1/13/2010 Support Vector Machines: Parameters

SVM Parameters

C

"However, it is critical here, as in any regularization scheme, that a proper value is chosen
for C, the penalty factor. If it is too large, we have a high penalty for nonseparable points
and we may store many support vectors and overfit. If it is too small, we may have
underfitting."

Alpaydin (2004), page 224

"...the coefficient C affects the trade-off between complexity and proportion of
nonseparable samples and must be selected by the user."
Cherkassky and Mulier (1998), page 366

"Selecting parameter C equal to the range of output values [6]. This is a reasonable
proposal, but it does not take into account possible effect of outliers in the training data."
"Our empirical results suggest that with optimal choice of ¢, the value of regularization
parameter C has negligible effect on the generalization performance (as long as C is larger
than a certain threshold analytically determined from the training data)."

Cherkassky and Ma (2002)

"In the support-vector networks algorithm one can control the trade-off between
complexity of decision rule and frequency of error by changing the parameter C,..."
Cortes and Vapnik (1995)

"There are a number of learning parameters that can be utilized in constructing SV
machines for regression. The two most relevant are the insensitivity zone e and the
penalty parameter C, which determines the trade-off between the training error and VC
dimension of the model. Both parameters are chosen by the user."

Kecman (2001), page 182

The parameter C controls the trade off between errors of the SVM on training data and
margin maximization (C = « leads to hard margin SVM).
Rychetsky (2001), page 82

"The parameter C controls the trade-off between the margin and the size of the slack
variables."
Shawe-Taylor and Cristianini (2004) p220

"[Tuning the parameter C] In practice the parameter Cis varied through a wide range of
values and the optimal performance assessed using a separate validation set or a
technique known as cross-validation for verifying performance using only a training set."
Shawe-Taylor and Cristianini (2004) p220

"...the parameter C has no intuitive meaning."
Shawe-Taylor and Cristianini (2004) p225

"The factor Cin (3.15) is a parameter that allows one to trade off training error vs. model
complexity. A small value for C will increase the number of training errors, while a large C
will lead to a behavior similar to that of a hard-margin SVM."

Joachims (2002), page 40

"Let us suppose that the output values are in the range [0, B]. [...] a value of C about
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equal to B can be considered to be a robust choice.”
Mattera and Haykin (1999), pages 226-227 in Advances in Kernel Methods

Epsilon (g)

"Similarly, Mattera and Haykin [6] propose to choose ¢ - value so that the percentage of
SVs in the SVM regression model is around 50% of the number of samples. However, one
can easily show examples when optimal generalization performance is achieved with the
number of SVs larger or smaller than 50%."

"Smola et al [8] and Kwok [9] proposed asymptotically optimal € - values proportional to
noise variance, in agreement with general sources on SVM [2,7]. The main practical
drawback of such proposals is that they do not reflect sample size. Intuitively, the value of
e should be smaller for larger sample size than for small sample size (with same noise
level)."

"Optimal setting of € requires the knowledge of noise level. The noise variance can be
estimated directly from training data, i.e. by fitting very flexible (high-variance) estimator
to the data. Alternatively, one can first apply least-modulus regression to the data, in
order to estimate noise level."

Cherkassky and Ma (2002)

"For an SVM the value of € in the e-insensitive loss function should also be selected. € has
an effect on the smoothness of the SVM’s response and it affects the number of support
vectors, so both the complexity and the generalization capability of the network depend
on its value. There is also some connection between observation noise in the training data
and the value of €. Fixing the parameter € can be useful if the desired accuracy of the
approximation can be specified in advance."

Horvath (2003), page 392 in Suykens et al.

"There are a number of learning parameters that can be utilized in constructing SV
machines for regression. The two most relevant are the insensitivity zone e and [...] Both
parameters are chosen by the user. [...] An increase in e means a reduction in
requirements for the accuracy of approximation. It also decreases the number of SVs,
leading to data compression."

Kecman (2001), pages 182-183

"Under the assumption of asymptotically unbiased estimators we show that there exists a
nontrivial choice of the insensitivity parameter in Vapnik’s e-insensitive loss function
which scales linearly with the input noise of the training data. This finding is backed by
experimental results."

Smola, et al. (1998),

"The value of epsilon determines the level of accuracy of the approximated function. It
relies entirely on the target values in the training set. If epsilon is larger than the range of
the target values we cannot expect a good result. If epsilon is zero, we can expect
overfitting. Epsilon must therefore be chosen to reflect the data in some way. Choosing
epsilon to be a certain accuracy does of course only guarantee that accuracy on the
training set; often to achieve a certain accuracy overall, we need to choose a slightly
smaller epsilon."

"Parameter ¢ controls the width of the e-insensitive zone, used to fit the training data. The
value of € can affect the number of support vectors used to construct the regression
function. The bigger ¢, the fewer support vectors are selected. On the other hand, bigger
e-values results in more [lflat[] estimates. Hence, both C and e-values affect model
complexity (but in a different way)."
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Support Vector Machine Regression

"A robust compromise can be to impose the condition that the percentage of Support
Vectors be equal to 50%. A larger value of € can be utilized (especially for very large
and/or noisy training sets)..."

