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Abstract 

In this paper, we bring techniques from operations research to bear on the problem of choosing 
optimal actions in partially observable stochastic domains. We begin by introducing the theory 

of Markov decision processes (MDPS) and partially observable MDPS (POMDPS). We then outline 
a novel algorithm for solving POMDPS off line and show how, in some cases, a finite-memory 
controller can be extracted from the solution to a POMDP. We conclude with a discussion of how our 
approach relates to previous work, the complexity of finding exact solutions to POMDPS, and of some 
possibilities for finding approximate solutions. 0 1998 Elsevier Science B.V. All rights reserved. 
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Consider the problem of a robot navigating in a large office building. The robot can move 
from hallway intersection to intersection and can make local observations of its world. 
Its actions are not completely reliable, however. Sometimes, when it intends to move, it 
stays where it is or goes too far; sometimes, when it intends to turn, it overshoots. It has 
similar problems with observation. Sometimes a corridor looks like a comer; sometimes a 
T-junction looks like an L-junction. How can such an error-plagued robot navigate, even 

given a map of the corridors? 
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In general, the robot will have to remember something about its history of actions 
and observations and use this information, together with its knowledge of the underlying 
dynamics of the world (the map and other information), to maintain an estimate of its 

location. Many engineering applications follow this approach, using methods like the 
Kalman filter [26] to maintain a running estimate of the robot’s spatial uncertainty, 
expressed as an ellipsoid or normal distribution in Cartesian space. This approach will 

not do for our robot, though. Its uncertainty may be discrete: it might be almost certain that 
it is in the northeast comer of either the fourth or the seventh floors, though it admits a 
chance that it is on the fifth floor, as well. 

Then, given an uncertain estimate of its location, the robot has to decide what actions 
to take. In some cases, it might be sufficient to ignore its uncertainty and take actions that 

would be appropriate for the most likely location. In other cases, it might be better for 
the robot to take actions for the purpose of gathering information, such as searching for 
a landmark or reading signs on the wall. In general, it will take actions that fulfill both 

purposes simultaneously. 

1. Introduction 

in this paper, we bring techniques from operations research to bear on the problem of 
choosing optimal actions in partially observable stochastic domains. Problems like the 

one described above can be modeled as partially observable Markov decision processes 
(POMDPS). Of course, we are not interested only in problems of robot navigation. Similar 
problems come up in factory process control, oil exploration, transportation logistics, and 

a variety of other complex real-world situations. 
This is essentially a planning problem: given a complete and correct model of the 

world dynamics and a reward structure, find an optimal way to behave. In the artificial 
intelligence (AI) literature, a deterministic version of this problem has been addressed 

by adding knowledge preconditions to traditional planning systems [43]. Because we 
are interested in stochastic domains, however, we must depart from the traditional AI 
planning model. Rather than taking plans to be sequences of actions, which may only 
rarely execute as expected, we take them to be mappings from situations to actions that 
specify the agent’s behavior no matter what may happen. In many cases, we may not want 
a full policy; methods for developing partial policies and conditional plans for completely 
observable domains are the subject of much current interest [13,15,61]. A weakness of the 

methods described in this paper is that they require the states of the world to be represented 
enumeratively, rather than through compositional representations such as Bayes nets or 
probabilistic operator descriptions. However, this work has served as a substrate for 

development of algorithms for more complex and efficient representations [6]. Section 6 
describes the relation between the present approach and prior research in more detail. 

One important facet of the POMDP approach is that there is no distinction drawn between 
actions taken to change the state of the world and actions taken to gain information. This 
is important because, in general, every action has both types of effect. Stopping to ask 
questions may delay the robot’s arrival at the goal or spend extra energy; moving forward 
may give the robot information that it is in a dead-end because of the resulting crash. 
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Thus, from the POMDP perspective, optimal performance involves something akin to a 
“value of information” calculation, only more complex; the agent chooses between actions 
based on the amount of information they provide, the amount of reward they produce, and 
how they change the state of the world. 

This paper is intended to make two contributions. The first is to recapitulate work from 
the operations-research literature [36,42,56,59,64] and to describe its connection to closely 
related work in AI. The second is to describe a novel algorithmic approach for solving 
POMDPS exactly. We begin by introducing the theory of Markov decision processes (MDPS) 

and POMDPS. We then outline a novel algorithm for solving POMDPS off line and show how, 

in some cases, a finite-memory controller can be extracted from the solution to a POMDP. 

We conclude with a brief discussion of related work and of approximation methods. 

2. Markov decision processes 

Markov decision processes serve as a basis for solving the more complex partially 
observable problems that we are ultimately interested in. An MDP is a model of an agent 

interacting synchronously with a world. As shown in Fig. 1, the agent takes as input the 
state of the world and generates as output actions, which themselves affect the state of the 
world. In the MDP framework, it is assumed that, although there may be a great deal of 
uncertainty about the effects of an agent’s actions, there is never any uncertainty about the 

agent’s current state-it has complete and perfect perceptual abilities. 
Markov decision processes are described in depth in a variety of texts [3,49]; we will 

just briefly cover the necessary background. 

2.1. Basic framework 

A Markov decision process can be described as a tuple (S, d, T, R), where 
l S is a finite set of states of the world; 

l A is a finite set of actions; 
l T : S x A + n(S) is the state-transition function, giving for each world state and 

agent action, a probability distribution over world states (we write T(s, a, s’) for 
the probability of ending in state s’, given that the agent starts in state s and takes 

action a); and 

Fig. 1. An MDP models the synchronous interaction between agent and world 



102 L.P Kaelbling et al. /Artijicial Intelligence 101 (1998) 99-134 

l R : S x A -+ IR is the reward function, giving the expected immediate reward gained 
by the agent for taking each action in each state (we write R(s, a) for the expected 

reward for taking action a in state s). 
In this model, the next state and the expected reward depend only on the previous state 
and the action taken; even if we were to condition on additional previous states, the 

transition probabilities and the expected rewards would remain the same. This is known 
as the Markov property-the state and reward at time t + 1 is dependent only on the state 

at time t and the action at time t. 
In fact, MDPS can have infinite state and action spaces. The algorithms that we describe 

in this section apply only to the finite case; however, in the context of POMDPS, we will 

consider a class of MDPS with uncountably infinite state spaces. 

2.2. Acting optimally 

We would like our agents to act in such a way as to maximize some measure of the 
long-run reward received. One such framework is jinite-horizon optimality, in which the 
agent should act in order to maximize the expected sum of reward that it gets on the next k 

steps; it should maximize 

rk-1 i 

where rt is the reward received on step t. This model is somewhat inconvenient, because it 
is rare that an appropriate k will be known exactly. We might prefer to consider an infinite 
lifetime for the agent. The most straightforward is the injnite-horizon discounted model, 
in which we sum the rewards over the infinite lifetime of the agent, but discount them 
geometrically using discountfactor 0 < y < 1; the agent should act so as to optimize 

In this model, rewards received earlier in its lifetime have more value to the agent; the 
infinite lifetime is considered, but the discount factor ensures that the sum is finite. This 
sum is also the expected amount of reward received if a decision to terminate the run 
is made on each step with probability 1 - v. The larger the discount factor (closer to 

l), the more effect future rewards have on current decision making. In our forthcoming 
discussions of finite-horizon optimality, we will also use a discount factor; when it has 
value one, it is equivalent to the simple finite-horizon case described above. 

A policy is a description of the behavior of an agent. We consider two kinds of policies: 
stationary and nonstationary. A stationary policy, n : S -+ A, is a situation-action mapping 
that specifies, for each state, an action to be taken. The choice of action depends only on the 
state and is independent of the time step. A nonstationary policy is a sequence of situation- 
action mappings, indexed by time. The policy rrt is to be used to choose the action on the 
tth-to-last step as a function of the current state, St. In the finite-horizon model, the optimal 
policy is not typically stationary: the way an agent chooses its actions on the last step of its 
life is generally going to be very different from the way it chooses them when it has a long 
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life ahead of it. In the infinite-horizon discounted model, the agent always has a constant 
expected amount of time remaining, so there is no reason to change action strategies: there 
is a stationary optimal policy. 

Given a policy, we can evaluate it based on the long-run value that the agent expects to 
gain from executing it. In the finite-horizon case, let V,,,(s) be the expected sum of reward 
gained from starting in state s and executing nonstationary policy n for t steps. Clearly, 
VT., (9) = R(s, nl (s)); that is, on the last step, the value is just the expected reward for 
taking the action specified by the final element of the policy. Now, we can define V,,,(s) 

inductively as 

VX.,(S) = +3%(s)) +Y c T(s,~1(S),S')V~,t-l(S'). 

