400 CHAPTER 8. BRANCH-AND-BOUND

to the given knapsack instance with added constraints z; = 1 if ¢ € I1 anc} z;
= 0 if 4 € I2. The bound Ibb(I1, I2) is a lower bound under the constraints
of I1 and I2. Algorithm Reduce needs no further explanfatlon. Tt should be
clear that I1 and I2 are such that from an optimal solution to (8.2) we can
easily obtain an optimal solution to the original knapsack problem.

The time complexity of Reduce is O(n?). Because the reduction proc.edure
is very much like the heuristics used in DKnap1 and the knapsack algonthms
of this chapter, the use of Reduce does not decreafse the overall computing
time by as much as may be expected by the reduction in number. of objects.
These algorithms do dynamically what Reduce does. The exercises explore
the value of Reduce further. '

EXERCISES

1. Work out Example 8.2 using the variable tuple size formulation.
2. Work out Example 8.3 using the variable tuple size formulation.

3. Draw the portion of the state space tree generated by LCBB for the
following knapsack instances: :

(a) n =5, (p1,p2,-..,p5) = (10, 15, 6, 8, 4), (w1, ws,...,ws) = (4,
6, 3, 4, 2), and m = 12.

(b) n =5, (p1>p2vp37p47p5) = (w17w27w3aw4aw5) = (4: 47 5, 8, 9)
and m = 15

4. Do problem 3 using LCBB on a dynamic state space tree (see Section
7.6). Use the fixed tuple size formulation.

5. Write a LCBB algorithm for the knapsack problem using the ideas
given in Example 8.2. :

6. Write a LCBB algorithm for the knapsack problem using thg fixed
tuple size formulation and the dynamic state space tree of Section 7.6.

7. [Programming Project] Program in C++ the algorithms DKnap (Pro-
gram 5.7), DKnapl (see page 398), LCBB for lfnapsack_, and Bknap
(Program 7.12). Compare these programs empirically using randomly
generated data as below: '

(a) Random w; and p;, w; € [1,100], p; € [1,100], and m = 377 w;/2.

(c) Random w;, w; € [1,100], p; = w; + 10, and m = 37 w;/2.
(d) Same as (c) except m =2 max {w;}.

)

(b) Random w; and p;, w; € [1,100], p; € [1,100], and m = 2 max {w;}.
)
)

8.3. TRAVELING SALESPERSON (x) ; 401

(e) Random p;, p; € [1,100], w; = p; + 10, and m = 37 w; /2.
(f) Same as (e) except m = 2 max {w;}.

Obtain computing times for n = 5,10, 20, 30,40, For each n gen-
erate (say) ten problem instances from each of the above data sets.
Report average and worst-case computing times for each of the above
data sets. From these times can you say anything about the expected
“behavior of these algorithms?

Now, generate problem instances with p; = w;, 1 < i <n,m= S w; /2,
and Y w;x; # m for any 0, 1 assignment to the z;’s. Obtain computing
times for your four programs for n = 10, 20, and 30. Now study the
effect of changing the range to [1, 1000] in data sets (a) through (f).
In sets (c) to (f) replace p; = w; +10 by p; = w; +100 and w; = p; + 10
by w; = p; + 100.

8. [Programming Project]

(a) Program the reduction heuristic Reduce of Section 8.2. Generate
several problem instances from the data sets of Exercise 7 and
detérmine the size of the reduced problem instances. Use n =
100, 200, 500, and 1000. i

(b) Program DKnap and the backtracking algorithm Bknap for the
knapsack problem. Compare the effectiveness of Reduce by run-
ning several problem instances (as.in Exercise 7). Obtain aver-
age and worst-case computing times for DKnap and Bknap for the
generated problem instances and also for the reduced instances.
To the times for the reduced problem instances, add the time
required by Reduce. What conclusion can you draw from your
experiments? '

8.3 TRAVELING SALESPERSON (x)

An O(n?2™) dynamic programming algorithm for the traveling salesperson
problem was arrived at in Section 5.9. We now investigate branch-and-bound
algorithms for this problem. While the worst-case complexity of these al-
gorithms will not be any better than O(n?2"), the use of good bounding
functions will enable these branch-and-bound algorithms to solve some prob-

lem instances in much less time than required by the dynamic programming
algorithm.