Mattera and Haykin (1999)

"the optimal value of € scales linearly with o [variance of Gaussian noise]."
Learning with Kernels, page 79

Kernel Parameters

"For classification problems, the optimal o can be computed on the basis of Fisher
discrimination. And for regression problems, based on scale space theory, we demonstrate
the existence of a certain range of o, within which the generalization performance is
stable. An appropriate o within the range can be achieved via dynamic evaluation. In
addition, the lower bound of iterating step size of o is given."

Wang, et al., 2003.

Aliand Smith (2003) proposed an automatic parameter selection approach for the polynomial kernel.

General

[c] Ancona-etal02 showed that the Receiver Operating Characteristic (ROC) curves, measured on a
suitable validation set, are effective for selecting, among the classifiers the machine implements, the one
having performances similar to the reference classifier.
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complexity in test phase can be reduced by training SVM classifiers on a new set of features
obtained by using Principal Component Analysis (PCA). Moreover, due to the small
number of features involved, we explicitty map the new mnput space in the feature space
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kernel parameter selection by applying statistical methods to the Gram matrix.
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$\epsilon$-insensitive tube. For various noise models and SV parameter settings, we
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abstract = {In Support Vector (SV) regression, a parameter $\nu$ controls the number of
Support Vectors and the number of points that come to lie outside of the so-called
$\epsilon$-insensitive tube. For various noise models and SV parameter settings, we
experimentally determine the values of n that lead to the lowest generalization error. We find
good agreement with the values that had previously been predicted by a theoretical
argument based on the asymptotic efficiency of a simplified model of SV regression. As a
side effect of the experiments, valuable information about the generalization behavior of the
remaining SVM parameters and their dependencies is gained. The experimental findings are
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automatically tune C and the kernel parameters in SVM classification. considered the
problem of automatically tuning multiple parameters for pattern recognition SVMs ADD
MORE

Chapelle, Olivier, et al.,
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Uses gradient descent.

KERNEL AND ¢
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Conference, Madrid, Spain, August 2002, Proceedings, edited by José R. Dorronsoro,
pages 687-693. [Cited by 8] (1.90/year)
abstract = {We propose practical recommendations for selecting meta-parameters for
SVM regression (that is, $\epsilon$-insensitive zone and regularization parameter $C$). The
proposed methodology advocates analytic parameter selection directly from the training
data, rather than resampling approaches commonly used in SVM applications. Good
generalization performance of the proposed parameter selection is demonstrated empirically
using several low-dimensional and high-dimensional regression problems. In addition, we
compare generalization performance of SVM regression (with proposed choice $\epsilon$)
with robust regression using “least-modulus' loss function ($\epsilon$ = 0). These
comparisons indicate superior generalization performance of SVM regression.} proposed
practical recommendations for selecting meta-parameters for SVM regression ($\epsilon$
and $C$) and advocated analytic parameter selection directly from the training data, rather
than the usual resampling approaches.
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abstract = {We discuss empirical comparison of analytical methods for model selection.
Currently, there is no consensus on the best method for finite-sample estimation problems,
even for the simple case of linear estimators. This article presents empirical comparisons
between classical statistical methods--- Akaike nformation criterion (AIC) and Bayesian
mformation criterion (BIC)---and the structural risk minimization (SRM) method, based on
Vapnik-Chervonenkis (VC) theory, for regression problems. Our study is motivated by
empirical comparisons in Hastie, Tibshirani, and Friedman (2001), which claims that the
SRM method performs poorly for model selection and suggests that AIC yields superior
predictive performance. Hence, we present empirical comparisons for various data sets and
different types of estimators (linear, subset selection, and $k$-nearest neighbor regression).
Our results demonstrate the practical advantages of VC-based model selection; it
consistently outperforms AIC for all data sets. In our study, SRM and BIC methods show
similar predictive performance. This discrepancy (between empirical results obtained using
the same data) is caused by methodological drawbacks in Hastie et al. (2001), especially in
their loose interpretation and application of SRM method. Hence, we discuss
methodological issues important for meaningful comparisons and practical application of
SRM method. We also point out the importance of accurate estimation of model complexity
(VC-dimension) for empirical comparisons and propose a new practical estimate of model
complexity for $k$-nearest neighbors regression.} [NOT PARAMETERS)]
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machines (SVM) regression (that is, $\epsilon$-insensitive zone and regularization
parameter $C$). The proposed methodology advocates analytic parameter selection
directly from the training data, rather than re-sampling approaches commonly used n SVM
applications. In particular, we describe a new analytical prescription for setting the value of
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insensitive zone $\epsilon$; as a function of training sample size. Good generalization
performance of the proposed parameter selection is demonstrated empirically using several
low- and high-dimensional regression problems. Further, we point out the importance of
Vapnik's $\epsilon$-insensitive loss for regression problems with finite samples. To this end,
we compare generalization performance of SVM regression (using proposed selection of
$\epsilon$-values) with regression using “least-modulus' loss ($\epsilon = 0$) and standard
squared loss. These comparisons indicate superior generalization performance of SVM
regression under sparse sample settings, for various types of additive noise.} investigate
practical selection of hyper-parameters for SVM regression ($\epsilon$ and $C$).
CHERKASSKY, Vladimir and Filip MULIER, 1998. Learning from Data: Concepts,
Theory, and Methods, John Wiley &amp; Sons, Inc. New York, N.Y., USA. [Cited by
367] (44.71/year)
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DEBNATH, R. and H. TAKAHASHI, 2004. An eflicient method for tuning kernel
parameter of the support vector machine, Proceeding of the IEEE International
Symposium on Communications and Information Technology, 2004 (ISCIT 2004),
Volume 2, pp. 1023-1028. [not cited] (0/year)
abstract = {We propose a new method for searching the kernel parameter of the support
vector machine on the basis of the distribution of data in the feature space. Although the
distribution (structure) of data is unknown i the feature space, it depends on the kernel
parameter. The distribution of data is characterized by the principal component analysis
method. Thus, simple eigenanalysis method is applied to the matrix of the same dimension as
the kernel matrix to find the kernel parameter. Therefore, this method is very fast. The
proposed method can obtain the kernel parameter graphically.} proposed an efficient
method for tuning the kernel parameter.
DUAN, Kaibo, S. Sathiya KEERTHI and Aun Neow POO, 2003. Evaluation of simple
performance measures for tuning SVM hyperparameters, Neurocomputing, Volume 51,
April 2003, Pages 41-59. [Cited by 77] (24.00/year)
abstract = {Choosing optimal hyperparameter values for support vector machines is an
important step in SVM design. This is usually done by minimizing either an estimate of
generalization error or some other related performance measure. In this paper, we
empirically study the usefulness of several simple performance measures that are inexpensive
to compute (in the sense that they do not require expensive matrix operations involving the
kernel matrix). The results point out which of these measures are adequate functionals for
tuning SVM hyperparameters. For SVMs with L1 soft-margin formulation, none of the
simple measures yields a performance uniformly as good as $k$-fold cross validation;
Joachims' Xi- Alpha bound and the GACV of Wahba et al. come next and perform
reasonably well. For SVMs with L2 soft-margin formulation, the radius margin bound gives
a very good prediction of optimal hyperparameter values.} [class] evaluated simple
performance measures for tuning SVM hyperparameters and concluded that **[flor SVMs
with L1 soft-margin formulation, none of the simple measures yields a performance
uniformly as good as $k$-fold cross validation; Joachims' Xi- Alpha bound and the GACV
of Wahba et al. come next and perform reasonably well. For SVMs with L2 soft-margin
formulation, the radius margin bound gives a very good prediction of optimal
hyperparameter values."

