
Artificial Intelligence 101 (1998) 99-134

Artificial
Intelligence

Planning and acting in partially observable
stochastic domains

Leslie Pack Kaelbling a,*, 1,2, Michael L. Littman b,3,
Anthony R. Cassandra ‘, ’

a Computer Science Department, Brown Universit)r Box 1910, Providence, RI 02912-1910, USA

b Department of Computer Science, Duke Universiry, Durham, NC 27708-0129, USA

’ Microelectronics and Computer Technology Corporation (MCC), 3500 West Balcones Center Drive, Austin,
TX 78759-5398, USA

Received 11 October 1995; received in revised form 17 January 1998

Abstract

In this paper, we bring techniques from operations research to bear on the problem of choosing
optimal actions in partially observable stochastic domains. We begin by introducing the theory

of Markov decision processes (MDPS) and partially observable MDPS (POMDPS). We then outline
a novel algorithm for solving POMDPS off line and show how, in some cases, a finite-memory
controller can be extracted from the solution to a POMDP. We conclude with a discussion of how our
approach relates to previous work, the complexity of finding exact solutions to POMDPS, and of some
possibilities for finding approximate solutions. 0 1998 Elsevier Science B.V. All rights reserved.

Keywords: Planning; Uncertainty; Partially observable Markov decision processes

Consider the problem of a robot navigating in a large office building. The robot can move
from hallway intersection to intersection and can make local observations of its world.
Its actions are not completely reliable, however. Sometimes, when it intends to move, it
stays where it is or goes too far; sometimes, when it intends to turn, it overshoots. It has
similar problems with observation. Sometimes a corridor looks like a comer; sometimes a
T-junction looks like an L-junction. How can such an error-plagued robot navigate, even

given a map of the corridors?

* Corresponding author. Email: lpk@cs.brown.edu.
’ Supported in part by NSF grants IRI-9453383 and IRI-93 12395.
2 Supported in part by DARPA/Rome Labs Planning Initiative grant F30602-95-I-0020
3 Supported in part by Bellcore and NSF CAREER grant IRI-9702576.

0004-3702/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved.
PlI: SOOO4-3702(98)00023-X

100 L.I? Kaelbling et al. /Arti$cial Intelligence 101 (1998) 99-134

In general, the robot will have to remember something about its history of actions
and observations and use this information, together with its knowledge of the underlying
dynamics of the world (the map and other information), to maintain an estimate of its

location. Many engineering applications follow this approach, using methods like the
Kalman filter [26] to maintain a running estimate of the robot’s spatial uncertainty,
expressed as an ellipsoid or normal distribution in Cartesian space. This approach will

not do for our robot, though. Its uncertainty may be discrete: it might be almost certain that
it is in the northeast comer of either the fourth or the seventh floors, though it admits a
chance that it is on the fifth floor, as well.

Then, given an uncertain estimate of its location, the robot has to decide what actions
to take. In some cases, it might be sufficient to ignore its uncertainty and take actions that

would be appropriate for the most likely location. In other cases, it might be better for
the robot to take actions for the purpose of gathering information, such as searching for
a landmark or reading signs on the wall. In general, it will take actions that fulfill both

purposes simultaneously.

1. Introduction

in this paper, we bring techniques from operations research to bear on the problem of
choosing optimal actions in partially observable stochastic domains. Problems like the

one described above can be modeled as partially observable Markov decision processes
(POMDPS). Of course, we are not interested only in problems of robot navigation. Similar
problems come up in factory process control, oil exploration, transportation logistics, and

a variety of other complex real-world situations.
This is essentially a planning problem: given a complete and correct model of the

world dynamics and a reward structure, find an optimal way to behave. In the artificial
intelligence (AI) literature, a deterministic version of this problem has been addressed

by adding knowledge preconditions to traditional planning systems [43]. Because we
are interested in stochastic domains, however, we must depart from the traditional AI
planning model. Rather than taking plans to be sequences of actions, which may only
rarely execute as expected, we take them to be mappings from situations to actions that
specify the agent’s behavior no matter what may happen. In many cases, we may not want
a full policy; methods for developing partial policies and conditional plans for completely
observable domains are the subject of much current interest [13,15,61]. A weakness of the

methods described in this paper is that they require the states of the world to be represented
enumeratively, rather than through compositional representations such as Bayes nets or
probabilistic operator descriptions. However, this work has served as a substrate for

development of algorithms for more complex and efficient representations [6]. Section 6
describes the relation between the present approach and prior research in more detail.

One important facet of the POMDP approach is that there is no distinction drawn between
actions taken to change the state of the world and actions taken to gain information. This
is important because, in general, every action has both types of effect. Stopping to ask
questions may delay the robot’s arrival at the goal or spend extra energy; moving forward
may give the robot information that it is in a dead-end because of the resulting crash.

L.19 Kaelbling et al. /Art$cial Intelligence 101 (1998) 99-134 101

Thus, from the POMDP perspective, optimal performance involves something akin to a
“value of information” calculation, only more complex; the agent chooses between actions
based on the amount of information they provide, the amount of reward they produce, and
how they change the state of the world.

This paper is intended to make two contributions. The first is to recapitulate work from
the operations-research literature [36,42,56,59,64] and to describe its connection to closely
related work in AI. The second is to describe a novel algorithmic approach for solving
POMDPS exactly. We begin by introducing the theory of Markov decision processes (MDPS)

and POMDPS. We then outline a novel algorithm for solving POMDPS off line and show how,

in some cases, a finite-memory controller can be extracted from the solution to a POMDP.

We conclude with a brief discussion of related work and of approximation methods.

2. Markov decision processes

Markov decision processes serve as a basis for solving the more complex partially
observable problems that we are ultimately interested in. An MDP is a model of an agent

interacting synchronously with a world. As shown in Fig. 1, the agent takes as input the
state of the world and generates as output actions, which themselves affect the state of the
world. In the MDP framework, it is assumed that, although there may be a great deal of
uncertainty about the effects of an agent’s actions, there is never any uncertainty about the

agent’s current state-it has complete and perfect perceptual abilities.
Markov decision processes are described in depth in a variety of texts [3,49]; we will

just briefly cover the necessary background.

2.1. Basic framework

A Markov decision process can be described as a tuple (S, d, T, R), where
l S is a finite set of states of the world;

l A is a finite set of actions;
l T : S x A + n(S) is the state-transition function, giving for each world state and

agent action, a probability distribution over world states (we write T(s, a, s’) for
the probability of ending in state s’, given that the agent starts in state s and takes

action a); and

Fig. 1. An MDP models the synchronous interaction between agent and world

102 L.P Kaelbling et al. /Artijicial Intelligence 101 (1998) 99-134

l R : S x A -+ IR is the reward function, giving the expected immediate reward gained
by the agent for taking each action in each state (we write R(s, a) for the expected

reward for taking action a in state s).
In this model, the next state and the expected reward depend only on the previous state
and the action taken; even if we were to condition on additional previous states, the

transition probabilities and the expected rewards would remain the same. This is known
as the Markov property-the state and reward at time t + 1 is dependent only on the state

at time t and the action at time t.
In fact, MDPS can have infinite state and action spaces. The algorithms that we describe

in this section apply only to the finite case; however, in the context of POMDPS, we will

consider a class of MDPS with uncountably infinite state spaces.