SfES 

The t-step value of being in state s and executing nonstationary policy n is the immediate 
reward, R(s, nt(s)), plus the discounted expected value of the remaining t - 1 steps. To 

evaluate the future, we must consider all possible resulting states s’, the likelihood of their 
occurrence T(s, nt(s), s’), and their (t - I)-step value under policy rr, VT,t-l (s’). In the 
infinite-horizon discounted case, we write V,(s) for the expected discounted sum of future 

reward for starting in state s and executing policy n. It is recursively defined by 

V,(s) = R(s, n(s)) + y c T(s, n(s), .Y’)v7r(s’). 
s’ES 

The value function, V,, for policy n is the unique simultaneous solution of this set of linear 
equations, one equation for each state s. 

Now we know how to compute a value function, given a policy. Sometimes, we will 

need to go the opposite way, and compute a greedy policy given a value function. It really 
only makes sense to do this for the infinite-horizon discounted case; to derive a policy for 

the finite horizon, we would need a whole sequence of value functions. Given any value 
function V, a greedy policy with respect to that value function, nv, is defined as 

nv(s)=argmax 
0 [ 

R(s,a)+y C T(s,a,s’)V(s’) . 

T’ES I 

This is the policy obtained by, at every step, taking the action that maximizes expected 
immediate reward plus the expected discounted value of the next state, as measured by V. 

What is the optimal finite-horizon policy, n*? The agent’s last step is easy: it should 

maximize its final reward. So 

X;(S) = argmax R(s, a). 
a 

The optimal situation-action mapping for the tth step, n:, can be defined in terms of the 
optimal (t - l)-step value function Vx;_, , t-l (written for simplicity as Vt*-,): 

n:(s) = argmax R(s, a) + v c T(s,a, s’)VF_~(S’) ; 
a [ S’ES 1 

Vl;_ I is derived from n,*_ I and VF_2. 
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In the infinite-horizon discounted case, for any initial state s, we want to execute the 
policy n that maximizes V, (s). Howard [24] showed that there exists a stationary policy, 
n*, that is optimal for every starting state. The value function for this policy, VT*, also 

written V*, is defined by the set of equations 

R(s, a) + y c T(s, a, d)V*(d) , 

S’ES 1 
which has a unique solution. An optimal policy, n*, is just a greedy policy with respect 

to v*. 
Another way to understand the infinite-horizon value function, V*, is to approach it by 

using an ever-increasing discounted finite horizon. As the horizon, t, approaches infinity, 
VF approaches V*. This is only guaranteed to occur when the discount factor, y, is less 

than 1, which tends to wash out the details of exactly what happens at the end of the agent’s 
life. 

2.3. Computing an optimal policy 

There are many methods for finding optimal policies for MDPS. In this section, 
explore value iteration because it will also serve as the basis for finding policies in 

partially observable case. 

Algorithm 1. The value-iteration algorithm for finite state space MDPS. 

VI(S) := 0 for all s 
t := 1 

loop 
t:=t+l 

loop for all s E S 
loop for all a E A 

Q~(~):=R(s,a)+yC~~~~T(s,a,s')V,-l(s') 
end loop 

Vt (s) := max, Qy (s) 

end loop 
until IV,(s) - Vt_l(s)l < E for all s ES 

we 
the 

Value iteration proceeds by computing the sequence Vt of discounted finite-horizon 
optimal value functions, as shown in Algorithm 1 (the superscript * is omitted, because we 
shall henceforth only be considering optimal value functions). It makes use of an auxiliary 
function, Q:(S), which is the t-step value of starting in state S, taking action a, then 
continuing with the optimal (t - l)-step nonstationary policy. The algorithm terminates 
when the maximum difference between two successive value functions (known as the 
Bellman error magnitude) is less than some E. It can be shown [62] that there exists a t”, 
polynomial in ]SI, Idl, the magnitude of the largest value of R(s, a), and l/(1 - v), such 
that the greedy policy with respect to V,* is equal to the optimal infinite-horizon policy, zr*. 
Rather than calculating a bound on t* in advance and running value iteration for that long, 
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we instead use the following result regarding the Bellman error magnitude [66] in order to 
terminate with a near-optimal policy. 

If / Vt (s) - Vt _ 1 (s) 1 c E for all s, then the value of the greedy policy with respect to Vt 

does not differ from V* by more than 2&y/(1 - v) at any state. That is. 

rml~V,,(S) - v*(s)\ < 2&- 
1-y’ 

It is often the case that nv, = rr* long before V, is near V*; tighter bounds may be obtained 
using the span semi-norm on the value function [49]. 

3. Partial observability 

For MDPS we can compute the optimal policy n and use it to act by simply executing 
n(s) for current state s. What happens if the agent is no longer able to determine the state 

it is currently in with complete reliability? A naive approach would be for the agent to map 
the most recent observation directly into an action without remembering anything from the 
past. In our hallway navigation example, this amounts to performing the same action in 
every location that looks the same-hardly a promising approach. Somewhat better results 
can be obtained by adding randomness to the agent’s behavior: a policy can be a mapping 
from observations to probability distributions over actions [55]. Randomness effectively 
allows the agent to sometimes choose different actions in different locations with the 
same appearance, increasing the probability that it might choose a good action; in practice 
deterministic observation-action mappings are prone to getting trapped in deterministic 

loops [32]. 
In order to behave truly effectively in a partially observable world, it is necessary to use 

memory of previous actions and observations to aid in the disambiguation of the states of 

the world. The POMDP framework provides a systematic method of doing just that. 

3.1. POMDP framework 

A partially observable Markov decision process can be described as a tuple (S, A, T, R, 

R, 0), where 
l S, A, T, and R describe a Markov decision process; 
l fz is a finite set of observations the agent can experience of its world; and 

l 0 : S x A -+ II(Q) is the observation function, which gives, for each action 
and resulting state, a probability distribution over possible observations (we write 
0 (s’, a, o) for the probability of making observation o given that the agent took action 
u and landed in state s’). 

A POMDP is an MDP in which the agent is unable to observe the current state. Instead, it 
makes an observation based on the action and resulting state. 4 The agent’s goal remains 
to maximize expected discounted future reward. 

4 It il\ possible to formulate an equivalent model in which the observation depends on the previous state instead 

of. or in addition to. the resulting state, but it complicates the exposition and adds no more expressive power; such 

a model could be converted into a POMDP model as described above, at the cost of expanding the state space. 
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:ion 

Fig. 2. A POMDP agent can be decomposed into a state estimator (SE) and a policy (n) 

3.2. Problem structure 

We decompose the problem of controlling a POMDP into two parts, as shown in Fig. 2. 

The agent makes observations and generates actions. It keeps an internal belief state, b, that 
summarizes its previous experience. The component labeled SE is the state estimator: it is 

responsible for updating the belief state based on the last action, the current observation, 
and the previous belief state. The component labeled rr is the policy: as before, it is 
responsible for generating actions, but this time as a function of the agent’s belief state 

rather than the state of the world. 
What, exactly, is a belief state? One choice might be the most probable state of the 

world, given the past experience. Although this might be a plausible basis for action in 

some cases, it is not sufficient in general. In order to act effectively, an agent must take 
into account its own degree of uncertainty. If it is lost or confused, it might be appropriate 

for it to take sensing actions such as asking for directions, reading a map, or searching for 
a landmark. In the POMDP framework, such actions are not explicitly distinguished: their 

informational properties are described via the observation function. 
Our choice for belief states will be probability distributions over states of the world. 

These distributions encode the agent’s subjective probability about the state of the world 

and provide a basis for acting under uncertainty. Furthermore, they comprise a sz@cient 

statistic for the past history and initial belief state of the agent: given the agent’s current 

belief state (properly computed), no additional data about its past actions or observations 
would supply any further information about the current state of the world [ 1,561. This 
means that the process over belief states is Markov, and that no additional data about the 

past would help to increase the agent’s expected reward. 
To illustrate the evolution of a belief state, we will use the simple example depicted in 

Fig. 3; the algorithm for computing belief states is provided in the next section. There are 
four states in this example, one of which is a goal state, indicated by the star. There are 

two possible observations: one is always made when the agent is in state 1, 2, or 4; the 
other, when it is in the goal state. There are two possible actions: EAST and WEST. These 
actions succeed with probability 0.9, and when they fail, the movement is in the opposite 
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Fig. 3. In this simple POMDP environment, the empty squares are all indistinguishable on the basis of their 

immediate appearance, but the evolution of the belief state can be used to model the agent’s location. 

direction. If no movement is possible in a particular direction, then the agent remains in 

the same location. 
Assume that the agent is initially equally likely to be in any of the three nongoal states. 