"For SVMs with L1 soft-margin formulation, none of the simple measures
yields a performance uniformly as good as k-fold cross validation; Joachims[]
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Xi-Alpha bound and the GACV of Wahba et al. come next and perform
reasonably well. For SVMs with L2 soft-margin formulation, the radius margin
bound gives a very good prediction of optimal hyperparameter values."

Duan, Keerthi and Poo, 2002

FROHLICH, H. and A. ZELL, 2005. Efficient parameter selection for support vector
machmes in classification and regression via model-based global optimization, Proceedings
of the 2005 IEEE International Joint Conference on Neural Networks (IJCNN '05),
Volume 3, pages 1431-1436. [not cited] (0/year)

abstract = {Support vector machines (SVMs) have become one of the most popular
methods in machine learning during the last years. A special strength is the use of a kernel
function to introduce nonlinearity and to deal with arbitrarily structured data. Usually the
kernel function depends on certain parameters, which, together with other parameters of the
SVM, have to be tuned to achieve good results. However, finding good parameters can
become a real computational burden as the number of parameters and the size of the dataset
mcreases. In this paper we propose an algorithm to deal with the model selection problem,
which is based on the idea of learning an online Gaussian process model of the error surface
in parameter space and sampling systematically at points for which the so called expected
mprovement is highest. Our experiments show that on this way we can find good
parameters very efficiently.} proposed an algorithm to facilitate parameter selection based
on the idea of learning an online Gaussian process model of the error surface in parameter
space.

GOLD, Carl and Peter SOLLICH, 2005. Fast Bayesian Support Vector Machine
Parameter Tuning with the Nystrom Method, Proceedings of the IEEE International
Joint Conference on Neural Networks (IJCNN '05), Volume 5, pages 2820-2825.
[Cited by 1] (0.82/year)

abstract = {We experiment with speeding up a Bayesian method for tuning the
hyperparameters of a support vector machine (SVM) classifier. The Bayesian approach
gives the gradients of the evidence as averages over the posterior, which can be
approximated using hybrid Monte Carlo simulation (HMC). By using the Nystrom
approximation to the SVM kernel, our method significantly reduces the dimensionality of the
space to be simulated in the HMC. We show that this speeds up the running time of the
HMC simulation from $O(n"2)$ (with a large prefactor) to effectively $O(n)$, where $n$ is
the number of training samples. We conclude that the Nystrom approximation has an almost
significant effect on the performance of the algorithm when compared to the full Bayesian
method, and gives excellent performance in comparison with other approaches to
hyperparameter tuning. } experimented with speeding up a Bayesian method for tuning the
hyperparameters in SVM classification.