2.2. Acting optimally

We would like our agents to act in such a way as to maximize some measure of the
long-run reward received. One such framework is jinite-horizon optimality, in which the
agent should act in order to maximize the expected sum of reward that it gets on the next k

steps; it should maximize

rk-1 i

where rt is the reward received on step t. This model is somewhat inconvenient, because it
is rare that an appropriate k will be known exactly. We might prefer to consider an infinite
lifetime for the agent. The most straightforward is the injnite-horizon discounted model,
in which we sum the rewards over the infinite lifetime of the agent, but discount them
geometrically using discountfactor 0 < y < 1; the agent should act so as to optimize

In this model, rewards received earlier in its lifetime have more value to the agent; the
infinite lifetime is considered, but the discount factor ensures that the sum is finite. This
sum is also the expected amount of reward received if a decision to terminate the run
is made on each step with probability 1 - v. The larger the discount factor (closer to

l), the more effect future rewards have on current decision making. In our forthcoming
discussions of finite-horizon optimality, we will also use a discount factor; when it has
value one, it is equivalent to the simple finite-horizon case described above.

A policy is a description of the behavior of an agent. We consider two kinds of policies:
stationary and nonstationary. A stationary policy, n : S -+ A, is a situation-action mapping
that specifies, for each state, an action to be taken. The choice of action depends only on the
state and is independent of the time step. A nonstationary policy is a sequence of situation-
action mappings, indexed by time. The policy rrt is to be used to choose the action on the
tth-to-last step as a function of the current state, St. In the finite-horizon model, the optimal
policy is not typically stationary: the way an agent chooses its actions on the last step of its
life is generally going to be very different from the way it chooses them when it has a long

L.l? Kaelbling et al. /Ari$cial Inrelligence 101 (1998) 99-134 103

life ahead of it. In the infinite-horizon discounted model, the agent always has a constant
expected amount of time remaining, so there is no reason to change action strategies: there
is a stationary optimal policy.

Given a policy, we can evaluate it based on the long-run value that the agent expects to
gain from executing it. In the finite-horizon case, let V,,,(s) be the expected sum of reward
gained from starting in state s and executing nonstationary policy n for t steps. Clearly,
VT., (9) = R(s, nl (s)); that is, on the last step, the value is just the expected reward for
taking the action specified by the final element of the policy. Now, we can define V,,,(s)

inductively as

VX.,(S) = +3%(s)) +Y c T(s,~1(S),S')V~,t-l(S').

SfES

The t-step value of being in state s and executing nonstationary policy n is the immediate
reward, R(s, nt(s)), plus the discounted expected value of the remaining t - 1 steps. To

evaluate the future, we must consider all possible resulting states s’, the likelihood of their
occurrence T(s, nt(s), s’), and their (t - I)-step value under policy rr, VT,t-l (s’). In the
infinite-horizon discounted case, we write V,(s) for the expected discounted sum of future

reward for starting in state s and executing policy n. It is recursively defined by

V,(s) = R(s, n(s)) + y c T(s, n(s), .Y’)v7r(s’).
s’ES

The value function, V,, for policy n is the unique simultaneous solution of this set of linear
equations, one equation for each state s.

Now we know how to compute a value function, given a policy. Sometimes, we will

need to go the opposite way, and compute a greedy policy given a value function. It really
only makes sense to do this for the infinite-horizon discounted case; to derive a policy for

the finite horizon, we would need a whole sequence of value functions. Given any value
function V, a greedy policy with respect to that value function, nv, is defined as

nv(s)=argmax
0 [

R(s,a)+y C T(s,a,s’)V(s’) .

T’ES I

This is the policy obtained by, at every step, taking the action that maximizes expected
immediate reward plus the expected discounted value of the next state, as measured by V.

What is the optimal finite-horizon policy, n*? The agent’s last step is easy: it should

maximize its final reward. So

X;(S) = argmax R(s, a).
a

The optimal situation-action mapping for the tth step, n:, can be defined in terms of the
optimal (t - l)-step value function Vx;_, , t-l (written for simplicity as Vt*-,):

n:(s) = argmax R(s, a) + v c T(s,a, s’)VF_~(S’) ;
a [S’ES 1

Vl;_ I is derived from n,*_ I and VF_2.

104 L.P Kaelbling et al. /Artijicial Intelligence 101 (1998) 99-134

In the infinite-horizon discounted case, for any initial state s, we want to execute the
policy n that maximizes V, (s). Howard [24] showed that there exists a stationary policy,
n*, that is optimal for every starting state. The value function for this policy, VT*, also

written V*, is defined by the set of equations

R(s, a) + y c T(s, a, d)V*(d) ,

S’ES 1
which has a unique solution. An optimal policy, n*, is just a greedy policy with respect

to v*.
Another way to understand the infinite-horizon value function, V*, is to approach it by

using an ever-increasing discounted finite horizon. As the horizon, t, approaches infinity,
VF approaches V*. This is only guaranteed to occur when the discount factor, y, is less

than 1, which tends to wash out the details of exactly what happens at the end of the agent’s
life.

2.3. Computing an optimal policy

There are many methods for finding optimal policies for MDPS. In this section,
explore value iteration because it will also serve as the basis for finding policies in

partially observable case.

Algorithm 1. The value-iteration algorithm for finite state space MDPS.

VI(S) := 0 for all s
t := 1

loop
t:=t+l

loop for all s E S
loop for all a E A

Q~(~):=R(s,a)+yC~~~~T(s,a,s')V,-l(s')
end loop

Vt (s) := max, Qy (s)

end loop
until IV,(s) - Vt_l(s)l < E for all s ES

we
the

Value iteration proceeds by computing the sequence Vt of discounted finite-horizon
optimal value functions, as shown in Algorithm 1 (the superscript * is omitted, because we
shall henceforth only be considering optimal value functions). It makes use of an auxiliary
function, Q:(S), which is the t-step value of starting in state S, taking action a, then
continuing with the optimal (t - l)-step nonstationary policy. The algorithm terminates
when the maximum difference between two successive value functions (known as the
Bellman error magnitude) is less than some E. It can be shown [62] that there exists a t”,
polynomial in]SI, Idl, the magnitude of the largest value of R(s, a), and l/(1 - v), such
that the greedy policy with respect to V,* is equal to the optimal infinite-horizon policy, zr*.
Rather than calculating a bound on t* in advance and running value iteration for that long,

L.l? Kaelbling etal. /Artijicial Intelligence 101 (1998) 99-134 105

we instead use the following result regarding the Bellman error magnitude [66] in order to
terminate with a near-optimal policy.

If / Vt (s) - Vt _ 1 (s) 1 c E for all s, then the value of the greedy policy with respect to Vt

does not differ from V* by more than 2&y/(1 - v) at any state. That is.

rml~V,,(S) - v*(s)\ < 2&-
1-y’

It is often the case that nv, = rr* long before V, is near V*; tighter bounds may be obtained
using the span semi-norm on the value function [49].