Thus, its initial belief state is [ 0.333 0.333 0.000 0.3331, where the position in the 

belief vector corresponds to the state number. 
If the agent takes action EAST and does not observe the goal, then the new belief state 

becomes [ 0.100 0.450 0.000 0.4501. If it takes action EAST again, and still does not 

observe the goal, then the probability mass becomes concentrated in the right-most state: 
[ 0.100 0.164 0.000 0.7361. Notice that as long as the agent does not observe the goal 

state, it will always have some nonzero belief that it is in any of the nongoal states, since 

the actions have nonzero probability of failing. 

3.3. Computing bekf states 

A belief state b is a probability distribution over S. We let b(s) denote the probability 

assigned to world state s by belief state b. The axioms of probability require that 0 < 
b(s) < 1 for all s E S and that Cses b(s) = 1. The state estimator must compute a new 
belief state, b’, given an old belief state b, an action a, and an observation o. The new 

degree of belief in some state s’, b’(d), can be obtained from basic probability theory as 

follows: 

b’(d) = Pr(s 1 o. a, 6) 

Pr(o I s’, a, b)Pr(s’ 1 a, b) 
= 

Pr(o I a, b) 

= Pr(o I s’, a) CsEs Pr(s’ I a, b, s) Pr(s I a, b) 
Pr(o I a, b) 

O(s’, a, 0) CsEs T(s, a, s’)b(s) = 
Wo I a, b) 

The denominator, Pr(o I a, b), can be treated as a normalizing factor, independent of s’, 

that causes b’ to sum to 1. The state-estimation function SE(b, a, o) has as its output the 
new belief state b’. 

Thus, the state-estimation component of a POMDP controller can be constructed quite 

simply from a given model. 
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3.4. Finding an optimal policy 

The policy component of a POMDP agent must map the current belief state into action. 
Because the belief state is a sufficient statistic, the optimal policy is the solution of a 
continuous space “belief MDP”. It is defined as follows: 

l f?, the set of belief states, comprise the state space; 
l A, the set of actions, remains the same; 
l t(b, a, b’) is the state-transition function, which is defined as 

t(b, a, b’) = Pr(b’ 1 a, b) = c Pr(b’ 1 a, b, o) Pr(o 1 a, b), 

0Ef2 

where 

Pr(b’ 1 b, a, o) = 
1 if SE(b, a, o) = b’ 

0 otherwise; 

l p(b, a) is the reward function on belief states, constructed from the original reward 
function on world states: 

p(b, a) = xb(s)Ns, a) 
S&S 

The reward function may seem strange; the agent appears to be rewarded for merely 
believing that it is in good states. However, because the state estimator is constructed from 

a correct observation and transition model of the world, the belief state represents the true 
occupation probabilities for all states s E S, and therefore the reward function p represents 
the true expected reward to the agent. 

This belief MDP is such that an optimal policy for it, coupled with the correct state 
estimator, will give rise to optimal behavior (in the discounted infinite-horizon sense) for 
the original POMDP [ 1,591. The remaining problem, then, is to solve this MDP. It is very 
difficult to solve continuous space MDPS in the general case, but, as we shall see in the next 
section, the optimal value function for the belief MDP has special properties that can be 

exploited to simplify the problem. 

4. Value functions for POMDPs 

As in the case of discrete MDPS, if we can compute the optimal value function, then we 
can use it to directly determine the optimal policy. This section concentrates on finding 
an approximation to the optimal value function. We approach the problem using value 
iteration to construct, at each iteration, the optimal t-step discounted value function over 
belief space. 

4.1. Policy trees 

When an agent has one step remaining, all it can do is take a single action. With two 

steps to go, it can take an action, make an observation, then take another action, perhaps 
depending on the previous observation. In general, an agent’s nonstationary t-step policy 
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Fig. 4. A t-step policy tree captures a sequence oft steps, each of which can be conditioned on the outcome of 

previous actions. Each node is labeled with the action that should be taken if it is reached 

can be represented by a policy tree as shown in Fig. 4. It is a tree of depth t that specifies a 
complete t-step nonstationary policy. The top node determines the first action to be taken. 
Then, depending on the resulting observation, an arc is followed to a node on the next 
level, which determines the next action. This is a complete recipe for t steps of conditional 
behavior. 5 

Now, what is the expected discounted value to be gained from executing a policy tree 

y? It depends on the true state of the world when the agent starts. In the simplest case, p 

is a l-step policy tree (a single action). The value of executing that action in state s is 

Vp(s) = qs, a(p)) 

where a(p) is the action specified in the top node of policy tree p. More generally, if p is 
a t-step policy tree, then 

VP(s) = R(s, a(p)) + y . (Expected value of the future) 

= R(s, U(P)) + y C P+’ I s, a(p)) C P+i I s’, a(p)) K,,(pj(L~‘) 

S’ES 0, EQ 

= qs7 Q(P)) + Y c T(k U(P)? s’) c o(d a(p), Oi)vo&&‘) 

.FES 0, EL? 

where oi(p) is the (t - l)-step policy subtree associated with observation oi at the top 
level of a t-step policy tree p. The expected value of the future is computed by first taking 

an expectation over possible next states, s’, then considering the value of each of those 
states. The value depends on which policy subtree will be executed which, itself, depends 
on which observation is made. So, we take another expectation, with respect to the possible 
observations, of the value of executing the associated subtree, oi (p), starting in state s’. 

5 Policy trees are essentially equivalent to “decision trees” as used in decision theory to represent a sequential 

decision policy; but not to “decision trees” as used in machine learning to compactly represent a single-stage 

decision rule. 
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Because the agent will never know the exact state of the world, it must be able to 
determine the value of executing a policy tree p from some belief state b. This is just 
an expectation over world states of executing p in each state: 

V,(b) = ~b(G$(s). 
YES 

It will be useful, in the following exposition, to express this more compactly. If we let 

ap = (Vp(SI), . . . > V,,(s,)), then V,(b) = b .czrp. 

Now we have the value of executing the policy tree p in every possible belief state. To 
construct an optimal t-step nonstationary policy, however, it will generally be necessary to 
execute different policy trees from different initial belief states. Let P be the finite set of 
all t-step policy trees. Then 

V,(b) =y:; b.a,. 

That is, the optimal t-step value of starting in belief state b is the value of executing the 
best policy tree in that belief state. 

This definition of the value function leads us to some important geometric insights 
into its form. Each policy tree p induces a value function VP that is linear in b, and 
V, is the upper surface of this collection of functions. So, Vt is piecewise-linear and 
convex. Fig. 5 illustrates this property. Consider a world with only two states. In such 

a world, a belief state consists of a vector of two nonnegative numbers, (b(sl), b(sz)), 

that sum to 1. Because of this constraint, a single number is sufficient to describe the 
belief state. The value function associated with a policy tree ~1, VP,, is a linear function 
of b(sl) and is shown in the figure as a line. The value functions of other policy trees 
are similarly represented. Finally, Vt is the maximum of all the VP, at each point in 
the belief space, giving us the upper surface, which is drawn in the figure with a bold 
line. 

When there are three world states, a belief state is determined by two values (again 
because of the simplex constraint, which requires the individual values to be nonnegative 
and sum to 1). The belief space can be seen as the triangle in two-space with vertices (0, 0), 
(1 , 0), and (0, 1). The value function associated with a single policy tree is a plane in three 

expected 

t-step 

discounted 

value 

b(.y,) 

Fig. 5. The optimal r-step value function is the upper surface of the value functions associated with all t-step 

policy trees. 
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space, and the optimal value function is a bowl shape that is composed of planar facets; a 
typical example is shown in Fig. 6, but it is possible for the “bowl” to be tipped on its side 
or to degenerate to a single plane. This general pattern repeats itself in higher dimensions, 
but becomes difficult to contemplate and even harder to draw! 

The convexity of the optimal value function makes intuitive sense when we think 
about the value of belief states. States that are in the “middle” of the belief space 

have high entropy-the agent is very uncertain about the real underlying state of the 

world. In such belief states, the agent cannot select actions very appropriately and so 
tends to gain less long-term reward. In low-entropy belief states, which are near the 
comers of the simplex, the agent can take actions more likely to be appropriate for the 

current state of the world and, so, gain more reward. This has some connection to the 
notion of “value of information,” [25] where an agent can incur a cost to move it from 

a high-entropy to a low-entropy state; this is only worthwhile when the value of the 
information (the difference in value between the two states) exceeds the cost of gaining 

the information. 
Given a piecewise-linear convex value function and the f-step policy trees from which 

it was derived, it is straightforward to determine the optimal situation-action mapping for 
execution on the tth step from the end. The optimal value function can be projected back 

down onto the belief space, yielding a partition into polyhedral regions. Within each region, 
there is some single policy tree p such that b . up is maximal over the entire region. The 

optimal action for each belief state in this region is a(p), the action in the root node of 
policy tree p; furthermore, the entire policy tree p can be executed from this point by 

conditioning the choice of further actions directly on observations, without updating the 
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Fig. 7. The optimal t-step situation-action mapping is determined by projecting the optimal value function back 

down onto the belief space. 

belief state (though this is not necessarily an efficient way to represent a complex policy). 
Fig. 7 shows the projection of the optimal value function down into a policy partition in 
the two-dimensional example introduced in Fig. 5; over each of the intervals illustrated, a 

single policy tree can be executed to maximize expected reward. 