HORVATH, G., 2003. Neural Networks in Measurement Systems (an engineering view).
NATO SCIENCE SERIES SUB SERIES I1l COMPUTER AND SYSTEMS .... [not cited]
(O/year)

IMBAULT, F. and K. LEBART, 2004. A stochastic optimization approach for parameter
tuning of support vector machines, Proceedings of the 17th International Conference on
Pattern Recognition (ICPR 2004), Volume 4, Pages 597-600. [Cited by 1] (0.45/year)
abstract = {Support vector machines (SVMs) are both mathematically well-funded and
efficient in a large number of real-world applications. However, the classification results
highly depend on the parameters of the model: the scale of the kernel and the regularization
parameter. Estimating these parameters is referred to as tuning, Tuning requires to estimate
the generalization error and to find its minimum over the parameter space. Classical methods
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use a local mmimization approach. After empirically showing that the tuning of parameters
presents local minima, we investigate in this paper the use of global minimization techniques,
namely genetic algorithms and simulated annealing. This latter approach is compared to the
standard tuning frameworks and provides a more reliable tuning method.} mvestigated the
application of genetic algorithms and simulated annealing to tuning SVM parameters.

¢ JENG, Jin-Tsong, 2006. Hybrid approach of selecting hyperparameters of support vector
machine for regression, IEEE Transactions on Systems, Man, and Cybernetics—Part B:
Cybernetics, Volume 36, Issue 3, June 2006, Pages 699-709. [not cited] (0/year)
abstract = {To select the hyperparameters of the support vector machine for regression
(SVR), a hybrid approach is proposed to determine the kernel parameter of the Gaussian
kernel function and the epsilon value of Vapnik's $\epsilon$-insensitive loss function. The
proposed hybrid approach includes a competitive agglomeration (CA) clustering algorithm
and a repeated SVR (RSVR) approach. Since the CA clustering algorithm is used to find
the nearly *“optimal' number of clusters and the centers of clusters in the clustering process,
the CA clustering algorithm is applied to select the Gaussian kernel parameter. Additionally,
an RSVR approach that relies on the standard deviation of a training error is proposed to
obtain an epsilon in the loss function. Finally, two functions, one real data set (i.e., a time
series of quarterly unemployment rate for West Germany) and an identification of nonlinear
plant are used to verify the usefulness of the hybrid approach.} proposed a hybrid approach
to selecting the parameter of the Gaussian kernel and epsilon in SVMs for regression.

¢ JENG, Jing-Tsong and Chen-Chia CHUANG, 2002. A novel approach for the
hyperparameters of support vector regression, Proceedings of the 2002 International
Joint Conference on Neural Networks (IJCNN '02), Volume 1, Pages 642-647. [Cited
by 1] (0.24/year)
abstract = {In order to determine the hyperparameters of support vector regression (SVR),
an approach with a two structured method is proposed to determine the kernel parameter s
and $\epsilon$ in the $\epsilon$-insensitive loss function. Firstly, the kernel parameter s of a
Gaussian kernel function is determined by the competitive agglomeration (CA) clustering
algorithm. The CA clustering algorithm incorporates the advantage of both hierarchical and
partitioned clustering algorithms. Besides, it can find the nearly "optimum" number of clusters
as well as its center of clusters in the clustering process. Secondly, the repeated SVR
approach is proposed to obtain a proper $\epsilon$ in the $\epsilon$-insensitive loss
function that can be included in most of the data. Based on the efficiently structured way for
choosing the hyperparameters s and $\epsilon$, the simulation results have shown that the
proposed approach comes close to the ““optimum'" hyperparameter region} describe a
novel approach for determining the Gaussian kernel parameter s and $\epsilon$ SVM
regression.

e JOACHIMS, T., 2002. Learning to Classify Text Using Support Vector Machines:
Methods, Theory and Algorithms. books.google.com. [Cited by 263] (62.26/year)

e JORDAAN, E.M. and G.F. SMITS, 2002. Estimation of the regularization parameter for
support vector regression, Proceedings of the 2002 International Joint Conference on
Neural Networks (IJCNN '02), Volume 3, Pages 2192-2197. [Cited by 5] (1.19/year)
abstract = {Support vector machines use a regularization parameter C to regulate the trade-
off between the complexity of the model and the empirical risk of the model. Most of the
techniques available for determining the optimal value of C are very time consuming. For
mdustrial applications of the SVM method, there is a need for a fast and robust method to
estimate C. A method based on the characteristics of the kernel, the range of output values
and the size of the $\epsilon$-insensitive zone, is proposed} proposed a method of
determining the optimal value of the regularization parameter, $CS$, which is based on the
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characteristics of the kernel, the range of output values and the size of the $\epsilon$-
msensitive zone. Jordaan, E.M. Smits, G.F. Dept. of Math. & Comput. Sci., Eindhoven
University of Technology.;