3. Partial observability

For MDPS we can compute the optimal policy n and use it to act by simply executing
n(s) for current state s. What happens if the agent is no longer able to determine the state

it is currently in with complete reliability? A naive approach would be for the agent to map
the most recent observation directly into an action without remembering anything from the
past. In our hallway navigation example, this amounts to performing the same action in
every location that looks the same-hardly a promising approach. Somewhat better results
can be obtained by adding randomness to the agent’s behavior: a policy can be a mapping
from observations to probability distributions over actions [55]. Randomness effectively
allows the agent to sometimes choose different actions in different locations with the
same appearance, increasing the probability that it might choose a good action; in practice
deterministic observation-action mappings are prone to getting trapped in deterministic

loops [32].
In order to behave truly effectively in a partially observable world, it is necessary to use

memory of previous actions and observations to aid in the disambiguation of the states of

the world. The POMDP framework provides a systematic method of doing just that.

3.1. POMDP framework

A partially observable Markov decision process can be described as a tuple (S, A, T, R,

R, 0), where
l S, A, T, and R describe a Markov decision process;
l fz is a finite set of observations the agent can experience of its world; and

l 0 : S x A -+ II(Q) is the observation function, which gives, for each action
and resulting state, a probability distribution over possible observations (we write
0 (s’, a, o) for the probability of making observation o given that the agent took action
u and landed in state s’).

A POMDP is an MDP in which the agent is unable to observe the current state. Instead, it
makes an observation based on the action and resulting state. 4 The agent’s goal remains
to maximize expected discounted future reward.

4 It il\ possible to formulate an equivalent model in which the observation depends on the previous state instead

of. or in addition to. the resulting state, but it complicates the exposition and adds no more expressive power; such

a model could be converted into a POMDP model as described above, at the cost of expanding the state space.

106 L.P. Kaelbling et al. /Art$kd Intelligence 101 (1998) 99-134

:ion

Fig. 2. A POMDP agent can be decomposed into a state estimator (SE) and a policy (n)

3.2. Problem structure

We decompose the problem of controlling a POMDP into two parts, as shown in Fig. 2.

The agent makes observations and generates actions. It keeps an internal belief state, b, that
summarizes its previous experience. The component labeled SE is the state estimator: it is

responsible for updating the belief state based on the last action, the current observation,
and the previous belief state. The component labeled rr is the policy: as before, it is
responsible for generating actions, but this time as a function of the agent’s belief state

rather than the state of the world.
What, exactly, is a belief state? One choice might be the most probable state of the

world, given the past experience. Although this might be a plausible basis for action in

some cases, it is not sufficient in general. In order to act effectively, an agent must take
into account its own degree of uncertainty. If it is lost or confused, it might be appropriate

for it to take sensing actions such as asking for directions, reading a map, or searching for
a landmark. In the POMDP framework, such actions are not explicitly distinguished: their

informational properties are described via the observation function.
Our choice for belief states will be probability distributions over states of the world.

These distributions encode the agent’s subjective probability about the state of the world

and provide a basis for acting under uncertainty. Furthermore, they comprise a sz@cient

statistic for the past history and initial belief state of the agent: given the agent’s current

belief state (properly computed), no additional data about its past actions or observations
would supply any further information about the current state of the world [1,561. This
means that the process over belief states is Markov, and that no additional data about the

past would help to increase the agent’s expected reward.
To illustrate the evolution of a belief state, we will use the simple example depicted in

Fig. 3; the algorithm for computing belief states is provided in the next section. There are
four states in this example, one of which is a goal state, indicated by the star. There are

two possible observations: one is always made when the agent is in state 1, 2, or 4; the
other, when it is in the goal state. There are two possible actions: EAST and WEST. These
actions succeed with probability 0.9, and when they fail, the movement is in the opposite

L.l? Kaelbling et al. /Artificial Intelligence 101 (1998) 99-134 107

Fig. 3. In this simple POMDP environment, the empty squares are all indistinguishable on the basis of their

immediate appearance, but the evolution of the belief state can be used to model the agent’s location.

direction. If no movement is possible in a particular direction, then the agent remains in

the same location.
Assume that the agent is initially equally likely to be in any of the three nongoal states.

Thus, its initial belief state is [0.333 0.333 0.000 0.3331, where the position in the

belief vector corresponds to the state number.
If the agent takes action EAST and does not observe the goal, then the new belief state

becomes [0.100 0.450 0.000 0.4501. If it takes action EAST again, and still does not

observe the goal, then the probability mass becomes concentrated in the right-most state:
[0.100 0.164 0.000 0.7361. Notice that as long as the agent does not observe the goal

state, it will always have some nonzero belief that it is in any of the nongoal states, since

the actions have nonzero probability of failing.

3.3. Computing bekf states

A belief state b is a probability distribution over S. We let b(s) denote the probability

assigned to world state s by belief state b. The axioms of probability require that 0 <
b(s) < 1 for all s E S and that Cses b(s) = 1. The state estimator must compute a new
belief state, b’, given an old belief state b, an action a, and an observation o. The new

degree of belief in some state s’, b’(d), can be obtained from basic probability theory as

follows:

b’(d) = Pr(s 1 o. a, 6)

Pr(o I s’, a, b)Pr(s’ 1 a, b)
=

Pr(o I a, b)

= Pr(o I s’, a) CsEs Pr(s’ I a, b, s) Pr(s I a, b)
Pr(o I a, b)

O(s’, a, 0) CsEs T(s, a, s’)b(s) =
Wo I a, b)

The denominator, Pr(o I a, b), can be treated as a normalizing factor, independent of s’,

that causes b’ to sum to 1. The state-estimation function SE(b, a, o) has as its output the
new belief state b’.

Thus, the state-estimation component of a POMDP controller can be constructed quite

simply from a given model.

108 L.P Kaelbling et al. /Artificial Intelligence 101 (1998) 99-134

3.4. Finding an optimal policy

The policy component of a POMDP agent must map the current belief state into action.
Because the belief state is a sufficient statistic, the optimal policy is the solution of a
continuous space “belief MDP”. It is defined as follows:

l f?, the set of belief states, comprise the state space;
l A, the set of actions, remains the same;
l t(b, a, b’) is the state-transition function, which is defined as

t(b, a, b’) = Pr(b’ 1 a, b) = c Pr(b’ 1 a, b, o) Pr(o 1 a, b),

0Ef2

where

Pr(b’ 1 b, a, o) =
1 if SE(b, a, o) = b’

0 otherwise;

l p(b, a) is the reward function on belief states, constructed from the original reward
function on world states:

p(b, a) = xb(s)Ns, a)
S&S

The reward function may seem strange; the agent appears to be rewarded for merely
believing that it is in good states. However, because the state estimator is constructed from

a correct observation and transition model of the world, the belief state represents the true
occupation probabilities for all states s E S, and therefore the reward function p represents
the true expected reward to the agent.

This belief MDP is such that an optimal policy for it, coupled with the correct state
estimator, will give rise to optimal behavior (in the discounted infinite-horizon sense) for
the original POMDP [1,591. The remaining problem, then, is to solve this MDP. It is very
difficult to solve continuous space MDPS in the general case, but, as we shall see in the next
section, the optimal value function for the belief MDP has special properties that can be

exploited to simplify the problem.