4.2. Value functions as sets qf vectors 

It is possible, in principle, that every possible policy tree might represent the optimal 

strategy at some point in the belief space and, hence, that each would contribute to the 
computation of the optimal value function. Luckily, however, this seems rarely to be the 
case. There are generally many policy trees whose value functions are totally dominated 
by or tied with value functions associated with other policy trees. Fig. 8 shows a situation 

in which the value function associated with policy tree Ed is completely dominated by 
(everywhere less than or equal to) the value function for policy tree Pb. The situation with 
the value function for policy tree pC is somewhat more complicated; although it is not 

completely dominated by any single value function, it is completely dominated by pa and 

pb taken together. 
Given a set of policy trees, g, it is possible to define a unique 6 minimal subset V that 

represents the same value function. We will call this a parsimonious representation of the 
value function, and say that a policy tree is useful if it is a component of the parsimonious 
representation of the value function. 

Given a vector, ry, and a set of vectors V, we define R(a, V) to be the region of belief 
space over which (Y dominates; that is, 

R(a, V) = {b I b . a!>b.cll, forall&EV--andbEB}. 

It is relatively easy, using a linear program, to find a point in R(cr, V) if one exists, or to 
determine that the region is empty [9]. 

The simplest pruning strategy, proposed by Sondik [42,58], is to test R(cr, v) for every 
a in $ and remove those u that are nowhere dominant. A much more efficient pruning 

6 We assume here that two policy trees with the same value function are identical. 
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Fig. 8. Some policy trees may be totally dominated by others and can be ignored. 

method was proposed by Lark and White [64] and is described in detail by Littman [35] 
and by Cassandra [9]. Because it has many subtle technical details, it is not described here. 

4.3. One step of value iteration 

The value function for a POMDP can be computed using value iteration, with the same 

basic structure as for the discrete MDP case. The new problem, then, is how to compute a 

parsimonious representation of V, from a parsimonious representation of Vr_1. 

One of the simplest algorithms for solving this problem [42,58], which we call 
exhaustive enumeration, works by constructing a large representation of V,, then pruning 

it. We let V stand for a set of policy trees, though for each tree we need only actually 
store the top-level action and the vector of values, CX. The idea behind this algorithm is 

the following: Vt_t, the set of useful (t - 1)-step policy trees, can be used to construct a 
superset Vf+ of the useful t-step policy trees. A t-step policy tree is composed of a root 
node with an associated action a and ]a] subtrees, each a (t - 1)-step policy tree. We 
propose to restrict our choice of subtrees to those (t - I)-step policy trees that were useful. 

For any belief state and any choice of policy subtree, there is always a useful subtree that is 
at least as good at that state; there is never any reason to include a nonuseful policy subtree. 

The time complexity of a single iteration of this algorithm can be divided into two parts: 

generation and pruning. There are IdI IV,_1 I laf elements in VZ+: there are IAl different 

ways to choose the action and all possible lists of length Ifi 1 may be chosen from the set 

V, _ 1 to form the subtrees. The value functions for the policy trees in V: can be computed 
efficiently from those of the subtrees. Pruning requires one linear program for each element 
of the starting set of policy trees and does not add to the asymptotic complexity of the 
algorithm. 

Although it keeps parsimonious representations of the value functions at each step, this 
algorithm still does more much work than may be necessary. Even if V, is very small, it 
goes through the step of generating V,“, which always has size exponential in Ifi’ I. In the 

next sections, we present the witness algorithm and some complexity analysis, and then 
briefly outline some other algorithms for this problem that attempt to be more efficient 
than the approach of exhaustively generating VFt. 



114 L.P Kaelbling et al. /Artificial Intelligence IO1 (1998) 99-134 

4.4. The witness algorithm 

To improve the complexity of the value-iteration algorithm, we must avoid generating 
VF; instead, we would like to generate the elements of Vt directly. If we could do this, we 

might be able to reach a computation time per iteration that is polynomial in IS], 1 Al, 1~2 1, 
IV, -1 I, and I Vt I. Cheng [lo] and Smallwood and Sondik [56] also try to avoid generating all 
of V,” by constructing Vt directly. However, their algorithms still have worst-case running 
times exponential in at least one of the problem parameters [34]. In fact, the existence of 

an algorithm that runs in time polynomial in ISI, IAl, 1521, /L;_ll, and ]V,l would settle 
the long-standing complexity-theoretic question “Does NP = RP?” in the affirmative [34], 
so we will pursue a slightly different approach. 

Instead of computing Ut directly, we will compute, for each action a, a set Qf of t-step 
policy trees that have action a at their root. We can compute Vt by taking the union of 
the QT sets for all actions and pruning as described in the previous section. The witness 
algorithm is a method for computing QT in time polynomial in ISI, 1 Al, I Sz 1, IV, _ 11, and 

IQ: ) (specifically, run time is polynomial in the size of the inputs, the outputs, and an 
important intermediate result). It is possible that the QF are exponentially larger than V,, 
but this seems to be rarely the case in practice. 

In what sense is the witness algorithm superior to previous algorithms for solving 

POMDPS, then? Experiments indicate that the witness algorithm is faster in practice over a 
wide range of problem sizes [34]. The primary complexity-theoretic difference is that the 
witness algorithm runs in polynomial time in the number of policy trees in Qy . There are 
example problems that cause the other algorithms, although they never construct the QT’s 
directly, to run in time exponential in the number of policy trees in QT. That means, if we 

restrict ourselves to problems in which IQ’ I is polynomial, that the running time of the 
witness algorithm is polynomial. It is worth noting, however, that it is possible to create 

families of POMDPS that Cheng’s linear support algorithm (sketched in Section 4.5) can 
solve in polynomial time that take the witness exponential time to solve: they are problems 

in which S and Vt are very small and G2: is exponentially larger for some action a. 

From the definition of the state estimator SE and the t-step value function Vt (b), we can 

express Qf (b) (recall that this is the value of taking action a in belief state b and continuing 
optimally for t - 1 steps) formally as 

Q~(b)=Cb(s)R(s,a)+yCPr(o la, b>vt-l(bL) 

SES OEQ 

where b: is the belief state resulting from taking action a and observing o from belief 
state b; that is, b’ = SE(b, a, 0). Since V is the value of the best action, we have 

Vt (b) = max, Qy (b). 
Using arguments similar to those in Section 4.1, we can show that these Q-functions 

are piecewise-linear and convex and can be represented by collections of policy trees. Let 
Qy be the collection of policy trees that specify QF. Once again, we can define a unique 
minimal useful set of policy trees for each Q function. Note that the policy trees needed to 
represent the function V, are a subset of the policy trees needed to represent all of the QT 

functions: Vt G U, Qy. This is because maximizing over actions and then policy trees is 
the same as maximizing over the pooled sets of policy trees. 
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Algorithm 2. Outer loop of the witness algorithm. 

VI :=((O,O,...,O)] 
t := 1 

loop 
r:=t+l 
foreach a in A 

Qy := witness(Vt_t, a) 

prune lJ, Qy to get Vt 
until su&, Iv,(h) - vt_](b)1 < & 

The code in Algorithm 2 outlines our approach to solving POMDPS. The basic structure 
remains that of value iteration. At iteration t, the algorithm has a representation of the 
optimal t-step value function. Within the value-iteration loop, separate Q-functions for 
each action. represented by parsimonious sets of policy trees, are returned by calls to 
witness using the value function from the previous iteration. The union of these sets 
forms a representation of the optimal value function. Since there may be extraneous policy 

trees in the combined set, it is pruned to yield the useful set of r-step policy trees, Vt . 

4.4. I. Witness inner loop 

The basic structure of the witness algorithm is as follows. We would like to find a 
minimal set of policy trees for representing Q;” for each a. We consider the Q-functions 
one at a time. The set U, of policy trees is initialized with a single policy tree, with 
action a at the root, that is the best for some arbitrary belief state (this is easy to do, as 
described in the following paragraph). At each iteration we ask: Is there some belief state 
b for which the true value Qy (b), computed by one-step lookahead using Vt _ I, is different 
from the estimated value Q:(b), computed using the set U,? We call such a belief state 
a witness because it can, in a sense, testify to the fact that the set U, is not yet a perfect 
representation of QT (b). Note that for all b, @(b) < QT (b); the approximation is always 
an underestimate of the true value function. 