e KECMAN, V., 2001. Learning and soft computing. MIT Press Cambridge, Mass. [Cited
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e KLINKENBERG, Ralf, 2002. "Informed Parameter Setting for Support Vector Machines:
Using Additional User Knowledge in Classification Tasks" (Report Number CI-126/02,
Collaborative Research Center on Computational Intelligence (SFB CI) (SFB 531),
University of Dortmund, Dortmund, Germany, 2002; ISSN 1433-3325). Informed
Parameter Setting for Support Vector Machines: Using Additional User Knowledge in
Classification Tasks Many applications of machine learning involve the learning of classifiers.
Given a set of labeled training examples, the task is to learn a classtfier for predicting the
labels of previously unseen examples. By providing the labels of the training examples, the
user already specifies a lot of her or his knowledge about the classification problem at hand.
In some cases, however, the user may not be satisified with the result provided by the
learning method. Hence the user may want to specificy additional knowledge about the
problem or constraints on the desired solution and she or he may want the learner to
provide a classifier that fits better to her or his needs. The goal of this research is to allow
the user to specify additional knowledge about the classification problem and to incorporate
this knowledge mto the learning process. In this work, support vector machines (SVMs)
were chosen as learning methods for classifiers. Two methods for mtegrating user
knowledge into the learning process of an SVM for classification tasks are discussed.
Example weighting allows the user to set individual weights for individual traning examples,
which are then used n SVM traing. Kernel modification allows the incorporation of a
user's knowledge about similarities and dissimilarities of examples into the SVM training by
modified kernel functions. \citeasnoun{Klinkenberg02} discussed two methods for
mtegrating user knowledge mto the learning process of an SVM for classification. Example
weighting allows the user to set individual weights for individual training examples, whilst
kernel modification allows the incorporation of a user's knowledge about similarities and
dissimilarities of examples.

o KUBA, Petr, et al., 2002. Exploiting sampling and meta-learning for parameter setting
support vector machines, Proceedings of the Workshop de Mineria de Datos Y
Aprendizaje of (IBERAMIA 2002), edited by F.J. Garijo and J.C. Riquelme and M. Toro,
pages 217-225. [Cited by 1] (0.24/year)
abstract = {It is a known fact that good parameter settings affect the performance of many
machine learning algorithms. Support Vector Machines (SVM) and Neural Networks are
particularly affected. In this paper, we concentrate on SVM and discuss some ways to set
its parameters. The first approach uses small samples, while the second one exploits meta-
learning and past results. Both methods have been thoroughly evaluated. We show that both
approaches enable us to obtain quite good results with significant savings in experimentation
time.} [regression] exploited sampling and meta-learning for parameter setting.

e KULKARNI, Abhijit, V.K. JAYARAMAN and B.D. KULKARNI, 2004. Support
vector classification with parameter tuning assisted by agent-based technique, Computers
and Chemical Engineering [Cited by 7] (3.15/year)
abstract = {This paper describes a robust support vector machines (SVMs) classification
methodology, which can offer superior classification performance for important process
engineering problems. The method incorporates efficient tuning procedures based on
minimization of radius/margin and span bound for leave-one-out errors. An agent-based
asynchronous teams (A-teams) software framework, which combines Genetic-Quasi-
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Newton algorithms for the optimization is highly successful in obtamning the optimal SVM
hyper-parameters. The algorithm has been applied for classification of binary as well as
multi-class real world problems.} descibed an agent-based technique for SVMs for
classification parameter tuning,.

e KWOK, James T. and Ivor W. TSANG, 2003. Linear Dependency between € and the
Input Noise in g-Support Vector Regression, IEEE Transactions on Neural Networks
[Cited by 10] (1.92/year)
abstract = {In using the $\epsilon$-support vector regression ($\epsilon$-SVR) algorithm,
one has to decide a suitable value for the insensitivity parameter $\epsilon$. Smola \textit {et
al.} considered its ““optimal" choice by studying the statistical efficiency in a location
parameter estimation problem. While they successfully predicted a linear scaling between
the optimal $\epsilon$ and the noise in the data, their theoretically optimal value does not
have a close match with its experimentally observed counterpart in the case of Gaussian
noise. In this paper, we attempt to better explain their experimental results by studying the
regression problem itself. Our resultant predicted choice of $\epsilon$ is much closer to the
experimentally observed optimal value, while again demonstrating a linear trend with the
nput noise.} demonstrated a linear trend with $\epsilon$ and the nput noise.

e LIM, Hojung, 2004. Support vector parameter selection using experimental design based
generating set search (SVEG) with application to predictive software data modeling,
Doctoral Thesis, Syracuse University. [not cited] (0/year)
abstract = {Predictive data modeling is germane to many engineering and scientific
applications. Recently, a new type of learning machine, called \textit {support vector
machine} (svm), has gained prominence for predictive modeling of classification and
regression problems. However, the solution of svm requires some user specified parameters
called \textit {hyperparameters }. In practice these are determined by a computationally
mtensive grid search.\\ In this research, we develop a principled approach for the selection
of svm hyperparameters. The proposed three step methodology consists of determination of
parametric ranges based on their mterrelationships, setting up experimental designs for an
efficient exploration of the error surface, and pursuing generating set search for local
refinement. We demonstrate its efficacy for software module classification and effort
prediction problems.} developed a principled approach for the selection of SVM
hyperparameters.