Let G = (V, E) be a directed graph defining an instance of the traveling
salesperson problem. Let c;; be the cost of edge (i, j), ¢;j = oo if (i,7) & E,
and let [V| = n. Without loss of generality, we can assume that every tour
starts and ends at vertex 1. So, the solution space S is given by § = {1, 7, 1|7
is a permutation of (2,3,...,n)}. |S| = (n — 1)!. The size of S can be

402 CHAPTER 8. BRANCH-AND-BOUND

reduced by restricting S so that (1,i1,%2,...,in-1,1) € S iff (ij,4j41) € E,
0<j<mn-—1,and iy =i, = 1. S can be organized into a state space tree
similar to that for the n-queens problem (see Figure 7.2). Figure 8.10 shows
the tree organization for the case of a complete graph with |V| = 4. Each
leaf node L is a solution node and represents the tour defined by the path
from the root to L. Node 14 represents the tour 79 = 1,41 = 3,02 = 4,93 = 2
and iq4 = 1.

Figure 8.10 State space tree for the traveling salesperson problem with n
=4andig=14=1

To use LCBB to search the traveling salesperson state space tree, we need
to define a cost function ¢(-) and two other functions é(-) and u(-) such that
é(r) < c(r) < u(r) for all nodes r. The cost c(-) is such that the solution
node with least ¢(-) corresponds to a shortest tour in G. One choice for c() is

length of tour defined by the path from the root to A, if A is a leaf.

c(4) = { cost of a minimum-cost leaf in the subtree A, if A is not a leaf.

A simple &(-) such that é(A) < c(A) for all A is obtained by defining &(A)
to be the length of the path defined at node A. For example, the path defined
at node 6 of Figure 8.10 is 4, 41,42 = 1,2,4. It consists of the edges (1,2)
and (2,4). A better &(-) can be obtained by using the reduced cost matrix
corresponding to G. A row (column) is'said to be reduced iff it contains at
least one zero and all remaining entries are non-negative. A matrix is reduced
iff every row and column is reduced. As an example of how to reduce the
cost matrix of a given graph G, consider the matrix of Figure 8.11(a). This
corresponds to a graph with five vertices. Since every tour on this graph
includes exactly one edge (i,) with i = k, 1 < k <5, and exactly one edge
(i,7) with j = k, 1 < k < 5, subtracting a constant ¢ from every entry in

8.3. TRAVELING SALESPERSON (%) 403

one column or one row of the cost matrix reduces the length of every tour
by exactly t. A minimum-cost tour remains a minimum-cost tour following
this subtraction operation. If ¢ is chosen to be the minimum entry in row ¢
(column j), then subtracting it from all entries in row i (column j) introduces
a zero into row i (column 7). Repeating this as often as needed, the cost
matrix can be reduced. The total amount subtracted from the columns and
rows is a lower bound on the length of a minimum-cost tour and can be used
as the ¢ value for the root of the state space tree. Subtracting 10, 2, 2, 3, 4,
1, and 3 from rows 1, 2, 3, 4, and 5 and columns 1 and 3 respectively of the
matrix of Figure 8.11(a) yields the reduced matrix of Figure 8.11(b). The
total amount subtracted is 25. Hence, all tours in the original graph have a
length at least 25. '

With every node in the traveling salesperson state space tree we can
associate a reduced cost matrix. Let A be the reduced cost matrix for node
R. Let S be a child of R such that the tree edge (R,S) corresponds to
including edge (i,4) in the tour. If S"is not a leaf, then the reduced cost
matrix for S may be obtained as follows: (1) Change all entries in row ¢
and column j of A to co. This prevents the use of any more edges leaving
vertex i or entering vertex j. (2) Set A(j,1) to co. This prevents the use of
edge (j,1). (3) Reduce all rows and columns in the resulting matrix except
for rows and columns containing only oco. Let the resulting matrix be B.
Steps (1) and (2) are valid as no tour in the subtree s can contain edges
of the type (i,k) or (k,j) or (j,1) (except for edge (i,4)). If r is the total
amount subtracted in step (3) then ¢(S) = é(R) + A(4,) +r. For leaf nodes,
é(-) = ¢() is easily computed as each leaf defines a unique tour. For the
upper bound function u, we can use u(R) = oo for all nodes R.

