corresponding itemset, X UY. For example, the following
rules have identical support because they involve items from the same itemset,
{Beer, Diapers, Milk}: '

{Beer, Diapers} — {Milk}, {Beer, Milk} — {Diapers},
{Diapers, Milk} — {Beer}, {Beer} — {Diapers, Milk},
{Milk} — {BeerDiapers}, {Diapers} — {BeerMilk}.

If the itemset is infrequent, then all six candidate rules can be pruned imme-
diately without our having to compute their confidence values.

Therefore, a common strategy adopted by many association rule mining
algorithms is to decompose the problem into two major subtasks:

1. Frequent Itemset Generation, whose objective is to find all the item-
sets that satisfy the minsup threshold. These itemsets are called frequent
itemsets.

2. Rule Generation, whose objective is to extract all the high-confidence
rules from the frequent itemsets found in the previous step. These rules
are called strong rules.

The computational requirements for frequent itemset generation are gen-
erally more expensive than those of rule generation. Efficient techniques for
generating frequent itemsets and association rules are discussed in Sections 6.2
and 6.3, respectively.

332 Chapter 6 Association Analysis

Figure 6.1. An itemset lattice.

6.2 Frequent Itemset Generation

A lattice structure can be used to enumerate the list of all possible itemsets.
Figure 6.1 shows an itemset lattice for I = {a,b,c,d, e}. In general, a data set
that contains & items can potentially generate up to 2¥ — 1 frequent itemsets,
excluding the null set. Because k can be very large in many practical appli-
cations, the search space of itemsets that need to be explored is exponentially
large.

A brute-force approach for finding frequent itemsets is to determine the
support count for every candidate itemset in the lattice structure. To do
this, we need to compare each candidate against every transaction, an opera-
tion that is shown in Figure 6.2. If the candidate is contained in a transaction,
its support count will be incremented. For example, the support for {Bread,
Milk} is incremented three times because the itemset is contained in transac-
tions 1, 4, and 5. Such an approach can be very expensive because it requires
O(NMw) comparisons, where N is the number of transactions, M = 2F —1 is
the number of candidate itemsets, and w is the maximum transaction width.

6.2 Frequent Itemset Generation 333

Candidates
A
Transactions
TID ltems
T 1 |Bread, Milk M
2 Bread, Diapers, Beer, Eggs
N 3 Milk, Diapers, Beer, Coke
l 4 Bread, Milk, Diapers, Beer
5 Bread, Milk, Diapers, Coke L
\

Figure 6.2. Counting the support of candidate itemsets.

There are several ways to reduce the computational complexity of frequent
itemset generation.

1. Reduce the number of candidate itemsets (A/). The Aprior: prin-
ciple, described in the next section, is an effective way to eliminate some
of the candidate itemsets without counting their support values.

2. Reduce the number of comparisons. Instead of matching each can-
didate itemset against every transaction, we can reduce the number of
comparisons by using more advanced data structures, either to store the
candidate itemsets or to compress the data set. We will discuss these
strategies in Sections 6.2.4 and 6.6.

6.2.1 The Apriori Principle

This section describes how the support measure helps to reduce the number
of candidate itemsets explored during frequent itemset generation. The use of
support for pruning candidate itemsets is guided by the following principle.

Theorem 6.1 (Apriori Principle). If an itemset is frequent, then all of its
subsets must also be frequent.

To illustrate the idea behind the Apriori principle, consider the itemset
lattice shown in Figure 6.3. Suppose {c,d,e} is a frequent itemset. Clearly,
any transaction that contains {c,d,e} must also contain its subsets, {c, d},
{c,e}, {d,e}, {c}, {d}, and {e}. As a result, if {c,d,e} is frequent, then
all subsets of {c,d,e} (i.e., the shaded itemsets in this figure) must also be
frequent.

334 Chapter 6 Association Analysis

Frequent
ltemset

Figure 6.3. An illustration of the Apriori principle. If {c, d, e} is frequent, then all subsets of this
itemset are frequent.

Conversely, if an itemset such as {a, b} is infrequent, then all of its supersets
must be infrequent too. As illustrated in Figure 6.4, the entire subgraph
containing the supersets of {a,b} can be pruned immediately once {a,b} is
found to be infrequent. This strategy of trimming the exponential search
space based on the support measure is known as support-based pruning.
Such a pruning strategy is made possible by a key property of the support
measure, namely, that the support for an itemset never exceeds the support
for its subsets. This property is also known as the anti-monotone property
of the support measure.