e LIN, Pao-Tsun, Shun-Feng SU and Tsu-Tian LEE, 2005. Support vector regression
performance analysis and systematic parameter selection, Proceedings of the
International Joint Conference on Neural Networks (IJCNN '05), Volume 2, pages
877-882. [not cited] (0/year)
abstract = {Support vector regression (SVR) based on statistical learning is a useful tool for
nonlinear regression problems. The SVR method deals with data in a high dimension space
by using linear quadratic programming techniques. As a consequence, the regression result
has optimal properties. However, if parameters were not properly selected, overfitting
and/or underfilling phenomena might occur in SVR. Two parameters $\sigma$, the width of
Gaussian kernels and $\epsilon$, the tolerance zone in the cost function are considered in
this research. We adopted the concept of the sampling theory into Gaussian filter to deal
with parameter $\sigma$. The idea is to analyze the frequency spectrum of training data and
to select a cut-off frequency by including 90% of power in spectrum. The corresponding
$\sigma$ can then be obtained through the sampling theory. In our simulations, it can be
found that good performances are observed when the selected frequency is near the cut-off
frequency. For another parameter $\epsilon$, it is a tradeoff between the number of support
vectors and the RMSE. By introducing the confidence mterval concept, a suitable selection
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of $\epsilon$ can be obtained. The idea is to use the $L_{1}$-norm (i.e., when $\epsilon$
= () to estimate the noise distribution of training data. When $\epsilon$ is obtained by
selecting the 90\% confidence interval, simulations demonstrated superior performance in
our illustrative example. By our systematical design, proper values of $\sigma$ and
$\epsilon$ can be obtained and the resultant system performances are nice in all aspects. }
consider the selection of $\sigma$, the width of Gaussian kernels and $\epsilon$ in SVM
regression.

e MATTERA, Davide and Simon HAYKIN, 1999. Support vector machines for dynamic
reconstruction of a chaotic system. In: Advances in Kernel Methods: Support Vector
Learning, edited by Bernhard Schélkopfand Christopher J. C. Burges and Alexander J.
Smola, Pages 209-241. [Cited by 26] (3.61/year)
abstract = {Dynamic reconstruction is an inverse problem that deals with reconstructing the
dynamics of an unknown system, given a noisy time-series representing the evolution of one
variable of the system with time. The reconstruction proceeds by utilizing the time-series to
build a predictive model of the system and, then, using iterated prediction to test what the
model has learned from the training data on the dynamics of the system. In this paper, we
review the details of the theoretical derivation of the Support Vector Machine (SVM); this
allows us to derive its close relationship with the regularized radial basis function. The
dependence of the SVM performance on the choice of its parameters is nvestigated both
by means of theoretical analysis and numerical experiments performed on the well-known
Lorenz system. The results obtained show the effectiveness of the SVM in performing the
nonlinear reconstruction; its main advantage consists in the possibility of trading off the
required accuracy with the number of Support Vectors.} [reg] considered the choice of
parameters and kernels

e QUAN, Yong and Jie YANG, 2003. An improved parameter tuning method for support
vector machines, Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, 9th
International Conference, RSFDGrC 2003, Chongging, China, May 26-29, 2003,
Proceedings, Pages 607-610. [not cited] (0/year)
abstract = {Support vector machines (SVMs) is a very important tool for data mining.
However, the problem of tuning parameters manually limits its application in practical
environment. In this paper, under analyzing the limitation of these existing approaches, a new
methodology to tuning kernel parameters, based on the computation of the gradient of
penalty function with respect to the RBF kernel parameters, is proposed. Simulation results
reveal the feasibility of this new approach and demonstrate an improvement of generalization
ability.} proposed a new methodology to tuning kernel parameters, based on the
computation of the gradient of penalty function with respect to the RBF kernel parameters.

e RYCHETSKY, Matthias, 2001. Algorithms and Architectures for Machine Learning
based on Regularized Neural Networks and Support Vector Approaches, Shaker
Verlag. [not cited] (0/year)

e SCHITTKOWSKI, K., 2005. Optimal parameter selection in support vector machines,
Journal of Industrial and Management Optimization, Volume 1, Number 4, November
2005, pp. 465-476. [not cited] (0/year)
abstract = {The purpose of the paper is to apply a nonlinear programming algorithm for
computing kernel and related parameters of a support vector machine (SVM) by a two-
level approach. Available training data are split into two groups, one set for formulating a
quadratic SVM with $L._2$-soft margin and another one for minimizing the generalization
error, where the optimal SVM variables are inserted. Subsequently, the total generalization
error is evaluated for a separate set of test data. Derivatives of functions by which the
optimization problem is defined, are evaluated i an analytical way, where an existing
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Cholesky decomposition needed for solving the quadratic SVM, is exploited. The approach
is implemented and tested on a couple of standard data sets with up to 4,800 patterns. The
results show a significant reduction of the generalization error, an increase of the margin, and
a reduction of the number of support vectors m all cases where the data sets are sufficiently
large. By a second set of test runs, kernel parameters are assigned to individual features.
Redundant attributes are identified and suitable relative weighting factors are computed. }
applied a nonlinear programming algorithm for computing kernel and related parameters of
an SVM.