oo 20 30 10 11 o 10 17 01
15 oo 16 4 2 12 oo 11 2 O
3 5 o0 2 4 0 3 o 0 2
19 6 18 o 3| 15 3 12 oo 0
16 4 7 16 oo 1 0 0 12 o0
(a) Cost matrix (b) Reduced cost

matrix

L=25

Figure 8.11 An example

Let us now trace the progress of the LCBB algorithm on the problem
instance of Figure 8.11(a). We use é and u as above. The initial reduced
matrix is that of Figure 8.11(b) and upper = co. The portion of the state
space tree that gets generated is shown in Figure 8.12. Starting with the
root node as the E-node, nodes 2, 3, 4, and 5 are generated (in that order).
The reduced matrices corresponding to these nodes are shown in Figure 8.13.

404 CHAPTER 8. BRAN CH—AND-BOUND

The matrix of Figure 8.13(b) is obtained from that of 8.11(b) by (1) setting

all entries in row 1 and column 3 to oo, (2) setting the element at position -

(3, 1) to oo, and (3) reducing column 1 by subtracting by 11. The ¢ for node
3 is therefore 25 + 17 (the cost of edge (1,3) in the reduced matrix) + 11
= 53. The matrices and ¢ value for nodes 2, 4, and 5 are obtained similarly.
The value of upper is unchanged and node 4 becomes the next F-node. Its
children 6, 7, and 8 are generated. The live nodes at this time are nodes 2,
3, 5, 6, 7, and 8. Node 6 has least & value and becomes the next E-node.
Nodes 9 and 10 are generated. Node 10 is the next E-node. The solution
node, node 11, is generated. The tour length for this node is ¢(11) = 28 and
upper is updated to 28. For the next E-node, node 5, é(5) = 31 > upper.
Hence, LCBB terminates with 1, 4, 2, 5, 3, 1 as the shortest length tour.

Numbers outside the node are ¢ values

Figure 8.12 State space tree generated by procedure LCBB

An exercise examines the implementation considerations for the algorithm
described above. A different LCBB algorithm can be arrived at by consid-
ering a different tree organization for the solution space. This organization
is reached by regarding a tour as a collection of n edges. If G = (V, E) has e

- edges, then every tour contains exactly n of the e edges. However, for each

i,1 < i < n, there is exactly one edge of the form (7,) and one of the form
(k,i) in every tour. A possible organization for the state space is a binary
tree in which a left branch represents the inclusion of a particular edge while

8.3. TRAVELING SALESPERSON (x) o 405

the right branch represents the exclusion of that edge. Figure 8.14(b) and
(c) represents the first two levels of two possible state space trees for the
three vertex graph of Figure 8.14(a). As is true of all problems, many state
space trees are possible for a given problem formulation. Different trees dif-
fer in the order in which decisions are made. Thus, in Figure 8.14(c) we first
decide the fate of edge (1,2). Rather than use a static state space tree, we
shall now consider a dynamic state space tree (see Section 7.1). This is also
a binary tree. However, the order in which edges are considered depends
on the particular problem instance being solved. We compute ¢ in the same
way as we did using the earlier state space tree formulation.

0O 00 00 00 00 00 ‘00 00 00 00 00 c/>o 00 00 00
c0) oo 11 2 0 1 oo co 2 0O 12 & 11 oo 0
"0 o0 00 0 2 oo 3 oo 0 2 0 8 o0 o0 2
15 o0 12 oo 0 4 3 o0 o 0 o0 (312 0 0
11 c0o 0 12 o0 0 0 oo 12 o© 11 0 0 oo
(a) Path 1,2; node 2~ (b) Path 1,3; node 3 (c) Path 1,4; node 4
00 00 00 00 ©0 00 00 00 00 00 0O 00 00 00 0
100,00 9 0 o 00 oo 11 oo -0° 1 0o o0 0o 0
0 3 oo 0 o 0 co o0 o0 2 oo 1 o0 oo 0
12 0 "9 oo o 00 (b 00 o0 o0 00 00 00 00 00
co 0 0 12 o 11 oo 0 o0 o0 0 0 o0 o0 o
(d) Path 1,5; node 5 " (e) Path 1,4,2;'node 6 (f) Path 1,4,3; node 7
00 00 00 00 00 0O 00 00 00 00 0o 00 0o 00
170 0 oo oo 0O 00 00 00 00 00 00 00 00
0 3 0o oo ™ o oo oo oo 0 0 o 00 00
0O 00 00 00 00 0O 00 00 00 00 00 0 0o 00
oo 0 0 o0 o 0 o0 o0 o0 o o0 oo 0 oo o0