4. Value functions for POMDPs

As in the case of discrete MDPS, if we can compute the optimal value function, then we
can use it to directly determine the optimal policy. This section concentrates on finding
an approximation to the optimal value function. We approach the problem using value
iteration to construct, at each iteration, the optimal t-step discounted value function over
belief space.

4.1. Policy trees

When an agent has one step remaining, all it can do is take a single action. With two

steps to go, it can take an action, make an observation, then take another action, perhaps
depending on the previous observation. In general, an agent’s nonstationary t-step policy

L.P. Kaelbling et al. /Artificial Inrelligence 101 (1998) 99-134

Fig. 4. A t-step policy tree captures a sequence oft steps, each of which can be conditioned on the outcome of

previous actions. Each node is labeled with the action that should be taken if it is reached

can be represented by a policy tree as shown in Fig. 4. It is a tree of depth t that specifies a
complete t-step nonstationary policy. The top node determines the first action to be taken.
Then, depending on the resulting observation, an arc is followed to a node on the next
level, which determines the next action. This is a complete recipe for t steps of conditional
behavior. 5

Now, what is the expected discounted value to be gained from executing a policy tree

y? It depends on the true state of the world when the agent starts. In the simplest case, p

is a l-step policy tree (a single action). The value of executing that action in state s is

Vp(s) = qs, a(p))

where a(p) is the action specified in the top node of policy tree p. More generally, if p is
a t-step policy tree, then

VP(s) = R(s, a(p)) + y . (Expected value of the future)

= R(s, U(P)) + y C P+’ I s, a(p)) C P+i I s’, a(p)) K,,(pj(L~‘)

S’ES 0, EQ

= qs7 Q(P)) + Y c T(k U(P)? s’) c o(d a(p), Oi)vo&&‘)

.FES 0, EL?

where oi(p) is the (t - l)-step policy subtree associated with observation oi at the top
level of a t-step policy tree p. The expected value of the future is computed by first taking

an expectation over possible next states, s’, then considering the value of each of those
states. The value depends on which policy subtree will be executed which, itself, depends
on which observation is made. So, we take another expectation, with respect to the possible
observations, of the value of executing the associated subtree, oi (p), starting in state s’.

5 Policy trees are essentially equivalent to “decision trees” as used in decision theory to represent a sequential

decision policy; but not to “decision trees” as used in machine learning to compactly represent a single-stage

decision rule.

110 L.I! Kaelbling et ul. /Art@%1 Intelligence 101 (1998) 99-134

Because the agent will never know the exact state of the world, it must be able to
determine the value of executing a policy tree p from some belief state b. This is just
an expectation over world states of executing p in each state:

V,(b) = ~b(G$(s).
YES

It will be useful, in the following exposition, to express this more compactly. If we let

ap = (Vp(SI), . . . > V,,(s,)), then V,(b) = b .czrp.

Now we have the value of executing the policy tree p in every possible belief state. To
construct an optimal t-step nonstationary policy, however, it will generally be necessary to
execute different policy trees from different initial belief states. Let P be the finite set of
all t-step policy trees. Then

V,(b) =y:; b.a,.

That is, the optimal t-step value of starting in belief state b is the value of executing the
best policy tree in that belief state.

This definition of the value function leads us to some important geometric insights
into its form. Each policy tree p induces a value function VP that is linear in b, and
V, is the upper surface of this collection of functions. So, Vt is piecewise-linear and
convex. Fig. 5 illustrates this property. Consider a world with only two states. In such

a world, a belief state consists of a vector of two nonnegative numbers, (b(sl), b(sz)),

that sum to 1. Because of this constraint, a single number is sufficient to describe the
belief state. The value function associated with a policy tree ~1, VP,, is a linear function
of b(sl) and is shown in the figure as a line. The value functions of other policy trees
are similarly represented. Finally, Vt is the maximum of all the VP, at each point in
the belief space, giving us the upper surface, which is drawn in the figure with a bold
line.

When there are three world states, a belief state is determined by two values (again
because of the simplex constraint, which requires the individual values to be nonnegative
and sum to 1). The belief space can be seen as the triangle in two-space with vertices (0, 0),
(1 , 0), and (0, 1). The value function associated with a single policy tree is a plane in three

expected

t-step

discounted

value

b(.y,)

Fig. 5. The optimal r-step value function is the upper surface of the value functions associated with all t-step

policy trees.

L.P. Kaelbling et al. /Artijicial Intelligence 101 (1998) 99-134 111

space, and the optimal value function is a bowl shape that is composed of planar facets; a
typical example is shown in Fig. 6, but it is possible for the “bowl” to be tipped on its side
or to degenerate to a single plane. This general pattern repeats itself in higher dimensions,
but becomes difficult to contemplate and even harder to draw!

The convexity of the optimal value function makes intuitive sense when we think
about the value of belief states. States that are in the “middle” of the belief space

have high entropy-the agent is very uncertain about the real underlying state of the

world. In such belief states, the agent cannot select actions very appropriately and so
tends to gain less long-term reward. In low-entropy belief states, which are near the
comers of the simplex, the agent can take actions more likely to be appropriate for the

current state of the world and, so, gain more reward. This has some connection to the
notion of “value of information,” [25] where an agent can incur a cost to move it from

a high-entropy to a low-entropy state; this is only worthwhile when the value of the
information (the difference in value between the two states) exceeds the cost of gaining

the information.
Given a piecewise-linear convex value function and the f-step policy trees from which

it was derived, it is straightforward to determine the optimal situation-action mapping for
execution on the tth step from the end. The optimal value function can be projected back

down onto the belief space, yielding a partition into polyhedral regions. Within each region,
there is some single policy tree p such that b . up is maximal over the entire region. The

optimal action for each belief state in this region is a(p), the action in the root node of
policy tree p; furthermore, the entire policy tree p can be executed from this point by

conditioning the choice of further actions directly on observations, without updating the

112 L.P. Kaelbling et al. /Arti$cial intelligence 101 (1998) 99-134

I I I I

I I I I

I

0
4P,) dP*) a&)

1

Fig. 7. The optimal t-step situation-action mapping is determined by projecting the optimal value function back

down onto the belief space.

belief state (though this is not necessarily an efficient way to represent a complex policy).
Fig. 7 shows the projection of the optimal value function down into a policy partition in
the two-dimensional example introduced in Fig. 5; over each of the intervals illustrated, a

single policy tree can be executed to maximize expected reward.

4.2. Value functions as sets qf vectors

It is possible, in principle, that every possible policy tree might represent the optimal

strategy at some point in the belief space and, hence, that each would contribute to the
computation of the optimal value function. Luckily, however, this seems rarely to be the
case. There are generally many policy trees whose value functions are totally dominated
by or tied with value functions associated with other policy trees. Fig. 8 shows a situation

in which the value function associated with policy tree Ed is completely dominated by
(everywhere less than or equal to) the value function for policy tree Pb. The situation with
the value function for policy tree pC is somewhat more complicated; although it is not

completely dominated by any single value function, it is completely dominated by pa and

pb taken together.
Given a set of policy trees, g, it is possible to define a unique 6 minimal subset V that

represents the same value function. We will call this a parsimonious representation of the
value function, and say that a policy tree is useful if it is a component of the parsimonious
representation of the value function.