Definition 6.2 (Monotonicity Property). Let I be a set of items, and
J =21 be the power set of I. A measure / is monotone (or upward closed) if

VX,Y €J: (X CY)—s f(X) < f(Y)

)

6.2 Frequent Itemset Generation 335

Infrequent
ltemset

Pruned \\\
Supersets

Figure 6.4. Anillustration of support-based pruning. If {a, b} is infrequent, then all supersets of {a, b}
are infrequent.

which means that if X is a subset of Y, then f(X) must not exceed f(Y). On
the other hand, f is anti-monotone (or downward closed) if

VXY €J: (X CY)— f(Y) < f(X),

which means that if X is a subset of ¥, then (V") must not exceed f(X).

Any measure that possesses an anti-monotone property can be incorpo-
rated directly into the mining algorithm to effectively prune the exponential
search space of candidate itemsets, as will be shown in the next section.

6.2.2 Frequent Itemset Generation in the Apriori Algorithm

Apriori is the first association rule mining algorithm that pioneered the use
of support-based pruning to systematically control the exponential growth of
candidate itemsets. Figure 6.5 provides a high-level illustration of the frequent
itemset generation part of the Apriori algorithm for the transactions shown in

336 Chapter 6 Association Analysis

Candidate
1-ltemsets
Item Count .

Beer 3 Minimum support count = 3
Bread 4
Cola 2 N)
Diapers 4 \ Candidate
Milk 2 2-ltemsets
Eggs 1 Itemset Count

{Beer, Bread}
{Beer, Diapers}
{Beer, Milk}
{Bread, Diapers}
{Bread, Milk}
{Diapers, Milk}

ltemsets removed
because of low
support

Candidate
3-Itemsets

B ltemset Count
{Bread, Diapers, Milk} 3

/oocommoom

Figure 6.5. lllustration of frequent itemset generation using the Apriori algorithm.

Table 6.1. We assume that the support threshold is 60%, which is equivalent
to a minimum support count equal to 3.

Initially, every item is considered as a candidate 1-itemset. After count-
ing their supports, the candidate itemsets {Cola} and {Eggs} are discarded
because they appear in fewer than three transactions. In the next iteration,
candidate 2-itemsets are generated using only the frequent 1-itemsets because
the Apriori principle ensures that all supersets of the infrequent 1-itemsets
must be infrequent. Because there are only four frequent 1-itemsets, the num-
ber of candidate 2-itemsets generated by the algorithm is (3) = 6. Two
of these six candidates, {Beer, Bread} and {Beer, Milk}, are subsequently
found to be infrequent after computing their support values. The remain-
ing four candidates are frequent, and thus will be used to generate candidate
3-itemsets. Without support-based pruning, there are (g) = 20 candidate
3-itemsets that can be formed using the six items given in this example. With
the Apriori principle, we only need to keep candidate 3-itemsets whose subsets
are frequent. The only candidate that has this property is {Bread, Diapers,
Milk}.

The effectiveness of the Apriori pruning strategy can be shown by count-
ing the number of candidate itemsets generated. A brute-force strategy of

6.2 Frequent Itemset Generation 337

enumerating all itemsets (up to size 3) as candidates will produce

()0 -vemrms

candidates. With the Apriori principle, this number decreases to

6 4
<1>+<2>+1:6+6+1:13

candidates, which represents a 68% reduction in the number of candidate
itemsets even in this simple example.

The pseudocode for the frequent itemset generation part of the Apriori
algorithm is shown in Algorithm 6.1. Let Oy denote the set of candidate
k-itemsets and F) denote the set of frequent k-itemsets:

e The algorithm initially makes a single pass over the data set to determine
the support of each item. Upon completion of this step, the set of all
frequent 1-itemsets, Fi, will be known (steps 1 and 2).

e Next, the algorithm will iteratively generate new candidate k-itemsets
using the frequent (k — 1)-itemsets found in the previous iteration (step
5). Candidate generation is implemented using a function called apriori-
gen, which is described in Section 6.2.3.

Algorithm 6.1 Frequent itemset generation of the Apriori algorithm.
1: k=1
2 Fp={i|ieIno({i}) >N x minsup}. {Find all frequent 1-itemsets}

3: repeat

4 k=k+1.

5. O = apriori-gen(Fj_1). {Generate candidate itemsets}

6. for each transaction t € T' do

7: C, = subset(Cy, t). {Identify all candidates that belong to t}
8: for each candidate itemset ¢ € C; do

9: o(c) =o(c)+1. {Increment support count}

10: end for

11: end for

122 Fr={clceCrNo(c) =N x minsup}. {Extract the frequent k-itemsets}
13: until F, =0

14: Result = J Fk-

338 Chapter 6 Association Analysis

e To count the support of the candidates, the algorithm needs to make an
additional pass over the data set (steps 6-10). The subset function is
used to determine all the candidate itemsets in Cj that are contained in
each transaction ¢. The implementation of this function is described in
Section 6.2.4.

e After counting their supports, the algorithm eliminates all candidate
itemsets whose support counts are less than minsup (step 12).

e The algorithm terminates when there are no new frequent itemsets gen-
erated, i.e., Fj, = () (step 13).