Once a witness is identified, we find the policy tree with action a at the root that will 
yield the best value at that belief state. To construct this tree, we must find, for each 
observation o, the (t - 1)-step policy tree that should be executed if observation o is made 
after executing action a. If this happens, the agent will be in belief state b’ = SE(b, a, 0). 
from which it should execute the (t - I)-step policy tree pO E Vt_l that maximizes VP, (b’). 

The tree p is built with subtrees pO for each observation o. We add the new policy tree to 
U, to improve the approximation. This process continues until we can prove that no more 
witness points exist and therefore that the current Q-function is perfect. 

4.4.2. IdentiJLing a witness 

To find witness points, we must be able to construct and evaluate alternative policy trees. 
If p is a t-step policy tree, Oi an observation, and p’ a (t - I)-step policy tree, then we 
define pnew as a r-step policy tree that agrees with p in its action and all its subtrees except 
for observation oi, for which oi (p new) = p’. Fig. 9 illustrates the relationship between p 

and pnew. 
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t - 1 -step policy trees 

Fig. 9. A new policy tree can be constructed by replacing one of its subtrees. 

Now we can state the witness theorem [34]: The true Q-function, Qp, differs from the 

approximate Q-function, @, if and only if there is some p E U,, o E $2, and p’ E l&t 
for which there is some b such that 

V,,,, (b) > Vfi(b), (1) 

for all @ E 17,. That is, if there is a belief state, b, for which pnew is an improvement over 
all the policy trees we have found so far, then b is a witness. Conversely, if none of the 

trees can be improved by replacing a single subtree, there are no witness points. A proof 

of this theorem is included in Appendix A. 

4.4.3. Checking the witness condition 

The witness theorem requires us to search for a p E U,, an o E L?, a p’ E Vt-t and a 
b E B such that condition (1) holds, or to guarantee that no such quadruple exists. Since 

U,, 52, and Vt _ t are finite and (we hope) small, checking all combinations will not be too 

time consuming. However, for each combination, we need to search all the belief states to 

test condition (1). This we can do using linear programming. 

For each combination of p, o and p’ we compute the policy tree pnew, as described 

above. For any belief state b and policy tree jj E U,, V,,,,, (b) - Vc (b) gives the advantage 
of following policy tree pnew instead of @ starting from b. We would like to find a b that 

maximizes the advantage over all policy trees ~5 the algorithm has found so far. 
The linear program in Algorithm 3 solves exactly this problem. The variable 6 is the 

minimum amount of improvement of pnew over any policy tree in U, at 6. It has a set of 

constraints that restrict 6 to be a bound on the difference and a set of simplex constraints 
that force b to be a well-formed belief state. It then seeks to maximize the advantage of 

pnew over all j!j E 17,. Since the constraints are all linear, this can be accomplished by linear 
programming. The total size of the linear program is one variable for each component of 

the belief state and one representing the advantage, plus one constraint for each policy tree 
in U, one constraint for each state, and one constraint to ensure that the belief state sums 

to one. 7 

’ In many linear-programming packages, all variables have implicit nonnegativity constraints, so the b(s) > 0 
constraints are not needed. 
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If the linear program finds that the biggest advantage is not positive, that is, that 6 < 0, 
then pnew is not an improvement over all @ trees. Otherwise, it is and b is a witness 
point. 

Algorithm 3. The linear program used to find witness points. 

Inputs: 

ufl, Pnew 

Variables: 
8, b(s) for each s E S 

Maximize: S 

Improvement constraints: 
For each j in U,: V,,,,, (b) - Vj (b) 3 S 

Simplex constraints: 
For each s E S: b(s) 3 0 

C.yEs b(s) = 1 

4.4.4. A single step of value iteration 

The complete value-iteration step starts with an agenda containing any single useful 

policy tree and with U, empty. It takes a policy tree off the top of the agenda and uses it 
as pnew in the linear program of Algorithm 3 to determine whether it is an improvement 
over the policy trees in U,. If a witness point is discovered, the best policy tree for that 
point is calculated and added to U, and all policy trees that differ from the current policy 

tree in a single subtree are added to the agenda. If no witness points are discovered, then 
that policy tree is removed from the agenda. When the agenda is empty, the algorithm 
terminates. 

Since we know that no more than QF witness points are discovered (each adds a tree to 
the set of useful policy trees), only 1 Vt _ 111 R 111 QF 1 trees can ever be added to the agenda (in 
addition to the one tree in the initial agenda). Each linear program solved has IS] variables 
and no more than 1 + IS] + 1 QT 1 constraints. Each of these linear programs either removes 
a policy tree from the agenda (this happens at most 1 + (IV,_ 1 I - 1) ) i2 1 I QF 1 times) or a 

witness point is discovered (this happens at most IQ; I times). 
These facts imply that the running time of a single pass of value iteration using the 

witness algorithm is bounded by a polynomial in the size of the state space (IS]), the size 
of the action space ([AI), the number of policy trees in the representation of the previous 
iteration’s value function ( ]Vr+) I), the number of observations (IL2 I), and the number of 
policy trees in the representation of the current iteration’s Q-functions (c, I Qy I). Note 
that we must assume that the number of bits of precision used in specifying the model is 
polynomial in these quantities since the polynomial running time of linear programming is 
expressed as a function of the input precision [54]. 

4.5. Alternative approaches 

The witness algorithm is by no means the only exact algorithm for solving finite- 
horizon POMDPS. The first such algorithm was described by Sondik [56,58]. The one-pass 
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algorithm works by identifying linear regions of the value function one at a time. For each 
one, it creates a set of constraints that form the border of the true region, then searches 
those borders to determine whether another region exists beyond the border. Although the 
algorithm is sophisticated and, in principle, avoids exhaustively enumerating the set of 

possibly useful policy trees at each iteration, it appears to run more slowly than the simpler 
enumeration methods in practice, at least for problems with small state spaces [IO]. 

In the process of motivating the one-pass algorithm, Sondik [58] applies the same ideas 
to finding Q-functions instead of the complete value function. The resulting algorithm 

might be called the two-pass algorithm [9], and its form is much like the witness algorithm 
because it first constructs each separate Q-function, then combines the Q-functions 
together to create the optimal value function. Although it appears that the algorithm 
attracted no attention and was never implemented in over 25 years after the completion 
of Sondik’s dissertation, it was recently implemented and found to be faster than any of the 

algorithms that predated the witness algorithm [9]. 
As pointed out in Section 4, value functions in belief space have a natural geometric 

interpretation. For small state spaces, algorithms that exploit this geometry are quite 
efficient [16]. An excellent example of this is Cheng’s linear support algorithm [lo]. This 

algorithm can be viewed as a variation of the witness algorithm in which witness points 
are sought at the comers of regions of the approximate value function defined by the 

algorithm’s equivalent of the set U. In two dimensions, these comers can be found easily 
and efficiently; the linear support algorithm can be made to run in low-order polynomial 
time for problems with two states. In higher dimensions, more complex algorithms are 
needed and the number of comers is often exponential in the dimensionality. Thus, the 
geometric approaches are useful only in POMDPS with extremely small state spaces. 

Zhang and Liu [67] describe the incremental-pruning algorithm, later generalized by 
Cassandra, Littman, and Zhang [7]. This algorithm is simple to implement and empirically 
faster than the witness algorithm, while sharing its good worst-case complexity in terms of 
C, 1 QF I. The basic algorithm works like the exhaustive enumeration algorithm described 

in Section 4.3, but differs in that it repeatedly prunes out nonuseful policy trees during the 
generation procedure. As a result, compared to exhaustive enumeration, very few nonuseful 

policy trees are considered and the algorithm runs extremely quickly. 
White and Scherer [65] propose an alternative approach in which the reward function 

is changed so that all of the algorithms discussed in this chapter will tend to run more 
efficiently. This technique has not yet been combined with the witness algorithm, and may 
provide some improvement. 

4.6. The injnite horizon 

In the previous section, we showed that the optimal t-step value function is always 
piecewise-linear and convex. This is not necessarily true for the infinite-horizon discounted 
value function; it remains convex [63], but may have infinitely many facets. Still, the 
optimal infinite-horizon discounted value function can be approximated arbitrarily closely 

by a finite-horizon value function for a sufficiently long horizon [5 1,591. 
The optimal infinite-horizon discounted value function can be approximated via value 

iteration, in which the series of t-step discounted value functions is computed; the 
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iteration is stopped when the difference between two successive results is small, yielding 
an arbitrarily good piecewise-linear and convex approximation to the desired value 
function. From the approximate value function we can extract a stationary policy that is 

approximately optimal. 
Sondik [59] and Hansen [23] have shown how to use algorithms like the witness 

algorithm that perform exact dynamic-programming backups in POIlDPs in a policy- 
iteration algorithm to find exact solutions to many infinite-horizon problems. 

5. Understanding policies 

In this section we introduce a very simple example and use it to illustrate some properties 
of POMDP policies. Other examples are explored in an earlier paper [8]. 