Given a vector, ry, and a set of vectors V, we define R(a, V) to be the region of belief
space over which (Y dominates; that is,

R(a, V) = {b I b . a!>b.cll, forall&EV--andbEB}.

It is relatively easy, using a linear program, to find a point in R(cr, V) if one exists, or to
determine that the region is empty [9].

The simplest pruning strategy, proposed by Sondik [42,58], is to test R(cr, v) for every
a in $ and remove those u that are nowhere dominant. A much more efficient pruning

6 We assume here that two policy trees with the same value function are identical.

LX Kaelbling et al. /Artijicial Intelligence 101 (1998) 99-134 113

expected
t-step

discounted
value

Fig. 8. Some policy trees may be totally dominated by others and can be ignored.

method was proposed by Lark and White [64] and is described in detail by Littman [35]
and by Cassandra [9]. Because it has many subtle technical details, it is not described here.

4.3. One step of value iteration

The value function for a POMDP can be computed using value iteration, with the same

basic structure as for the discrete MDP case. The new problem, then, is how to compute a

parsimonious representation of V, from a parsimonious representation of Vr_1.

One of the simplest algorithms for solving this problem [42,58], which we call
exhaustive enumeration, works by constructing a large representation of V,, then pruning

it. We let V stand for a set of policy trees, though for each tree we need only actually
store the top-level action and the vector of values, CX. The idea behind this algorithm is

the following: Vt_t, the set of useful (t - 1)-step policy trees, can be used to construct a
superset Vf+ of the useful t-step policy trees. A t-step policy tree is composed of a root
node with an associated action a and]a] subtrees, each a (t - 1)-step policy tree. We
propose to restrict our choice of subtrees to those (t - I)-step policy trees that were useful.

For any belief state and any choice of policy subtree, there is always a useful subtree that is
at least as good at that state; there is never any reason to include a nonuseful policy subtree.

The time complexity of a single iteration of this algorithm can be divided into two parts:

generation and pruning. There are IdI IV,_1 I laf elements in VZ+: there are IAl different

ways to choose the action and all possible lists of length Ifi 1 may be chosen from the set

V, _ 1 to form the subtrees. The value functions for the policy trees in V: can be computed
efficiently from those of the subtrees. Pruning requires one linear program for each element
of the starting set of policy trees and does not add to the asymptotic complexity of the
algorithm.

Although it keeps parsimonious representations of the value functions at each step, this
algorithm still does more much work than may be necessary. Even if V, is very small, it
goes through the step of generating V,“, which always has size exponential in Ifi’ I. In the

next sections, we present the witness algorithm and some complexity analysis, and then
briefly outline some other algorithms for this problem that attempt to be more efficient
than the approach of exhaustively generating VFt.

114 L.P Kaelbling et al. /Artificial Intelligence IO1 (1998) 99-134

4.4. The witness algorithm

To improve the complexity of the value-iteration algorithm, we must avoid generating
VF; instead, we would like to generate the elements of Vt directly. If we could do this, we

might be able to reach a computation time per iteration that is polynomial in IS], 1 Al, 1~2 1,
IV, -1 I, and I Vt I. Cheng [lo] and Smallwood and Sondik [56] also try to avoid generating all
of V,” by constructing Vt directly. However, their algorithms still have worst-case running
times exponential in at least one of the problem parameters [34]. In fact, the existence of

an algorithm that runs in time polynomial in ISI, IAl, 1521, /L;_ll, and]V,l would settle
the long-standing complexity-theoretic question “Does NP = RP?” in the affirmative [34],
so we will pursue a slightly different approach.

Instead of computing Ut directly, we will compute, for each action a, a set Qf of t-step
policy trees that have action a at their root. We can compute Vt by taking the union of
the QT sets for all actions and pruning as described in the previous section. The witness
algorithm is a method for computing QT in time polynomial in ISI, 1 Al, I Sz 1, IV, _ 11, and

IQ:) (specifically, run time is polynomial in the size of the inputs, the outputs, and an
important intermediate result). It is possible that the QF are exponentially larger than V,,
but this seems to be rarely the case in practice.

In what sense is the witness algorithm superior to previous algorithms for solving

POMDPS, then? Experiments indicate that the witness algorithm is faster in practice over a
wide range of problem sizes [34]. The primary complexity-theoretic difference is that the
witness algorithm runs in polynomial time in the number of policy trees in Qy . There are
example problems that cause the other algorithms, although they never construct the QT’s
directly, to run in time exponential in the number of policy trees in QT. That means, if we

restrict ourselves to problems in which IQ’ I is polynomial, that the running time of the
witness algorithm is polynomial. It is worth noting, however, that it is possible to create

families of POMDPS that Cheng’s linear support algorithm (sketched in Section 4.5) can
solve in polynomial time that take the witness exponential time to solve: they are problems

in which S and Vt are very small and G2: is exponentially larger for some action a.

From the definition of the state estimator SE and the t-step value function Vt (b), we can

express Qf (b) (recall that this is the value of taking action a in belief state b and continuing
optimally for t - 1 steps) formally as

Q~(b)=Cb(s)R(s,a)+yCPr(o la, b>vt-l(bL)

SES OEQ

where b: is the belief state resulting from taking action a and observing o from belief
state b; that is, b’ = SE(b, a, 0). Since V is the value of the best action, we have

Vt (b) = max, Qy (b).
Using arguments similar to those in Section 4.1, we can show that these Q-functions

are piecewise-linear and convex and can be represented by collections of policy trees. Let
Qy be the collection of policy trees that specify QF. Once again, we can define a unique
minimal useful set of policy trees for each Q function. Note that the policy trees needed to
represent the function V, are a subset of the policy trees needed to represent all of the QT

functions: Vt G U, Qy. This is because maximizing over actions and then policy trees is
the same as maximizing over the pooled sets of policy trees.

L.P: Kaelbling et al. /Artificial Intelligence 101 (1998) 99-134 11s

Algorithm 2. Outer loop of the witness algorithm.

VI :=((O,O,...,O)]
t := 1

loop
r:=t+l
foreach a in A

Qy := witness(Vt_t, a)

prune lJ, Qy to get Vt
until su&, Iv,(h) - vt_](b)1 < &

The code in Algorithm 2 outlines our approach to solving POMDPS. The basic structure
remains that of value iteration. At iteration t, the algorithm has a representation of the
optimal t-step value function. Within the value-iteration loop, separate Q-functions for
each action. represented by parsimonious sets of policy trees, are returned by calls to
witness using the value function from the previous iteration. The union of these sets
forms a representation of the optimal value function. Since there may be extraneous policy

trees in the combined set, it is pruned to yield the useful set of r-step policy trees, Vt .