(g) Path 1,4,5; node 8 (h) Path 1,4,2,3; node 9 (i) Path 1,4,2,5; node 10

Figure 8.13 Reduced cost matrices corresponding to nodes in Figure 8.12

As an example of how LCBB would work on the dynamic binary tree
formulation, consider the cost matrix of Figure 8.11(a). Since a total of 25
needs to be subtracted form the rows and columns of this matrix to obtain
the reduced matrix of Figure 8.11(b), all tours have a length at least 25.
This fact is represented by the root of the state space tree of Figure 8.15.
Now, we must decide which edge to use to partition the solution space into
two subsets. If edge (7,) is used, then the left subtree of the root represents
all tours including edge (7, 7) and the right subtree represents all tours that
do not include edge (7, 5). If an optimal tour is included in the left subtree,

406 CHAPTER 8. BRANCH-AND-BOUND

include

include
exclude <1.2>

<1,2>

include

<1,2> <1,2>

(a) Graph
(b) Part of a state space tree
include
includ excludeindude exclude
mcluae <2,3>
<3,1> <3,1> <2.3>

(c) Part of a state space tree

Figure 8.14 An example

8.3. TRAVELING SALESPERSON (x) 407

Figure 8.15 State space tree for Figure 8.11(a)

then only n — 1 edges remain to be selected. If all optimal tours lie in the
right subtree, then we have still to select n edges. Since the left subtree
selects fewer edges, it should be easier to find an optimal solution in it than
to find one in the right subtree. Consequently, we would like to choose as
the partitioning edge an edge (4, 5) that has the highest probability of being
in an optimal tour. Several heuristics for determining such an edge can be
formulated. A selection rule that is commonly used is select that edge which
results in a right subtree that has highest ¢ value. The logic behind this is
that we soon have right subtrees (perhaps at lower levels) for which the ¢
value is higher than the length of an optimal tour. Another possibility is to
choose an edge such that the difference in the é values for the left and right
subtrees is maximum. Other selection rules are also possible.

When LCBB is used with the first of the two selection rules stated above
and the cost matrix of Figure 8.11(a), the tree of Figure 8.15 is generated.
At the root node, we have to determine an edge (4,7) that will maximize
the ¢ value of the right subtree. If we select an edge (i,7) whose cost in
the reduced matrix (Figure 8.11(b)) is positive, then the & value of the right
subtree will remain 25. This is so as the reduced matrix for the right subtree
will have B(4,5) = oo and all other entries will be identical to those in
Figure 8.11(b). Hence B will be reduced and é cannot increase. So, we must
choose an edge with reduced cost 0. If we choose (1,4), then B(1,4) = 0
and we need to subtract 1 from row 1 to obtain a reduced matrix. In this

408 CHAPTER 8. BRANCH-AND-BOUND
oo 10 co 0 1 oo 10 17 0 1 oo 7 oo 0 oo
o oo 11 2 0 1 oo 11 2 O o oo oo 2 0
00 00 00 00 0 o 3 oo 0 2 00 00 00 00 0
o 3 12 o 0 4 3 12 oo O o 0 o oo 0
oo 0 0 12 o 0 0 0 12 ™ 00 00 00 00 X

(a)\Node 2 (b) Node 3 (c) Node 4
oo 10 oo 0 1 00 00 00 00 00 oo 0 oo oo ™
o oo 0 2 0 o oo oo oo 0 o oo oo 0 0
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
o 3 1 o 0 oo 0 oo o o© oo 0 o0 oo 0
o 0 o 12 00 00 00 00 0O 0O 00 00 00 OO
(d) Node 5 (e) Node 6 (f) Node 7