The frequent itemset generation part of the Apriori algorithm has two im-
portant characteristics. First, it is a level-wise algorithm; i.e., it traverses the
itemset lattice one level at a time, from frequent 1-itemsets to the maximum
size of frequent itemsets. Second, it employs a generate-and-test strategy
for finding frequent itemsets. At each iteration, new candidate itemsets are
generated from the frequent itemsets found in the previous iteration. The
support for each candidate is then counted and tested against the minsup
threshold. The total number of iterations needed by the algorithm is kpayx +1,
where kmax is the maximum size of the frequent itemsets.

6.2.3 Candidate Generation and Pruning

The apriori-gen function shown in Step 5 of Algorithm 6.1 generates candidate
itemsets by performmg the following two operations:

1. Candidate Generation. This operation generates new candidate k-
itemsets based on the frequent (k — 1)-itemsets found in the previous
iteration.

2. Candidate Pruning. This operation eliminates some of the candidate
k-itemsets using the support-based pruning strategy.

To illustrate the candidate pruning operation, consider a candidate k- itemset,

= {41,%2,...,1k}. The algorithm must determine whether all of its proper
subsets, X — {zj} (Vi = 1,2,...,k), are frequent. If one of them is infre-
quent, then X is immediately pruned. This approach can effectively reduce
the number of candidate itemsets considered during support counting. The
complexity of this operation is O(k) for each candidate k-itemset. However,
as will be shown later, we do not have to examine all k subsets of a given
candidate itemset. If m of the k subsets were used to generate a candidate,
we only need to check the remaining k — m subsets during candidate pruning.

6.2 Frequent Itemset Generation 339

In principle, there are many ways to generate candidate itemsets. The fol-
lowing is a list of requirements for an effective candidate generation procedure:

1. It should avoid generating too many unnecessary candidates. A candi-
date itemset is unnecessary if at least one of its subsets is infrequent.
Such a candidate is guaranteed to be infrequent according to the anti-
monotone property of support.

2. Tt must ensure that the candidate set is complete, i.e., no frequent item-
sets are left out by the candidate generation procedure. To ensure com-
pleteness, the set of candidate itemsets must subsume the set of all fre-
quent itenisets, ie., Vk: F, C Cy.

3. It should not generate the same candidate itemset more than once. For
example, the candidate itemset {a,b,c,d} can be generated in many
ways—by merging {a, b, c} with {d}, {b,d} with {a, c}, {c} with {a,b,d},
etc. Generation of duplicate candidates leads to wasted computations
and thus should be avoided for efficiency reasons.

Next, we will briefly describe several candidate generation procedures, in-
cluding the one used by the apriori-gen function.

Brute-Force Method The brute-force method considers every k-itemset as
a potential candidate and then applies the candidate pruning step to remove
any unnecessary candidates (see Figure 6.6). The number of candidate item-
sets generated at level k is equal to (Z), where d is the total number of items.
Although candidate generation is rather trivial, candidate pruning becomes
extremely expensive because a large number of itemsets must be examined.
Given that the amount of computations needed for each candidate is O(k),
the overall complexity of this method is O Zi:l kx (Z))=0(d- 24-1).

Fi_; x F{ Method An alternative method for candidate generation is to
extend each frequent (k — 1)-itemset with other frequent items. Figure 6.7
illustrates how a frequent 2-itemset such as {Beer, Diapers} can be aug-
mented with a frequent item such as Bread to produce a candidate 3-itemset
{Beer, Diapers, Bread}. This method will produce O(|Fg_1| X |F1|) candi-
date k-itemsets, where |F}| is the number of frequent j-itemsets. The overall
complexity of this step is O3>, k| Fr—1||F1]).

The procedure is complete because every frequent k-itemset is composed
of a frequent (k — 1)-itemset and a frequent 1-itemset. Therefore, all frequent
k-itemsets are part of the candidate k-itemsets generated by this procedure.