4.4. I. Witness inner loop

The basic structure of the witness algorithm is as follows. We would like to find a
minimal set of policy trees for representing Q;” for each a. We consider the Q-functions
one at a time. The set U, of policy trees is initialized with a single policy tree, with
action a at the root, that is the best for some arbitrary belief state (this is easy to do, as
described in the following paragraph). At each iteration we ask: Is there some belief state
b for which the true value Qy (b), computed by one-step lookahead using Vt _ I, is different
from the estimated value Q:(b), computed using the set U,? We call such a belief state
a witness because it can, in a sense, testify to the fact that the set U, is not yet a perfect
representation of QT (b). Note that for all b, @(b) < QT (b); the approximation is always
an underestimate of the true value function.

Once a witness is identified, we find the policy tree with action a at the root that will
yield the best value at that belief state. To construct this tree, we must find, for each
observation o, the (t - 1)-step policy tree that should be executed if observation o is made
after executing action a. If this happens, the agent will be in belief state b’ = SE(b, a, 0).
from which it should execute the (t - I)-step policy tree pO E Vt_l that maximizes VP, (b’).

The tree p is built with subtrees pO for each observation o. We add the new policy tree to
U, to improve the approximation. This process continues until we can prove that no more
witness points exist and therefore that the current Q-function is perfect.

4.4.2. IdentiJLing a witness

To find witness points, we must be able to construct and evaluate alternative policy trees.
If p is a t-step policy tree, Oi an observation, and p’ a (t - I)-step policy tree, then we
define pnew as a r-step policy tree that agrees with p in its action and all its subtrees except
for observation oi, for which oi (p new) = p’. Fig. 9 illustrates the relationship between p

and pnew.

116 L.E Kaelbling et al. /Artificial Intelligence 101 (1998) 99-134

t - 1 -step policy trees

Fig. 9. A new policy tree can be constructed by replacing one of its subtrees.

Now we can state the witness theorem [34]: The true Q-function, Qp, differs from the

approximate Q-function, @, if and only if there is some p E U,, o E $2, and p’ E l&t
for which there is some b such that

V,,,, (b) > Vfi(b), (1)

for all @ E 17,. That is, if there is a belief state, b, for which pnew is an improvement over
all the policy trees we have found so far, then b is a witness. Conversely, if none of the

trees can be improved by replacing a single subtree, there are no witness points. A proof

of this theorem is included in Appendix A.

4.4.3. Checking the witness condition

The witness theorem requires us to search for a p E U,, an o E L?, a p’ E Vt-t and a
b E B such that condition (1) holds, or to guarantee that no such quadruple exists. Since

U,, 52, and Vt _ t are finite and (we hope) small, checking all combinations will not be too

time consuming. However, for each combination, we need to search all the belief states to

test condition (1). This we can do using linear programming.

For each combination of p, o and p’ we compute the policy tree pnew, as described

above. For any belief state b and policy tree jj E U,, V,,,,, (b) - Vc (b) gives the advantage
of following policy tree pnew instead of @ starting from b. We would like to find a b that

maximizes the advantage over all policy trees ~5 the algorithm has found so far.
The linear program in Algorithm 3 solves exactly this problem. The variable 6 is the

minimum amount of improvement of pnew over any policy tree in U, at 6. It has a set of

constraints that restrict 6 to be a bound on the difference and a set of simplex constraints
that force b to be a well-formed belief state. It then seeks to maximize the advantage of

pnew over all j!j E 17,. Since the constraints are all linear, this can be accomplished by linear
programming. The total size of the linear program is one variable for each component of

the belief state and one representing the advantage, plus one constraint for each policy tree
in U, one constraint for each state, and one constraint to ensure that the belief state sums

to one. 7

’ In many linear-programming packages, all variables have implicit nonnegativity constraints, so the b(s) > 0
constraints are not needed.

L.P. Kaelbling et al. /Arti$cial Intelligence 101 (1998) 99-134 117

If the linear program finds that the biggest advantage is not positive, that is, that 6 < 0,
then pnew is not an improvement over all @ trees. Otherwise, it is and b is a witness
point.

Algorithm 3. The linear program used to find witness points.

Inputs:

ufl, Pnew

Variables:
8, b(s) for each s E S

Maximize: S

Improvement constraints:
For each j in U,: V,,,,, (b) - Vj (b) 3 S

Simplex constraints:
For each s E S: b(s) 3 0

C.yEs b(s) = 1

4.4.4. A single step of value iteration

The complete value-iteration step starts with an agenda containing any single useful

policy tree and with U, empty. It takes a policy tree off the top of the agenda and uses it
as pnew in the linear program of Algorithm 3 to determine whether it is an improvement
over the policy trees in U,. If a witness point is discovered, the best policy tree for that
point is calculated and added to U, and all policy trees that differ from the current policy

tree in a single subtree are added to the agenda. If no witness points are discovered, then
that policy tree is removed from the agenda. When the agenda is empty, the algorithm
terminates.

Since we know that no more than QF witness points are discovered (each adds a tree to
the set of useful policy trees), only 1 Vt _ 111 R 111 QF 1 trees can ever be added to the agenda (in
addition to the one tree in the initial agenda). Each linear program solved has IS] variables
and no more than 1 + IS] + 1 QT 1 constraints. Each of these linear programs either removes
a policy tree from the agenda (this happens at most 1 + (IV,_ 1 I - 1)) i2 1 I QF 1 times) or a

witness point is discovered (this happens at most IQ; I times).
These facts imply that the running time of a single pass of value iteration using the

witness algorithm is bounded by a polynomial in the size of the state space (IS]), the size
of the action space ([AI), the number of policy trees in the representation of the previous
iteration’s value function (]Vr+) I), the number of observations (IL2 I), and the number of
policy trees in the representation of the current iteration’s Q-functions (c, I Qy I). Note
that we must assume that the number of bits of precision used in specifying the model is
polynomial in these quantities since the polynomial running time of linear programming is
expressed as a function of the input precision [54].

4.5. Alternative approaches

The witness algorithm is by no means the only exact algorithm for solving finite-
horizon POMDPS. The first such algorithm was described by Sondik [56,58]. The one-pass

118 L.f! Kaelbling et al. /ArtiJcial Intelligence 101 (1998) 99-134

algorithm works by identifying linear regions of the value function one at a time. For each
one, it creates a set of constraints that form the border of the true region, then searches
those borders to determine whether another region exists beyond the border. Although the
algorithm is sophisticated and, in principle, avoids exhaustively enumerating the set of

possibly useful policy trees at each iteration, it appears to run more slowly than the simpler
enumeration methods in practice, at least for problems with small state spaces [IO].

In the process of motivating the one-pass algorithm, Sondik [58] applies the same ideas
to finding Q-functions instead of the complete value function. The resulting algorithm

might be called the two-pass algorithm [9], and its form is much like the witness algorithm
because it first constructs each separate Q-function, then combines the Q-functions
together to create the optimal value function. Although it appears that the algorithm
attracted no attention and was never implemented in over 25 years after the completion
of Sondik’s dissertation, it was recently implemented and found to be faster than any of the

algorithms that predated the witness algorithm [9].
As pointed out in Section 4, value functions in belief space have a natural geometric

interpretation. For small state spaces, algorithms that exploit this geometry are quite
efficient [16]. An excellent example of this is Cheng’s linear support algorithm [lo]. This

algorithm can be viewed as a variation of the witness algorithm in which witness points
are sought at the comers of regions of the approximate value function defined by the

algorithm’s equivalent of the set U. In two dimensions, these comers can be found easily
and efficiently; the linear support algorithm can be made to run in low-order polynomial
time for problems with two states. In higher dimensions, more complex algorithms are
needed and the number of comers is often exponential in the dimensionality. Thus, the
geometric approaches are useful only in POMDPS with extremely small state spaces.