Figure 8.16 Reduced cost matrices for Figure 8.15

case ¢ will be 26. If (3,1) is selected, then 11 needs to be subtracted from
column 1 to obtain the reduced matrix for the right subtree. So, ¢ will be
36. If A is the reduced cost matrix for node R, then the selection of edge
(i,7) (A(3,5) = 0) as the next partitioning edge will increase the ¢ of the
right subtree by A = ming;{A(7, k)} +ming;{A(k, 7)} as this much needs
to be subtracted from row 4 and column j to introduce a zero into both.
For edges (1,4), (2,5), (3,1) (3,4), (4,5),(5,2), and (5,3), 4 = 1,2, 11, 0, 3,
3, and 11 respectively. So, either of the edges (3,1) or (5,3) can be used.
Let us assume that LCBB selects edge (3,1). The &(2) (Figure 8.15) can be
computed in a manner similar to that for the state space tree of Figure 8.12.
In the corresponding reduced cost matrix all entries in row 3 and column 1
will be co. Moreover the entry (1, 3) will also be oo as inclusion of this edge
will result in a cycle. The reduced matrices corresponding to nodes 2 and 3

_are given in Figure 8.16(a) and (b). The ¢ values for nodes 2 and 3 (as well

as for all other nodes) appear outside the respective nodes.

Node 2 is the next E-node. For edges (1,4),(2,5), (4,5),(5,2), and (5, 3),
A =3,2,3,3, and 11 respectively. Edge (5, 3) is selected and nodes 4 and 5
generated. The corresponding reduced matrices are given in Figure 8.16(c)
and (d). Then ¢é(4) becomes 28 as we need to subtract 3 from column 2
to reduce this column. Note that entry (1, 5) has been set to oo in Fig-
ure 8.16(c). This is necessary as the inclusion of edge (1,5) to the collection
{(3,1),(5,3)} will result in a cycle. In addition, entries in column 3 and
row 5 are set to co. Node 4 is the next F-node. The A values correspond-
ing to edges (1,4),(2,5), and (4,2) are 9, 2, and 0 respectively. Edge (1,4)
is selected and nodes 6 and 7 generated. The edge selection at node 6 is
{(3,1),(5,3),(1,4)}. This corresponds to the path 5, 3, 1, 4. So, entry (4,

8.3. TRAVELING SALESPERSON () 409

5) is set to oo in Figure 8.16(e). In general if edge (i, j) is selected, then the
entries in row 4 and column j are set to co in the left subtree. In addition,

one more entry needs to be set to co. This is an entry whose inclusion in

the set of edges would create a cycle (Exercise 4 examines how to determine
this). The next E-node is node 6. At this time three of the five edges have
already been selected. The remaining two may be selected directly. The
only possibility is {(4,2),(2,5)}. This gives the path 5, 3, 1, 4, 2, 5 with
length 28. So upper is updated to 28. Node 3 is the next E-node. LCBB
terminates now as é(3) = 36 > upper.

In the preceding example, LCBB was modified slightly to handle nodes
close to a solution node differently from other nodes. Node 6 is only two
levels from a solution node. Rather than evaluate ¢ at the children of 6 and
then obtain their grandchildren, we just obtained an optimal solution for
that subtree by a complete search with no bounding. We could have done
something similar when generating the tree of Figure 8.12. Since node 6
is only two levels from the leaf nodes, we can simply skip computing ¢ for
the children and grandchildren of 6, generate all of them, and pick the best.
This works out to be quite efficient as it is easier to generate a subtree with
a small number of nodes and evaluate all the solution nodes in it than it is
to compute ¢ for one of the children of 6. This latter statement is true of
many applications of branch-and-bound. Branch-and-bound is used on large
subtrees. Once a small subtree is reached (say one with 4 or 6 nodes in it),
then that subtree is fully evaluated without using the bounding functions.

We have now seen several branch-and-bound strategies for the traveling
salesperson problem. It is not possible to determine analytically which of
these is the best. The exercises describe computer experiments that deter-
mine empirically the relative performance of the strategies suggested.

EXERCISES

1. Consider the traveling salesperson instance defined by the cost matrix

o 7 3 12 8
3 00 6 14 9
5 8 oo 6 18
9 3 5 oo 11
18 14 9

(a) Obtain the reduced cost matrix

(b) Using a state space tree formulation similar to that of Figure 8.10
and ¢ as described in Section 8.3, obtain the portion of the state
space tree that will be generated by LCBB. Label each node by
its ¢ value. Write out the reduced matrices corresponding to each
of these nodes.