340 Chapter 6 Association Analysis

Candidate Generation

ltemset
{Beer, Bread, Cola}
{Beer, Bread, Diapers}
{Beer, Bread, Milk}
{Beer, Bread, Eggs}

ftems {Beer, Cola, Diapers}

ftom {Beer, Cola, Milk} Candidate
% {Beer, Cola, Eggs} Pruning
|bread |y {Beer, Diapers, Milk} —_
_CL {Beer, Dia;FJ)ers, Eggs} ’7 ltgmset -
| Diapers {Beer, Mik, Eggs} {Bread, Diapers, Milk}
| Milk {Bread, Cola, Diapers}
Eggs {Bread, Cola, Milk}

{Bread, Cola, Eggs}
{Bread, Diapers, Milk}
{Bread, Diapers, Eggs}
& {Bread, Milk, Eggs}
{Cola, Diapers, Milk}

I {Cola, Diapers, Eggs}
{Cola, Milk, Eggs}
{Diapers, Milk, Eggs}

\ Figure 6.6. A brute-force method for generating candidate 3-itemsets.

;' Frequent
2-itemset
Iltemset
{Beer, Diapers}
{Bread, Diapers}
{Bread, Milk}

{Diapers, Milk} Candidate

Candidate Generation

:‘t Pruning
‘ !temset ltemset
i {Beer, D?apers, Bread} > [[Broa Diapors W

Frequent {Beer, Diapers, Milk}

1-itemset {Bread, Diapers, Milk}

[item | {Bread, Milk, Beer}

Beer

Bread

Diapers

Milk

, Figure 6.7. Generating and pruning candidate %-itemsets by merging a frequent (k — 1)-itemset with a
frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

This approach, however, does not prevent the same candidate itemset from
being generated more than once. For instance, {Bread, Diapers, Milk} can
be generated by merging {Bread, Diapers} with {Milk}, {Bread, Milk} with
{Diapers}, or {Diapers, Milk} with {Bread}. One way to avoid generating

6.2 Frequent Itemset Generation 341

duplicate candidates is by ensuring that the items in each frequent itemset are
kept sorted in their lexicographic order. Each frequent (k—1)-itemset X is then
extended with frequent items that are lexicographically larger than the items in
X. For example, the itemset {Bread, Diapers} can be augmented with {Milk}
since Milk is lexicographically larger than Bread and Diapers. However, we
should not augment {Diapers, Milk} with {Bread} nor {Bread, Milk} with
{Diapers} because they violate the lexicographic ordering condition.

While this procedure is a substantial improvement over the brute-force
method, it can still produce a large number of unnecessary candidates. For
example, the candidate itemset obtained by merging {Beer, Diapers} with
{Milk} is unnecessary because one of its subsets, {Beer, Milk}, is infrequent.
There are several heuristics available to reduce the number of unnecessary
candidates. For example, note that, for every candidate k-itemset that survives
the pruning step, every item in the candidate must be contained in at least
k — 1 of the frequent (k — 1)-itemsets. Otherwise, the candidate is guaranteed
to be infrequent. For example, {Beer, Diapers, Milk} is a viable candidate
3-itemset only if every item in the candidate, including Beer, is contained in
at least two frequent 2-itemsets. Since there is only one frequent 2-itemset
containing Beer, all candidate itemsets involving Beer must be infrequent.

F)_1 xF;_1 Method The candidate generation procedure in the apriori-gen
function merges a pair of frequent (k — 1)-itemsets only if their first k£ —2 items
are identical. Let A = {a1,a2,...,ax-1} and B = {b1,bz,... ,bg_1} be a pair
of frequent (k — 1)-itemsets. A and B are merged if they satisfy the following
conditions:

aj =b; (for i =1,2,...,k—2) and ax_1 # bg—1.

In Figure 6.8, the frequent itemsets {Bread, Diapers} and {Bread, Milk} are
merged to form a candidate 3-itemset {Bread, Diapers, Milk}. The algorithm
does not have to merge {Beer, Diapers} with {Diapers, Milk} because the
first item in both itemsets is different. Indeed, if {Beer, Diapers, Milk} is a
viable candidate, it would have been obtained by merging {Beer, Diapers}
with {Beer, Milk} instead. This example illustrates both the completeness of
the candidate generation procedure and the advantages of using lexicographic
ordering to prevent duplicate candidates. However, because each candidate is
obtained by merging a pair of frequent (k—1)-itemsets, an additional candidate
pruning step is needed to ensure that the remaining k — 2 subsets of the
candidate are frequent.

342 Chapter 6 Association Analysis

Frequent
2-itemset

ltemset
{Beer, Diapers}
{Bread, Diapers}

{Bread, Milk}
{Diapers, Milk} Candidate Candidate
Generation Pruning
Itemset R ltemset
Frequent {Bread, Diapers, Milk} " |{Bread, Diapers, Milk}
2-itemset
Itemset

{Beer, Diapers}
{Bread, Diapers}
{Bread, Milk}
{Diapers, Milk}

Figure 6.8. Generating and pruning candidate &-itemsets by merging pairs of frequent (k—1)-itemsets.