Zhang and Liu [67] describe the incremental-pruning algorithm, later generalized by
Cassandra, Littman, and Zhang [7]. This algorithm is simple to implement and empirically
faster than the witness algorithm, while sharing its good worst-case complexity in terms of
C, 1 QF I. The basic algorithm works like the exhaustive enumeration algorithm described

in Section 4.3, but differs in that it repeatedly prunes out nonuseful policy trees during the
generation procedure. As a result, compared to exhaustive enumeration, very few nonuseful

policy trees are considered and the algorithm runs extremely quickly.
White and Scherer [65] propose an alternative approach in which the reward function

is changed so that all of the algorithms discussed in this chapter will tend to run more
efficiently. This technique has not yet been combined with the witness algorithm, and may
provide some improvement.

4.6. The injnite horizon

In the previous section, we showed that the optimal t-step value function is always
piecewise-linear and convex. This is not necessarily true for the infinite-horizon discounted
value function; it remains convex [63], but may have infinitely many facets. Still, the
optimal infinite-horizon discounted value function can be approximated arbitrarily closely

by a finite-horizon value function for a sufficiently long horizon [5 1,591.
The optimal infinite-horizon discounted value function can be approximated via value

iteration, in which the series of t-step discounted value functions is computed; the

L.l? Kaelbling et ~1. /Arti&ial Intelligence 101 (1998) 99-134 119

iteration is stopped when the difference between two successive results is small, yielding
an arbitrarily good piecewise-linear and convex approximation to the desired value
function. From the approximate value function we can extract a stationary policy that is

approximately optimal.
Sondik [59] and Hansen [23] have shown how to use algorithms like the witness

algorithm that perform exact dynamic-programming backups in POIlDPs in a policy-
iteration algorithm to find exact solutions to many infinite-horizon problems.

5. Understanding policies

In this section we introduce a very simple example and use it to illustrate some properties
of POMDP policies. Other examples are explored in an earlier paper [8].

5.1. The tiger problem

Imagine an agent standing in front of two closed doors. Behind one of the doors is a tiger
and behind the other is a large reward. If the agent opens the door with the tiger, then a

large penalty is received (presumably in the form of some amount of bodily injury). Instead
of opening one of the two doors, the agent can listen, in order to gain some information
about the location of the tiger. Unfortunately, listening is not free; in addition, it is also
not entirely accurate. There is a chance that the agent will hear a tiger behind the left-hand
door when the tiger is really behind the right-hand door, and vice versa.

We refer to the state of the world when the tiger is on the left as si and when it is on the
right as s,. The actions are LEFT, RIGHT, and LISTEN. The reward for opening the correct
door is +lO and the penalty for choosing the door with the tiger behind it is -100. The
cost of listening is - 1. There are only two possible observations: to hear the tiger on the
left (TL) or to hear the tiger on the right (TR). Immediately after the agent opens a door and

receives a reward or penalty, the problem resets, randomly relocating the tiger behind one

of the two doors.
The transition and observation models can be described in detail as follows. The LISTEN

action does not change the state of the world. The LEFT and RIGHT actions cause a

transition to world state sl with probability 0.5 and to state s, with probability 0.5
(essentially resetting the problem). When the world is in state st, the LISTEN action results
in observation TL with probability 0.85 and the observation TR with probability 0.15;
conversely for world state s,.. No matter what state the world is in, the LEFT and RIGHT
actions result in either observation with probability 0.5.

5.2. Finite-horizon policies

The optimal undiscounted finite-horizon policies for the tiger problem are rather striking

in the richness of their structure. Let us begin with the situation-action mapping for the
time step l = 1, when the agent only gets to make a single decision. If the agent believes
with high probability that the tiger is on the left, then the best action is to open the right
door; if it believes that the tiger is on the right, the best action is to open the left door.

120 LJ? Kaelbling et al. /Artificial Intelligence 101 (1998) 99-l-134

@ @ @

[O.oo, 0. IO] [O. 10,0.90] [0.90, I .oo]

Fig. 10. The optimal situation-action mapping for t = 1 for the tiger problem shows that each of the three actions

is optimal for home belief state.

But what if the agent is highly uncertain about the tiger’s location? The best thing to do
is listen. Guessing incorrectly will incur a penalty of -100, whereas guessing correctly

will yield a reward of f10. When the agent’s belief has no bias either way, it will guess
wrong as often as it guesses right, so its expected reward for opening a door will be

(-100 + lo)/2 = -45. Listening always has value -1, which is greater than the value
of opening a door at random. Fig. 10 shows the optimal l-step nonstationary policy. Each
of the policy trees is shown as a node; below each node is the belief interval 8 over

which the policy tree dominates; inside each node is the action at the root of the policy
tree.

We now move to the case in which the agent can act for two time steps. The optimal
2-step nonstationary policy begins with the situation-action mapping for t = 2 shown
in Fig. 11. This situation-action mapping has a surprising property: it never chooses to
act, only to listen. Why? Because if the agent were to open one of the doors at t = 2,
then, on the next step, the tiger would be randomly placed behind one of the doors and

the agent’s belief state would be reset to (0.5,0.5). So after opening a door, the agent
would be left with no information about the tiger’s location and with one action remaining.

We just saw that with one step to go and b = (0.5,0.5) the best thing to do is listen.

Therefore, if the agent opens a door when t = 2, it will listen on the last step. It is a

better strategy to listen when t = 2 in order to make a more informed decision on the last

step.
Another interesting property of the 2-step nonstationary policy is that there are multiple

policy trees with the same action at the root. This implies that the value function is not

linear, but is made up of five linear regions. The belief states within a single region are
similar in that when they are transformed, via SE(b, a, o), the resulting belief states will
all he in the same belief region defined by the situation-action mapping for t = 1. In other

words, every single belief state in a particular region r of the situation-action mapping for
t = 2, will, for the same action and observation, be transformed to a belief state that lies
in some region r’ of the situation-action mapping for t = 1. This relationship is shown in

Fig. 12.

The optimal nonstationary policy for t = 3 also consists solely of policy trees with the
listen action at their roots. If the agent starts from the uniform belief state, b = (0.5,0.5),
listening once does not change the belief state enough to make the expected value of
opening a door greater than that of listening. The argument for this parallels that for the

t = 2 case.

‘The belief interval is specified in terms of b(q) only since b(s,) = I - b(sl).

LJ? Kaelbling et ~1. /Art&id Intelligence 101 (1998) 99-134

@ @ @ @ @

[O.OO, 0.021 [0.02,0.39] [0.39,0.61] [0.61,0.98] [0.98, 1.001

121

Fig. Il. The optimal situation-action mapping for t = 2 in the tiger problem consists onI4 of the LISTEN action.

[O.OO, 0.021 [0.02, 0.391 [0.39,0.61] [0.61,0.98] [0.98, 1.001

@ en@ @ @

IT
TLflR nfm n

TR TLW?