5.1. The tiger problem 

Imagine an agent standing in front of two closed doors. Behind one of the doors is a tiger 
and behind the other is a large reward. If the agent opens the door with the tiger, then a 

large penalty is received (presumably in the form of some amount of bodily injury). Instead 
of opening one of the two doors, the agent can listen, in order to gain some information 
about the location of the tiger. Unfortunately, listening is not free; in addition, it is also 
not entirely accurate. There is a chance that the agent will hear a tiger behind the left-hand 
door when the tiger is really behind the right-hand door, and vice versa. 

We refer to the state of the world when the tiger is on the left as si and when it is on the 
right as s,. The actions are LEFT, RIGHT, and LISTEN. The reward for opening the correct 
door is +lO and the penalty for choosing the door with the tiger behind it is -100. The 
cost of listening is - 1. There are only two possible observations: to hear the tiger on the 
left (TL) or to hear the tiger on the right (TR). Immediately after the agent opens a door and 

receives a reward or penalty, the problem resets, randomly relocating the tiger behind one 

of the two doors. 
The transition and observation models can be described in detail as follows. The LISTEN 

action does not change the state of the world. The LEFT and RIGHT actions cause a 

transition to world state sl with probability 0.5 and to state s, with probability 0.5 
(essentially resetting the problem). When the world is in state st, the LISTEN action results 
in observation TL with probability 0.85 and the observation TR with probability 0.15; 
conversely for world state s,.. No matter what state the world is in, the LEFT and RIGHT 
actions result in either observation with probability 0.5. 

5.2. Finite-horizon policies 

The optimal undiscounted finite-horizon policies for the tiger problem are rather striking 

in the richness of their structure. Let us begin with the situation-action mapping for the 
time step l = 1, when the agent only gets to make a single decision. If the agent believes 
with high probability that the tiger is on the left, then the best action is to open the right 
door; if it believes that the tiger is on the right, the best action is to open the left door. 
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Fig. 10. The optimal situation-action mapping for t = 1 for the tiger problem shows that each of the three actions 

is optimal for home belief state. 

But what if the agent is highly uncertain about the tiger’s location? The best thing to do 
is listen. Guessing incorrectly will incur a penalty of -100, whereas guessing correctly 

will yield a reward of f10. When the agent’s belief has no bias either way, it will guess 
wrong as often as it guesses right, so its expected reward for opening a door will be 

(-100 + lo)/2 = -45. Listening always has value -1, which is greater than the value 
of opening a door at random. Fig. 10 shows the optimal l-step nonstationary policy. Each 
of the policy trees is shown as a node; below each node is the belief interval 8 over 

which the policy tree dominates; inside each node is the action at the root of the policy 
tree. 

We now move to the case in which the agent can act for two time steps. The optimal 
2-step nonstationary policy begins with the situation-action mapping for t = 2 shown 
in Fig. 11. This situation-action mapping has a surprising property: it never chooses to 
act, only to listen. Why? Because if the agent were to open one of the doors at t = 2, 
then, on the next step, the tiger would be randomly placed behind one of the doors and 

the agent’s belief state would be reset to (0.5,0.5). So after opening a door, the agent 
would be left with no information about the tiger’s location and with one action remaining. 

We just saw that with one step to go and b = (0.5,0.5) the best thing to do is listen. 

Therefore, if the agent opens a door when t = 2, it will listen on the last step. It is a 

better strategy to listen when t = 2 in order to make a more informed decision on the last 

step. 
Another interesting property of the 2-step nonstationary policy is that there are multiple 

policy trees with the same action at the root. This implies that the value function is not 

linear, but is made up of five linear regions. The belief states within a single region are 
similar in that when they are transformed, via SE(b, a, o), the resulting belief states will 
all he in the same belief region defined by the situation-action mapping for t = 1. In other 

words, every single belief state in a particular region r of the situation-action mapping for 
t = 2, will, for the same action and observation, be transformed to a belief state that lies 
in some region r’ of the situation-action mapping for t = 1. This relationship is shown in 

Fig. 12. 

The optimal nonstationary policy for t = 3 also consists solely of policy trees with the 
listen action at their roots. If the agent starts from the uniform belief state, b = (0.5,0.5), 
listening once does not change the belief state enough to make the expected value of 
opening a door greater than that of listening. The argument for this parallels that for the 

t = 2 case. 

‘The belief interval is specified in terms of b(q) only since b(s,) = I - b(sl). 
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Fig. Il. The optimal situation-action mapping for t = 2 in the tiger problem consists onI4 of the LISTEN action. 
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Fig. 12. The optimal nonstationary policy for t = 2 illustrates belief state transformations from t = 2 to t = 1. It 

consists of five separate policy trees. 

This argument for listening in the first steps no longer applies after t = 3; the optimal 
situation-action mappings for t > 3 all choose to open a door for some belief states. Fig. 13 
shows the structure that emerges in the optimal nonstationary policy for t = 4. Notice that 
for t = 3 there are two nodes that do not have any incoming arcs from t = 4. This happens 
because there is no belief state at t = 4 for which the optimal action and any resulting 
observation generates a new belief state that lies in either of the regions defined by the 

unused nodes at t = 3. 
This graph can also be interpreted as a compact representation of all of the useful policy 

trees at every level. The forest of policy trees is transformed into a directed acyclic graph 
by collapsing all of the nodes that stand for the same policy tree into one. 

5.3. Infinite-horizon policies 

When we include a discount factor to decrease the value of future rewards, the structure 
of the finite-horizon POMDP value function changes slightly. As the horizon t increases, 
the rewards received for the final few steps have decreasing influence on the situation- 
action mappings for earlier time steps and the value function begins to converge. In many 
discounted POMDP problems, the optimal situation-action mapping for large t looks much 
the same as the optimal situation-action mapping for t - 1. Fig. 14 shows a portion of the 
optimal nonstationary policy for the discounted finite-horizon version of the tiger problem 
for large values of t . Notice that the structure of the graph is exactly the same from one time 

to the next. The vectors for each of the nodes, which together define the value function 
differ only after the fifteenth decimal place. This structure first appears at time step t = 56 
and remains constant through t = 105. When t = 105, the precision of the algorithm used 
to calculate the situation-action mappings can no longer discern any difference between the 
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Fig. 13. The optimal nonstationary policy for t = 4 has a rich structure. 

Fig. 14. The optimal nonstationary policy for large t converges. 

vectors’ values for succeeding intervals. At this point, we have an approximately optimal 
value function for the infinite-horizon discounted problem. 

This POMDP has the property that the optimal infinite-horizon value function has a 
finite number of linear segments. An associated optimal policy has a finite description and 
is called finitely transient [9,51,58]. POMDPS with finitely transient optimal policies can 
sometimes be solved in finite time using value iteration. In POMDPS with optimal policies 
that are not finitely transient, the infinite-horizon value function has an infinite number of 

segments; on these problems the sets V, grow with each iteration. The best we can hope 
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for is to solve these POMDPS approximately. It is not known whether there is a way of 
using the value-iteration approach described in this paper for solving all POMDPS with 

finitely transient optimal policies in finite time; we conjecture that there is. The only finite- 
time algorithm that has been described for solving POMDPS with finitely transient optimal 
policies over the infinite horizon is a version of policy iteration described by Sondik [58]. 
The simpler policy-iteration algorithm due to Hansen [23] has not been proven to converge 
for all such POMDPS. 9 

5.4. Plan graphs 

One drawback of the POMDP approach is that the agent must maintain a belief state 

and use it to select an optimal action on every step; if the underlying state space or V 

is large, then this computation can be expensive. In many cases, it is possible to encode 
the policy in a graph that can be used to select actions without any explicit representation 

of the belief state [59]; we refer to such graphs as plan graphs. Recall Fig. 14, in which 
the algorithm has nearly converged upon an infinite-horizon policy for the tiger problem. 
Because the situation-action mappings at every level have the same structure, we can make 
the nonstationary policy into a stationary one by redrawing the edges from one level to 
itself as if it were the succeeding level. This rearrangement of edges is shown in Fig. 15, 
and the result is redrawn in Fig. 16 as a plan graph. 

Some of the nodes of the graph will never be visited once either door is opened and the 
belief state is reset to (0.5,0.5). If the agent always starts in a state of complete uncertainty, 
then it will never be in a belief state that lies in the region of these nonreachable nodes. 
This results in a simpler version of the plan graph, shown in Fig. 17. The plan graph has a 

simple interpretation: keep listening until you have heard the tiger twice more on one side 
than the other. 

Because the nodes represent a partition of the belief space and because all belief states 
within a particular region will map to a single node on the next level, the plan graph 
representation does not require the agent to maintain an on-line representation of the belief 
state; the current node is a sufficient representation of the current belief. In order to execute 
a plan graph, the initial belief state is used to choose a starting node. After that, the agent 
need only maintain a pointer to a current node in the graph. On every step, it takes the action 
specified by the current node, receives an observation, then follows the arc associated with 
that observation to a new node. This process continues indefinitely. 