6.2.4 Support Counting

Support counting is the process of determining the frequency of occurrence
for every candidate itemset that survives the candidate pruning step of the
apriori-gen function. Support counting is implemented in steps 6 through 11
of Algorithm 6.1. One approach for doing this is to compare each transaction
against every candidate itemset (see Figure 6.2) and to update the support
counts of candidates contained in the transaction. This approach is computa-
tionally expensive, especially when the numbers of transactions and candidate
itemsets are large.

An alternative approach is to enumerate the itemsets contained in each
transaction and use them to update the support counts of their respective can-
didate itemsets. To illustrate, consider a transaction ¢t that contains five items,
{1,2,3,5,6}. There are (g) = 10 itemsets of size 3 contained in this transac-
tion. Some of the itemsets may correspond to the candidate 3-itemsets under
investigation, in which case, their support counts are incremented. Other
subsets of ¢ that do not correspond to any candidates can be ignored.

Figure 6.9 shows a systematic way for enumerating the 3-itemsets contained
in t. Assuming that each itemset keeps its items in increasing lexicographic
order, an itemset can be enumerated by specifying the smallest item first,
followed by the larger items. For instance, given ¢ = {1,2,3,5,6}, all the 3-
itemsets contained in ¢ must begin with item 1, 2, or 3. It is not possible to
construct a 3-itemset that begins with items 5 or 6 because there are only two

6.2 Frequent Itemset Generation 343

Transaction, t

Level 1

v

123
135 235
125 156 256 356
1286 136 236
Level 3 Subsets of 3 items

Figure 6.9. Enumerating subsets of three items from a transaction .

items in ¢ whose labels are greater than or equal to 5. The number of ways to
specify the first item of a 3-itemset contained in ¢ is illustrated by the Level
1 prefix structures depicted in Figure 6.9. For instance, 1 represents
a 3-itemset that begins with item 1, followed by two more items chosen from
the set {2,3,5,6}.

After fixing the first item, the prefix structures at Level 2 represent the
number of ways to select the second item. For example, 1 2 corresponds
to itemsets that begin with prefix (1 2) and are followed by items 3, 5, or 6.
Finally, the prefix structures at Level 3 represent the complete set of 3-itemsets
contained in t. For example, the 3-itemsets that begin with prefix {1 2} are
{1,2,3}, {1,2,5}, and {1,2,6}, while those that begin with prefix {2 3} are
{2,3,5} and {2,3,6}. |

The prefix structures shown in Figure 6.9 demonstrate how itemsets con-
tained in a transaction can be systematically enumerated, i.e., by specifying
their items one by one, from the leftmost item to the rightmost item. We
still have to determine whether each enumerated 3-itemset corresponds to an
existing candidate itemset. If it matches one of the candidates, then the sup-
port count of the corresponding candidate is incremented. In the next section,
we illustrate how this matching operation can be performed efficiently using a
hash tree structure.

%
i

344 Chapter 6 Association Analysis

Hash Tree

Leaf nodes
containing | {Beer, Bread}
candidate | {Beer, Diapers}

{Bread, Diapers} {Diapers, Milk}

o-itemsets (Beer, Milk} {Bread, Milk}
LA A A A 4 A A
Transactions
TID |Iltems
1 Bread, Milk
2 Bread, Diapers, Beer, Eggs
3 Milk, Diapers, Beer, Cola
4 Bread, Milk, Diapers, Beer
5 Bread, Milk, Diapers, Cola

Figure 6.10. Counting the support of itemsets using hash structure.

Support Counting Using a Hash Tree

In the Apriori algorithm, candidate itemsets are partitioned into different
buckets and stored in a hash tree. During support counting, itemsets contained
in each transaction are also hashed into their appropriate buckets. That way,
instead of comparing each itemset in the transaction with every candidate
itemset, it is matched only against candidate itemsets that belong to the same
bucket, as shown in Figure 6.10.

Figure 6.11 shows an example of a hash tree structure. Each internal node
of the tree uses the following hash function, h(p) = p mod 3, to determine
which branch of the current node should be followed next. For example, items
1, 4, and 7 are hashed to the same branch (i.e., the leftmost branch) because
they have the same remainder after dividing the number by 3. All candidate
itemsets are stored at the leaf nodes of the hash tree. The hash tree shown in
Figure 6.11 contains 15 candidate 3-itemsets, distributed across 9 leaf nodes.