e SCHOLKOPF, Bernhard and Alexander J. SMOLA, 2002. Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and Beyond. [Cited by 328]
(62.78/year)

e SHAWE-TAYLOR, John and Nello CRISTIANINI, 2004. Kernel Methods for Pattern
Analysis. books.google.com. [Cited by 215] (96.66/year)

e SHITONG, Wang, et al., 2005. Theoretically Optimal Parameter Choices for Support
Vector Regression Machines with Noisy Input, Soft Computing - A Fusion of
Foundations, Methodologies and Applications [not cited] (0/year)
abstract = {With the evidence framework, the regularized linear regression model can be
explained as the corresponding MAP problem i this paper, and the general dependency
relationships that the optimal parameters i this model with noisy imput should follow is then
derived. The support vector regression machines Huber-SVR and Norm-r r-SVR are two
typical examples of this model and their optimal parameter choices are paid particular
attention. It turns out that with the existence of the typical Gaussian noisy input, the
parameter $\epsilon$ in Huber-SVR has the lincar dependency with the input noise, and the
parameter r in the r-SVR has the mversely proportional to the mput noise. The theoretical
results here will be helpful for us to apply kernel-based regression techniques effectively in
practical applications.} consider theoretically optimal parameter choices for SVMs for
regression and conclude that with the existence of the typical Gaussian noisy input, the
parameter $\epsilon$ in Huber-SVR has the lincar dependency with the input noise, and the
parameter $r$ in Norm-$r$ SVM regression is inversely proportional to the input noise.

e SMOLA, A, et al., 1998. Asymptotically optimal choice of e—loss for support vector
machines, Proceedings of the International Conference on Artificial Neural Networks,
pp. 105-110, Springer, Berlin. [Cited by 34] (4.14/year)
abstract = {Under the assumption of asymptotically unbiased estimators we show that there
exists a nontrivial choice of the nsensitivity parameter in Vapnik's $\epsilon$--insensitive
loss function which scales linearly with the mput noise of the training data. This finding is
backed by experimental results.} show that under the assumption of asymptotically unbiased
estimators, there exists a nontrivial choice of the insensitivity parameter in Vapnik's
$\epsilon$--insensitive loss function which scales linearly with the input noise of the training
data.

e SOARES, Carlos, Pavel B. BRAZDIL and Petr KUBA, 2004. A meta-learning method to
select the kernel width in support vector regression, Machine Learning, Volume 54,
Number 3 (March 2004), Pages 195-209. [Cited by 9] (4.04/year)
abstract = {The Support Vector Machine algorithm is sensitive to the choice of parameter
settings. If these are not set correctly, the algorithm may have a substandard performance.
Suggesting a good setting is thus an important problem. We propose a meta-learning
methodology for this purpose and exploit information about the past performance of
different settings. The methodology is applied to set the width of the Gaussian kernel. We
carry out an extensive empirical evaluation, including comparisons with other methods (fixed
default ranking; selection based on cross-validation and a heuristic method commonly used
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to set the width of the SVM kernel). We show that our methodology can select settings with
low error while providing significant savings in time. Further work should be carried out to
see how the methodology could be adapted to different parameter setting tasks.} propose a
meta-learning method to select the width of the Gaussian kernel in support vector regression
STAELIN, Carl, 2003. Parameter selection for support vector machines, HP Laboratories
Israel, Tech. Rep. HPL-2002-354 (R. 1), Nov. [Cited by 10] (3.12/year)
abstract = {We present an algorithm for selecting support vector machine (SVM) meta-
parameter values which is based on ideas from design of experiments (DOE) and
demonstrate that it is robust and works effectively and efficiently on a variety of problems. }
presented an algorithm for selecting SVM meta-parameter values which is based on ideas
from design of experiments (DOE). [both]
STEINWART, Ingo, 2003. On the optimal parameter choice for v-support vector
machines, IEEE Transactions on Pattern Analysis and Machine Intelligence, October
2003 (Vol 25, No. 10), pp. 1274-1284. [Cited by 8] (2.49/year)
abstract = {We determine the asymptotically optimal choice of the parameter $nu$ for
classifiers of $nu$-support vector machine ($nu$-SVM) type which has been introduced by
Scho{\"o}kopfet al. [14]. It turns out that $nu$ should be a close upper estimate of twice
the optimal Bayes risk provided that the classifier uses a so-called universal kernel such as
the Gaussian RBF kernel. Moreover, several experiments show that this result can be used
to implement some modified cross validation procedures which improve standard cross
validation for $nu$-SVMs.} conclusion = "In this paper we have shown that an
asymptotical optimal choice of the regularization parameter $nu$ for $nu$-SVM's is an
arbitrary close upper bound of twice the Bayes risk of the considered optimization problem.
[...]" \citep {Stenwart03} considered $nu$-SVMs for classification and showed that an
asymptotical optimal choice of the regularization parameter $nu$ is an arbitrary close upper
bound of twice the optimal Bayes risk provided that the classifier uses a so-called universal
kernel such as the Gaussian RBF kernel. ["'new support vector algorithms" Neural
computation 12 (2000) 1207-1245]
WANG, Wenjian, et al., 2003. Determination of the spread parameter in the Gaussian
kernel for classification and regression, Neurocomputing, Volume 55, Number 3, October
2003, pp. 643-663. [Cited by 21] (6.52/year)
abstract = {Based on statistical learning theory, Support Vector Machine (SVM) is a novel
type of learning machine, and it contains polynomial, neural network and radial basis
function (RBF) as special cases. In the RBF case, the Gaussian kernel is commonly used,
while the spread parameter $\sigma$ in the Gaussian kernel is essential to generalization
performance of SVMs. In this paper, determination of $\sigma$ is studied based on
discussions of the influence of $\sigma$ on generalization performance. For classification
problems, the optimal $\sigma$ can be computed on the basis of Fisher discrimination. And
for regression problems, based on scale space theory, we demonstrate the existence of a
certain range of $\sigma$, within which the generalization performance is stable. An
appropriate $\sigma$ within the range can be achieved via dynamic evaluation. In addition,
the lower bound of iterating step size of $\sigma$ is given. Simulation results show the
effectiveness of the presented method.} consider the spread parameter in the Gaussian
kernel for classification and regression. They found that for classification problems, the
optimal $\sigma$ can be computed on the basis of Fisher discrimination and for regression
problems, based on scale space theory, they demonstrated the existence of a certain range
of $\sigma$, within which the generalization performance is stable.
WANG, Xin, et al., 2005. Parameter selection of support vector regression based on
hybrid optimization algorithm and its application, Journal of Control Theory and
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Applications, pages 371-376. [not cited] (0/year)
abstract = {Choosing optimal parameters for support vector regression (SVR) is an
important step in SVR design, which strongly affects the performance of SVR. In this paper,
based on the analysis of influence of SVR parameters on generalization error,a new
approach with two steps is proposed for selecting SVR parameters. First the kernel function
and SVM parameters are optimized roughly through genetic algorithm, then the kernel
parameter is finely adjusted by local linear search. This approach has been successfully
applied to the prediction model of the sulfur content in hot metal. The experiment results
show that the proposed approach can yield better generalization performance of SVR than
other methods.} used a two-step process for parameter selection for SVMs for regression.
They first optimized the kernel function and SVM parameters roughly using genetic
algorithms, then they adjusted the kernel parameter finely using local linear search.