A plan graph is essentially a finite-state controller. It uses the minimal possible amount 
of memory to act optimally in a partially observable environment. It is a surprising 
and pleasing result that it is possible to start with a discrete problem, reformulate it in 
terms of a continuous belief space, then map the continuous solution back into a discrete 

’ As a technical aside, if there are POMDPS that have finitely transient optimal policies for which neither value 

iteration nor Hansen’s policy-iteration algorithm converges, the tiger problem is a good candidate. This is because 

the behavior of these algorithms on this problem appears to be extremely sensitive to the numerical precision used 

in comparisons-the better the precision, the longer the algorithms take to converge. In fact, it may be the case that 

imprecision is necessary for the algorithms to converge on this problem, although it is difficult to test this without 

detailed formal analysis. Sondik’s proof that his policy-iteration algorithm converges depends on controlled use 

of imprecision and we have not studied how that could best be used in the context of value iteration. 
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Fig. 15. Edges can be rearranged to form a stationary policy. 

Fig. 16. The optimal infinite-horizon policy for the tiger problem can be drawn as a plan graph. This structure 

counts the relative number of times the tiger was heard on the left as compared to the right. 

Fig. 17. Given the initial belief state of (0.5,0.5) for the tiger problem, some nodes of the plan graph can be 
trimmed. 
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Fig. 18. More memory is needed in the tiger problem when listening reliability is reduced to 0.65 

controller. Furthermore, the extraction of the controller can be done automatically from 

two successive equal value functions. 
It is also important to note that there is no known a priori bound on the size of the 

optimal plan graph in terms of the size of the problem. In the tiger problem, for instance, if 
the probability of getting correct information from the LISTEN action is reduced from 0.85 
to 0.65, then the optimal plan graph, shown in Fig. 18, is much larger, because the agent 
must hear the tiger on one side 5 times more than in the other before being sufficiently 
confident to act. As the observation reliability decreases, an increasing amount of memory 

is required. 

6. Related work 

In this section, we examine how the assumptions of the POMDP model relate to earlier 
work on planning in AI. We consider only models with finite-state and action spaces and 
static underlying dynamics, as these assumptions are consistent with the majority of work 
in this area. Our comparison focuses on issues of imperfect knowledge, uncertainty in 
initial state, the transition model, the observation model, the objective of planning, the 
representation of domains, and plan structures. The most closely related work to our own 
is that of Kushmerick, Hanks, and Weld [30] on the BURIDAN system, and Draper, Hanks 
and Weld [ 141 on the C-BURIDAN system. 

6.1. Itnpegect knowledge 

Plans generated using standard MDP algorithms and classical planriing algorithms lo 
assume that the underlying state of the process will be known with certainty during plan 

execution. In the MDP framework, the agent is informed of the current state each time it 
takes an action. In many classical planners (e.g., SNLP [39], UCPOP [45]), the current state 

‘” By “classical planning” we mean linear or partial-order planners using STRIPS-like operators 
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can be calculated trivially from the known initial state and knowledge of the deterministic 

operators. 
The assumption of perfect knowledge is not valid in many domains. Research on 

epistemic logic [43,44,52] relaxes this assumption by making it possible to reason about 
what is and is not known at a given time. Unfortunately, epistemic logics have not been 
used as a representation in automatic planning systems, perhaps because the richness of 

representation they provide makes efficient reasoning very difficult. 

A step towards building a working planning system that reasons about knowledge is to 
relax the generality of the logic-based schemes. The approach of CNLP [46] uses three- 

valued propositions where, in addition to true and false, there is a value unknown, which 
represents the state when the truth of the proposition is not known. Operators can then 

refer to whether propositions have an unknown value in their preconditions and can have 
the value in their effects. This representation for imperfect knowledge is only appropriate 
when the designer of the system knows, in advance, what aspects of the state will be known 

and unknown. It is insufficient for multiple agents reasoning about each others’ knowledge 
and for representing certain types of correlated uncertainty [20]. 

Formulating knowledge as predicate values that are either known or unknown makes 
it impossible to reason about gradations of knowledge. For example, an agent that is 
fairly certain that it knows the combination to a lock might be willing to try to unlock it 

before seeking out more precise knowledge. Reasoning about levels of knowledge is quite 
common and natural in the POMDP framework. As long as an agent’s state of knowledge 

can be expressed as a probability distribution over possible states of the world, the POMDP 

perspective applies. 

6.2. Initial state 

Many classical planning systems (SNLP, UCPOP, CNLP) require the starting state to be 
known during the planning phase. An exception is the U-PLAN [38] system, which creates 
a separate plan for each possible initial state with the aim of making these plans easy to 

merge to form a single plan. Conditional planners typically have some aspects of the initial 
state unknown. If these aspects are important to the planning process, they are tested during 

execution. 
In the POMDP framework, the starting state is not required to be known precisely and 

can instead be represented as a probability distribution over possible states. BURIDAN and 
C-BURIDAN also use probability distributions over states as an internal representation of 

uncertainty, so they can deal with initial-state uncertainty in much the same way. 

6.3. Transition model 

In classical planning systems, operators have deterministic effects. The plans constructed 
are brittle, since they apply to a specific starting state and require the trajectory through the 

states to go exactly as expected. Many domains are not easily modeled with deterministic 
actions, since an action can have different results, even when applied in exactly the same 

state. 
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Extensions to classical planning, such as CNLP [46] and CASSANDRA [48] have consid- 
ered operators with nondeterministic effects. For each operator, there is a set of possible 
next states that could occur. A drawback of this approach is that it gives no information 
about the relative likelihood of the possible outcomes. These systems plan for every possi- 

ble contingency to ensure that the resulting plan is guaranteed to lead to a goal state. 
Another approach used in modeling nondeterministic actions is to define a probability 

distribution over the possible next states. This makes it possible to reason about which of 
the resulting states are more likely and makes it possible to assess whether a plan is likely to 
reach the goal even if it is not guaranteed to do so. This type of action model is used in MDPS 
and POMDPS as well as in BURIDAN and C-BURIDAN. Other work [5,15,19] has used 
representations that can be used to compute probability distributions over future states. 

6.4. Observation model 

When the starting state is known and actions are deterministic, there is no need to get 
feedback from the environment when executing a plan. However, if the starting state is 
unknown or the actions have nondeterministic effects, more effective plans can be built by 
exploiting feedback, or observations, from the environment concerning the identity of the 
current state. 

If observations reveal the precise identity of the current state, the planning model is 
called “completely observable.” The MDP model, as well as some planning systems such 
as CNLP and PLINTH [18,19] assume complete observability. Other systems, such as 
BURIDAN and MAXPLAN [37], have no observation model and can attack “completely 
unobservable” problems. Classical planning systems typically have no observation model. 
but the fact that the initial state is known and operators are deterministic means that they 
can also be thought of as solving completely observable problems. 

Completely observable and completely unobservable models are particularly clean but 
are unrealistic. The POMDP and C-BURIDAN frameworks model partially observable 

environments, in that observations provide some information about the underlying state, 
but not enough to guarantee that it will be known with certainty. This model provides for 
a great deal of expressiveness (both completely observable and completely unobservable 
models can be viewed as special cases), but is quite difficult to solve. It is an interesting 
and powerful model because it allows systems to reason about taking actions to gather 
knowledge that will be important for later decision making. 

6.5. Objective 

The job of a planner is to find a plan that satisfies a particular objective; most often, the 
objective is a goal of achievement, that is, to arrive at some state that is in a set of problem- 
specific goal states. When probabilistic information is available concerning the initial state 

and transitions, a more general objective can be used-reaching a goal state with sufficient 
probability (see, for example, work on BURIDAN and C-BURIDAN). 

A popular alternative to goal attainment is maximizing total expected discounted reward 
(total-reward criterion). Under this objective, each action results in an immediate reward 
that is a function of the current state. The exponentially discounted sum of these rewards 
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over the execution of a plan (finite or infinite horizon) constitutes the value of the plan. 
This objective is used extensively in most work with MDPS and POMDPS, including ours. 

Several authors (for example, Koenig [27]) have pointed out that, given a completely 
observable problem stated as one of goal achievement, reward functions can be constructed 
so that a policy that maximizes reward can be used to maximize the probability of goal 
attainment in the original problem. This shows that the total-reward criterion is no less 
general than goal achievement in completely observable domains. The same holds for 
finite-horizon partially observable domains. 