Consider a transaction, ¢t = {1,2,3,5,6}. To update the support counts
of the candidate itemsets, the hash tree must be traversed in such a way
that all the leaf nodes containing candidate 3-itemsets belonging to ¢ must be
visited at least once. Recall that the 3-itemsets contained in ¢ must begin with
items 1, 2, or 3, as indicated by the Level 1 prefix structures shown in Figure
6.9. Therefore, at the root node of the hash tree, the items 1, 2, and 3 of the
transaction are hashed separately. Ttem 1 is hashed to the left child of the root
node, item 2 is hashed to the middle child, and item 3 is hashed to the right
child. At the next level of the tree, the transaction is hashed on the second

6.2 Frequent Itemset Generation 345

Hash Function

Transaction /,/ o4
12356 / o

Figure 6.11. Hashing a transaction at the root node of a hash tree.

item listed in the Level 2 structures shown in Figure 6.9. For example, after
hashing on item 1 at the root node, items 2, 3, and 5 of the transaction are
hashed. Items 2 and 5 are hashed to the middle child, while item 3 is hashed
to the right child, as shown in Figure 6.12. This process continues until the
leaf nodes of the hash tree are reached. The candidate itemsets stored at the
visited leaf nodes are compared against the transaction. If a candidate is a
subset of the transaction, its support count is incremented. In this example, 5
out of the 9 leaf nodes are visited and 9 out of the 15 itemsets are compared
against the transaction.

6.2.5 Computational Complexity

The computational complexity of the Apriori algorithm can be affected by the
following factors.

Support Threshold Lowering the support threshold often results in more
itemsets being declared as frequent. This has an adverse effect on the com-

346 Chapter 6 Association Analysis

Transaction /,/ 24
12356 7 P

357|368
689

124 125 159
457 458

Figure 6.12. Subset operation on the leftmost subtree of the root of a candidate hash tree.

putational complexity of the algorithm because more candidate itemsets must
be generated and counted, as shown in Figure 6.13. The maximum size of
frequent itemsets also tends to increase with lower support thresholds. As the
maximum size of the frequent itemsets increases, the algorithm will need to
make more passes over the data set.

Number of Items (Dimensionality) As the number of items increases,
more space will be needed to store the support counts of items. If the number of
frequent items also grows with the dimensionality of the data, the computation
and I/O costs will increase because of the larger number of candidate itemsets
generated by the algorithm.

Number of Transactions Since the Apriori algorithm makes repeated
passes over the data set, its run time increases with a larger number of trans-
actions.

Average Transaction Width For dense data sets, the average transaction
width can be very large. This affects the complexity of the Apriori algorithm in
two ways. First, the maximum size of frequent itemsets tends to increase as the

Frequent Itemset Generation 347

%105
4 T T T T T T T T T
—e— Support=0.1%
35+ -—+-- Support=0.2% | -
-—v—--Support = 0.5%

N
o)
T T

Number of Candidate ltemsets
n
T

olw e S SR
0 5 10 15 20

Size of ltemset

(a) Number of candidate itemsets.

%108
4 1 T 1
—e— Support =0.1%
3.5 -—+-- Support=0.2% | -
-—v—--Support = 0.5%
3r i

Number of Frequent ltemsets
N
T
L

20

Size of ltemset

(b) Number of frequent itemsets.
Figure 6.13. Effect of support threshold on the number of candidate and frequent itemsets.
average transaction width increases. Asa result, more candidate itemsets must

be examined during candidate generation and support counting, as illustrated
in Figure 6.14. Second, as the transaction width increases, more itemsets

348 Chapter 6 Association Analysis

10 T T T T

—=&— Width=5
—-—+-- Width = 10
-=V—--Width =15

Number of Candidate Itemsets

20 25
Size of ltemset
(a) Number of candidate itemsets.
x108
10 T T T T
—e— Width=5
or -—+-- Width = 10
-=9—--Width = 15 | |
sl
§2]
[5) ‘V»
2 | v
ze 77X i
g / \
857 4 ¢
s / \]
2 4r / \
Q
Q Y K(
Esr / \ 1
=z ’/ -§7
2F W \
/ K a
T ’Wl Ak \v\‘
A+ ¥,
NS SO = S - S
0 5 10 15 20 25

Size of ltemset

(b) Number of Frequent Itemsets.

Figure 6.14. Effect of average transaction width on the number of candidate and frequent itemsets.

are contained in the transaction. This will increase the number of hash tree
traversals performed during support counting.

A detailed analysis of the time complexity for the
presented next.