e WANG, S., et al., 2006. Experimental study on parameter choices in norm-7 support
vector regression machines with noisy input, Soft Computing - A Fusion of Foundations,
Methodologies and Applications, Volume 10, Number 3 / February, 2006, pages 219-
223. [not cited] (0/year)
abstract = {In [1], with the evidence framework, the almost inversely linear dependency
between the optimal parameter $r$ in norm-$r$ support vector regression machine $r$-
SVR and the Gaussian input noise is theoretically derived. When $1$ takes a non-integer
value, $r$-SVR cannot be easily realized using the classical QP optimization method. This
correspondence attempts to achieve two goals: (1) The Newton-decent-method based
implementation procedure of $r$-SVR is presented here; (2) With this procedure, the
experimental studies on the dependency between the optimal parameter $r$ in $r$-SVR
and the Gaussian noisy input are given. Our experimental results here confirm the theoretical
claimmin [1].} performed an experimental study on parameter choices in SVM regression.

¢ YU, Xinying, Shie-Yui LIONG and Vladan BABOVIC, 2004. EC-SVM approach for
real-time hydrologic forecasting, Journal of Hydroinformatics, Volume 6, Number 3, July
2004, Pages 209-223. [Cited by 1] (0.45/year)
abstract = {This study demonstrates a combined application of chaos theory and support
vector machine (SVM) in the analysis of chaotic time series with a very large sample data
record. A large data record is often required and causes computational difficulty. The
decomposition method is used in this study to circumvent this difficulty. The various
parameters inherent in chaos technique and SVM are optimised, with the assistance of an
evolutionary algorithm, to yield the minimal prediction error. The performance of the
proposed scheme, EC-SVM, is demonstrated on two daily runoff time series:
Tryggev{\ae}lde catchment, Denmark and the Mississippi River at Vicksburg. The
prediction accuracy of the proposed scheme is compared with that of the conventional
approach and the recently introduced inverse approach. This comparison shows that EC-
SVM vyields a significantly lower normalised RMSE value of 0.347 for the Tryggev{\ae}lde
catchment runoff and 0.0385 for the Mississippi River flow compared to 0.444 and 0.2064,
respectively, resulting from the conventional approach. A slight improvement in accuracy
was obtained by analysing the first difference or the daily flow difference time series. It
should be noted, however, that the computational speed in analysing the daily flow
difference time series is significantly much faster than that of the daily flow time series.} [reg]

"The selection of appropriate values for the three parameters (C, e, s) in the
above expressions has been proposed by various researchers. Cherkassky &
Mulier (1998) suggested the use of cross-validation for the SVM parameter
choice. Mattera & Haykin (1999) proposed the parameter C to be equal to the
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range of output values. They also proposed the selection of the e value to be
such that the percentage of support vectors in the SVM regression model is
around 50% of the number of samples. Smola et al. (1998) assigned optimal e
values as proportional to the noise variance, in agreement with general sources
on SVM. Cherkassky & Ma (2004) proposed the selection of e parameters
based on the estimated noise. Different approaches yield different values for
the three parameters. As shown later, this study finds the optimal parameter
set simultaneously by minimising the prediction error as the objective
function.”

Yu, Liong and Babovic (2004)

found the optimal parameter set simultaneously by minimising the prediction error as the
objective function.
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