Interestingly, a more complicated transformation holds in the opposite direction: any 
total expected discounted reward problem (completely observable or finite horizon) can 

be transformed into a goal-achievement problem of similar size [ 12,691. Roughly, the 
transformation simulates the discount factor by introducing an absorbing state with a small 
probability of being entered on each step. Rewards are then simulated by normalizing all 
reward values to be between zero and one and then “siphoning off” some of the probability 
of absorption equal to the amount of normalized reward. The (perhaps counterintuitive) 
conclusion is that goal-attainment problems and reward-type problems are computationally 
equivalent. 

There is a qualitative difference in the kinds of problems typically addressed with 
POMDP models and those addressed with planning models. Quite frequently, POMDPS are 

used to model situations in which the agent is expected to go on behaving indefinitely, 
rather than simply until a goal is achieved. Given the inter-representability results between 
goal-probability problems and discounted-optimality problems, it is hard to make technical 
sense of this difference. In fact, many POMDP models should probably be addressed in an 
average-reward context [ 171. Using a discounted-optimal policy in a truly infinite-duration 

setting is a convenient approximation, similar to the use of a situation-action mapping from 
a finite-horizon policy in receding horizon control. 

Littman [35] catalogs some alternatives to the total-reward criterion, all of which are 
based on the idea that the objective value for a plan is based on a summary of immediate 
rewards over the duration of a run. Koenig and Simmons [28] examine risk-sensitive 
planning and showed how planners for the total-reward criterion could be used to optimize 
risk-sensitive behavior. Haddawy et al. [21] looked at a broad family of decision-theoretic 
objectives that make it possible to specify trade-offs between partially satisfying goals 

quickly and satisfying them completely. Bacchus, Boutilier and Grove [2] show how some 
richer objectives based on evaluations of sequences of actions can actually be converted to 
total-reward problems. Other objectives considered in planning systems, aside from simple 
goals of achievement, include goals of maintenance and goals of prevention [15]; these 
types of goals can typically be represented using immediate rewards as well. 

6.6. Representation of problems 

The propositional representations most often used in planning have a number of 
advantages over the flat state-space representations associated with MDPS and POMDPS. The 
main advantage comes from their compactness-just as with operator schemata, which can 
represent many individual actions in a single operator, propositional representations can be 
exponentially more concise than a fully expanded state-based transition matrix for an MDP. 
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Algorithms for manipulating compact (or factored) POMDPS have begun to ap- 
pear [6,14]-this is a promising area for future research. At present, however, there is 
no evidence that these algorithms result in improved planning time significantly over the 
use of a “flat” representation of the state space. 

6.7. Plan structures 

Planning systems differ in the structure of the plans they produce. It is important that 
a planner be able to express the optimal plan if one exists for a given domain. We briefly 
review some popular plan structures along with domains in which they are sufficient for 
expressing optimal behavior. 

Traditional plans are simple sequences of actions. They are sufficient when the initial 
state is known and all actions are deterministic. A slightly more elaborate structure is 
the partially ordered plan (generated, for example, by SNLP and UCPOP), or the parallel 

plan 141. In this type of plan, actions can be left unordered if all orderings are equivalent 

under the performance metric. 
When actions are stochastic, partially ordered plans can still be used (as in BURIDAN). 

but contingent plans can be more effective. The simplest kind of contingent or branching 
plan is one that has a tree structure (as generated by CNLP or PLINTH). In such a plan, 
some of the actions have different possible outcomes that can be observed, and the flow 
of execution of the plan is conditioned on the outcome. Branching plans are sufficient 
for representing optimal plans for finite-horizon domains. Directed acyclic graphs (DAGs) 
can represent the same class of plans, but potentially do so much more succinctly, because 
separate branches can share structure. C-BURIDAN uses a representation of contingent 

plans that also allows for structure sharing (although of a different type than our DAG- 
structured plans). Our work on POMDPS finds DAG-structured plans for finite-horizon 

problems. 
For infinite-horizon problems, it is necessary to introduce loops into the plan represen- 

tation [3 1,571. (Loops might also be useful in long finite-horizon POMDPS for representa- 
tional succinctness.) A simple loop-based plan representation depicts a plan as a labeled 
directed graph. Each node of the graph is labeled with an action and there is one labeled 
outgoing edge for each possible outcome of the action. It is possible to generate this type 
of plan graph for some POMDPS [8,22,23,47,59]. 

For completely observable problems with a high branching factor, a more convenient 
representation is a policy, which maps the current state (situation) to a choice of action. 
Because there is an action choice specified for all possible initial states, policies are 

also called universal plans [53]. This representation is not appropriate for POMDPS, since 
the underlying state is not fully observable. However, POMDP policies can be viewed as 
universal plans over belief space. 

It is interesting to note that there are infinite-horizon POMDPS for which no finite-state 
plan is sufficient. Simple 2-state examples can be constructed for which optimal behavior 
requires counting (i.e., a simple stack machine); there is reason to believe that general 
pushdown automata and perhaps even Turing machines are necessary to represent optimal 
plans in general. This argues that, in the limit, a plan is actually a program. Several 
techniques have been proposed recently for searching for good program-like controllers 
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in POMDPS [29,68]. We restrict our attention to the simpler finite-horizon case and a small 
set of infinite-horizon problems that have optimal finite-state plans. 

7. Extensions and conclusions 

The POMDP model provides a firm foundation for work on planning under uncertainty in 
action and observation. It gives a uniform treatment of action to gain information and action 
to change the world. Although they are derived through the domain of continuous belief 
spaces, elegant finite-state controllers may sometimes be constructed using algorithms such 
as the witness algorithm. 

However, experimental results [34] suggest that even the witness algorithm becomes 
impractical for problems of modest size (ISJ > 1.5 and IL2 1 > 15). Our current work 

explores the use of function-approximation methods for representing value functions and 
the use of simulation in order to concentrate the approximations on the frequently visited 
parts of the belief space [33]. The results of this work are encouraging and have allowed us 
to get a very good solution to an 89-state, 16-observation instance of a hallway navigation 
problem similar to the one described in the introduction. We are optimistic and hope to 
extend these techniques (and others) to get good solutions to large problems. 

Another area that is not addressed in this paper is the acquisition of a world model. 
One approach is to extend techniques for learning hidden Markov models [50,60] to learn 
POMDP models. Then, we could apply algorithms of the type described in this paper 
to the learned models. Another approach is to combine the learning of the model with 
the computation of the policy. This approach has the potential significant advantage of 

being able to learn a model that is complex enough to support optimal (or good) behavior 
without making irrelevant distinctions; this idea has been pursued by Chrisman [ 1 l] and 

McCallum [40,4 I]. 

Theorem A.1. Let U, be a nonempty set of useful policy trees, and Qy be the complete set 

of useful policy trees. Then U, # Qy if and only if there is some tree p E U,, observation 

o* E Q, and subtree p’ E Vt-l for which there is some belief state b such that 

VP,,,@) > V,(b) (A.11 

for all j? E U,, where pnew is a t-step policy tree that agrees with p in its action and all its 

subtrees except for observation o’, for which o* (pnew) = p’. 

Note that we are defining two trees to be equal if they have the same valuefinction; this 

makes it unnecessary to deal with the effect of ties in the set U,. 

Proof. The “if” direction is easy since the b can be used to identify a policy tree missing 
from U, . 

The “only if” direction can be rephrased as: If U, # &?y then there is a belief state b, a 
p E U,, and a pnew such that pnew has a larger value than any other jj E U, at b. 
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Start by picking some p* E QF - U, and choose any b such that p* has the highest value 
at b (there must be such a b since p* is useful). Let 

p = argmax V,r (b). 
p’EUa 

Now, p* is the policy tree in Qf - U, that has the highest value at b, and p is the policy 
tree in U, that has the highest value at b. By construction, V,*(b) > V,(b). 

Now, if p and p* differ in only one subtree, then we are done, p* can serve as a pnew in 
the theorem. 

If p and p* differ in more than one subtree, we will identify another policy tree that can 
act as pnew. Choose an observation O* E G2 such that 

xbW( c ~(~,~(P*).s’~V,*(~*~(S’)) 
s S’ES 

> ~b(s)( c T(st a(~*), ~‘)Vo.,,,,(~‘$ 
s S’ES 

There must be a O* satisfying this inequality since otherwise we get the contradiction 

V,,* (6) 

Define pnew to be identical to p except that in the place of subtree o*(p), we put o*(p*). 

From this, it follows that 

+ Y C T(st u(Pnew)~ S’) C O(s’, a(pnew)~ @)Voi(pnew) S’ 

S’ES oid2 ( 0 

+ Y C T(s, u(P)9 S’) C O(s’9 u(P)3 @)Vo.r,J(s’)) 

S’ES Uj& 

= V,(b) 3 Vfi(b) 

for all @ E U, . Therefore, the policy trees p and pnew, the observation o*, p’ = o*(p*) and 
the belief state b satisfy the conditions of the theorem. q 
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