Apriori algorithm is

6.3 Rule Generation 349

Generation of frequent 1-itemsets For each transaction, we need to up-
date the support count for every item present in the transaction. Assuming
that w is the average transaction width, this operation requires O(Nw) time,
where N is the total number of transactions.

Candidate generation To generate candidate k-itemsets, pairs of frequent
(k — 1)-itemsets are merged to determine whether they have at least k — 2
items in common. Each merging operation requires at most k — 2 equality
comparisons. In the best-case scenario, every merging step produces a viable
candidate k-itemset. In the worst-case scenario, the algorithm must merge ev-
ery pair of frequent (k—1)-itemsets found in the previous iteration. Therefore,
the overall cost of merging frequent itemsets is

w w
Z(k —2)|Ck| < Cost of merging < Z(k — 2)|F_1|%.
k=2 k=2

A hash tree is also constructed during candidate generation to store the can-
didate itemsets. Because the maximum depth of the tree is k, the cost for
populating the hash tree with candidate itemsets is O(> s k|Cy|). During
candidate pruning, we need to verify that the k — 2 subsets of every candidate
k-itemset are frequent. Since the cost for looking up a candidate in a hash
tree is O(k), the candidate pruning step requires O(Y ieg k(k— 2)|Ck|) time.

Support counting Each transaction of length |t| produces ('2) itemsets of
size k. This is also the effective number of hash tree traversals performed for
each transaction. The cost for support counting is O(N >k (f)ak), where w
is the maximum transaction width and oy, is the cost for updating the support
count of a candidate k-itemset in the hash tree.

6.3 Rule Generation

This section describes how to extract association rules efficiently from a given
frequent itemset. Each frequent k-itemset, Y, can produce up to 2k 2 associa-
tion rules, ignoring rules that have empty antecedents or consequents () — Y
or Y — (). An association rule can be extracted by partitioning the itemset
Y into two non-empty subsets, X and Y — X, such that X — Y — X satisfies
the confidence threshold. Note that all such rules must have already met the
support threshold because they are generated from a frequent itemset.

350 Chapter 6 Association Analysis

Example 6.2. Let X = {1,2,3} be a frequent itemset. There are six candi-
date association rules that can be generated from X: {1,2} — {3}, {1,3} —
{2}, {2,3} — {1}, {1} — {2,3}, {2} — {1,3}, and {3} — {1,2}. As
each of their support is identical to the support for X, the rules must satisfy
the support threshold. =

Computing the confidence of an association rule does not require additional
scans of the transaction data set. Consider the rule {1,2} — {3}, which is
generated from the frequent itemset X = {1,2,3}. The confidence for this rule
is 0({1,2,3})/0({1,2}). Because {1,2, 3} is frequent, the anti-monotone prop-
erty of support ensures that {1,2} must be frequent, too. Since the support
counts for both itemsets were already found during frequent itemset genera-
tion, there is no need to read the entire data set again.

6.3.1 Confidence-Based Pruning

Unlike the support measure, confidence does not have any monotone property.
For example, the confidence for X — Y can be larger, smaller, or equal to the
confidence for another rule X — f’, where X CXandVY CY (see Exercise
3 on page 405). Nevertheless, if we compare rules generated from the same
frequent itemset Y, the following theorem holds for the confidence measure.

Theorem 6.2. If a rule X — Y —X does not satisfy the confidence threshold,
then any rule X' — Y — X', where X' is a subset of X, must not satisfy the
confidence threshold as well.

To prove this theorem, consider the following two rules: X/ — Y — X’ and
X — Y — X, where X’ C X. The confidence of the rules are o(Y)/o(X’) and
o(Y)/o(X), respectively. Since X is a subset of X, 0(X’) > o(X). Therefore,
the former rule cannot have a higher confidence than the latter rule.

6.3.2 Rule Generation in Apriori Algorithm

The Apriori algorithm uses a level-wise approach for generating association
rules, where each level corresponds to the number of items that belong to the
rule consequent. Initially, all the high-confidence rules that have only one item
in the rule consequent are extracted. These rules are then used to generate
new candidate rules. For example, if {acd} — {b} and {abd} — {c} are
high-confidence rules, then the candidate rule {ad} — {bc} is generated by
merging the consequents of both rules. Figure 6.15 shows a lattice structure
for the association rules generated from the frequent itemset {a, b, c,d}. If any
node in the lattice has low confidence, then according to Theorem 6.2, the

6.3 Rule Generation 351

Low-Confidence

Figure 6.15. Pruning of association rules using the confidence measure.

entire subgraph spanned by the node can be pruned immediately. Suppose
the confidence for {bcd} — {a} is low. All the rules containing item a in
its consequent, including {cd} — {ab}, {bd} — {ac}, {bc} — {ad}, and
{d} — {abc} can be discarded.

A pseudocode for the rule generation step is shown in Algorithms 6.2 and
6.3. Note the similarity between the ap-genrules procedure given in Algo-
rithm 6.3 and the frequent itemset generation procedure given in Algorithm
6.1. The only difference is that, in rule generation, we do not have to make
additional passes over the data set to compute the confidence of the candidate
rules. Instead, we determine the confidence of each rule by using the support
counts computed during frequent itemset generation.

Algorithm 6.2 Rule generation of the Apriori algorithm.
1. for each frequent k-itemset fx, k > 2 do
20 Hy={il|ie fr} {1-item consequents of the rule.}
3. call ap-genrules(fx, Hi.)
4: end for

352 Chapter 6 Association Analysis

Algorithm 6.3 Procedure ap-genrules(fi, Hn).

1: k=|fx| {size of frequent itemset.}
2: m = |Hp| {size of rule consequent.}
3: if k> m +1 then

4: Hp,yq1 = apriori-gen(Hp,).

5. for each hyt1 € Hpqq do

6: conf = o(fi)/o(fr — bmt1)-

7: if conf > minconf then

8: output the rule (fx — hm+1) — Pm+1-
9: else
10: delete hp,1 from Hp,qq.
11: end if

12: end for
13: call ap-genrules(fi, Hpmt1.)
14: end if

6.3.3 An Example: Congressional Voting Records

This section demonstrates the results of applying association analysis to the
voting records of members of the United States House of Representatives. The
data is obtained from the 1984 Congressional Voting Records Database, which .
is available at the UCI machine learning data repository. Each transaction
contains information about the party affiliation for a representative along with
his or her voting record on 16 key issues. There are 435 transactions and 34
items in the data set. The set of items are listed in Table 6.3.

The Apriori algorithm is then applied to the data set with minsup = 30%
and minconf = 90%. Some of the high-confidence rules extracted by the
algorithm are shown in Table 6.4. The first two rules suggest that most of the
members who voted yes for aid to El Salvador and no for budget resolution and
MX missile are Republicans; while those who voted no for aid to El Salvador
and yes for budget resolution and MX missile are Democrats. These high-
confidence rules show the key issues that divide members from both political
parties. If minconf is reduced, we may find rules that contain issues that cut
across the party lines. For example, with minconf = 40%, the rules suggest
that corporation cutbacks is an issue that receives almost equal number of
votes from both parties—52.3% of the members who voted no are Republicans,
while the remaining 47.7% of them who voted no are Democrats.

6.4 Compact Representation of Frequent Itemsets

353

Table 6.3. List of binary attributes from the 1984 United States Congressional Voting Records. Source:

The UCI machine learning repository.

1. Republican

2. Democrat

3. handicapped-infants = yes

4. handicapped-infants = no

5. water project cost sharing = yes
6. water project cost sharing = no
7. budget-resolution = yes

8. budget-resolution = no

9. physician fee freeze = yes

10. physician fee freeze = no

11. aid to El Salvador = yes

12. aid to El Salvador = no

13. religious groups in schools = yes
14. religious groups in schools = no

15. anti-satellite test ban = yes
16. anti-satellite test ban = no
17. aid to Nicaragua = yes

18.
19.
20.
21.
. immigration = no
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

aid to Nicaragua = no
MX-missile = yes
MX-missile = no
immigration = yes

synfuel corporation cutback = yes
synfuel corporation cutback = no
education spending = yes
education spending = no
right-to-sue = yes

right-to-sue = no

crime = yes

crime = no

duty-free-exports = yes
duty-free-exports = no

export administration act = yes
export administration act = no

Table 6.4. Association rules extracted from the 1984 United States Cohgressional Voting Records.

Association Rule Confidence

{budget resolution = no, MX-missile=no, aid to El Salvador = yes + 91.0%
— {Republican}

{budget resolution = yes, MX-missile=yes, aid to El Salvador = no } 97.5%
— {Democrat}

{crime = yes, right-to-sue = yes, physician fee freeze = yes} 93.5%
— {Republican}

{crime = no, right-to-sue = no, physician fee freeze = no} 100%
— {Democrat}

6.4 Compact Representation of Frequent Itemsets

In practice, the number of frequent itemsets produced from a transaction data
set can be very large. It is useful to identify a small representative set of
itemsets from which all other frequent itemsets can be derived. Two such
representations are presented in this section in the form of maximal and closed
frequent itemsets.