@ @ @

[O.OO, 0.101 [O. 10,0.90] [0.90, I .OO]

Fig. 12. The optimal nonstationary policy for t = 2 illustrates belief state transformations from t = 2 to t = 1. It

consists of five separate policy trees.

This argument for listening in the first steps no longer applies after t = 3; the optimal
situation-action mappings for t > 3 all choose to open a door for some belief states. Fig. 13
shows the structure that emerges in the optimal nonstationary policy for t = 4. Notice that
for t = 3 there are two nodes that do not have any incoming arcs from t = 4. This happens
because there is no belief state at t = 4 for which the optimal action and any resulting
observation generates a new belief state that lies in either of the regions defined by the

unused nodes at t = 3.
This graph can also be interpreted as a compact representation of all of the useful policy

trees at every level. The forest of policy trees is transformed into a directed acyclic graph
by collapsing all of the nodes that stand for the same policy tree into one.

5.3. Infinite-horizon policies

When we include a discount factor to decrease the value of future rewards, the structure
of the finite-horizon POMDP value function changes slightly. As the horizon t increases,
the rewards received for the final few steps have decreasing influence on the situation-
action mappings for earlier time steps and the value function begins to converge. In many
discounted POMDP problems, the optimal situation-action mapping for large t looks much
the same as the optimal situation-action mapping for t - 1. Fig. 14 shows a portion of the
optimal nonstationary policy for the discounted finite-horizon version of the tiger problem
for large values of t . Notice that the structure of the graph is exactly the same from one time

to the next. The vectors for each of the nodes, which together define the value function
differ only after the fifteenth decimal place. This structure first appears at time step t = 56
and remains constant through t = 105. When t = 105, the precision of the algorithm used
to calculate the situation-action mappings can no longer discern any difference between the

122 L.F Kaelbling et al. /Artificial Intelligence 101 (1998) 99-134

[OH! 0.061 CO.06, 0.381 [0.38, 0.621 [0.62,0.93] to.93, l.OO]

[O.OO, 0. lo] [O. 10, 0.901 [0.90, l.oo]

Fig. 13. The optimal nonstationary policy for t = 4 has a rich structure.

Fig. 14. The optimal nonstationary policy for large t converges.

vectors’ values for succeeding intervals. At this point, we have an approximately optimal
value function for the infinite-horizon discounted problem.

This POMDP has the property that the optimal infinite-horizon value function has a
finite number of linear segments. An associated optimal policy has a finite description and
is called finitely transient [9,51,58]. POMDPS with finitely transient optimal policies can
sometimes be solved in finite time using value iteration. In POMDPS with optimal policies
that are not finitely transient, the infinite-horizon value function has an infinite number of

segments; on these problems the sets V, grow with each iteration. The best we can hope

L.P. Kaelbling et al. /Artijicial Intelligence IO1 (1998) 99-134 123

for is to solve these POMDPS approximately. It is not known whether there is a way of
using the value-iteration approach described in this paper for solving all POMDPS with

finitely transient optimal policies in finite time; we conjecture that there is. The only finite-
time algorithm that has been described for solving POMDPS with finitely transient optimal
policies over the infinite horizon is a version of policy iteration described by Sondik [58].
The simpler policy-iteration algorithm due to Hansen [23] has not been proven to converge
for all such POMDPS. 9

5.4. Plan graphs

One drawback of the POMDP approach is that the agent must maintain a belief state

and use it to select an optimal action on every step; if the underlying state space or V

is large, then this computation can be expensive. In many cases, it is possible to encode
the policy in a graph that can be used to select actions without any explicit representation

of the belief state [59]; we refer to such graphs as plan graphs. Recall Fig. 14, in which
the algorithm has nearly converged upon an infinite-horizon policy for the tiger problem.
Because the situation-action mappings at every level have the same structure, we can make
the nonstationary policy into a stationary one by redrawing the edges from one level to
itself as if it were the succeeding level. This rearrangement of edges is shown in Fig. 15,
and the result is redrawn in Fig. 16 as a plan graph.

Some of the nodes of the graph will never be visited once either door is opened and the
belief state is reset to (0.5,0.5). If the agent always starts in a state of complete uncertainty,
then it will never be in a belief state that lies in the region of these nonreachable nodes.
This results in a simpler version of the plan graph, shown in Fig. 17. The plan graph has a

simple interpretation: keep listening until you have heard the tiger twice more on one side
than the other.

Because the nodes represent a partition of the belief space and because all belief states
within a particular region will map to a single node on the next level, the plan graph
representation does not require the agent to maintain an on-line representation of the belief
state; the current node is a sufficient representation of the current belief. In order to execute
a plan graph, the initial belief state is used to choose a starting node. After that, the agent
need only maintain a pointer to a current node in the graph. On every step, it takes the action
specified by the current node, receives an observation, then follows the arc associated with
that observation to a new node. This process continues indefinitely.

A plan graph is essentially a finite-state controller. It uses the minimal possible amount
of memory to act optimally in a partially observable environment. It is a surprising
and pleasing result that it is possible to start with a discrete problem, reformulate it in
terms of a continuous belief space, then map the continuous solution back into a discrete

’ As a technical aside, if there are POMDPS that have finitely transient optimal policies for which neither value

iteration nor Hansen’s policy-iteration algorithm converges, the tiger problem is a good candidate. This is because

the behavior of these algorithms on this problem appears to be extremely sensitive to the numerical precision used

in comparisons-the better the precision, the longer the algorithms take to converge. In fact, it may be the case that

imprecision is necessary for the algorithms to converge on this problem, although it is difficult to test this without

detailed formal analysis. Sondik’s proof that his policy-iteration algorithm converges depends on controlled use

of imprecision and we have not studied how that could best be used in the context of value iteration.

124 Ll? Kaelbling et al. /Art$cial Intelligence 101 (1998) 99-134

Fig. 15. Edges can be rearranged to form a stationary policy.

Fig. 16. The optimal infinite-horizon policy for the tiger problem can be drawn as a plan graph. This structure

counts the relative number of times the tiger was heard on the left as compared to the right.

Fig. 17. Given the initial belief state of (0.5,0.5) for the tiger problem, some nodes of the plan graph can be
trimmed.

L.P: Kaelbling et al. /Artijicial Intelligence IO1 (1998) 99-134 12s

Fig. 18. More memory is needed in the tiger problem when listening reliability is reduced to 0.65

controller. Furthermore, the extraction of the controller can be done automatically from

two successive equal value functions.
It is also important to note that there is no known a priori bound on the size of the

optimal plan graph in terms of the size of the problem. In the tiger problem, for instance, if
the probability of getting correct information from the LISTEN action is reduced from 0.85
to 0.65, then the optimal plan graph, shown in Fig. 18, is much larger, because the agent
must hear the tiger on one side 5 times more than in the other before being sufficiently
confident to act. As the observation reliability decreases, an increasing amount of memory

is required.

6. Related work

In this section, we examine how the assumptions of the POMDP model relate to earlier
work on planning in AI. We consider only models with finite-state and action spaces and
static underlying dynamics, as these assumptions are consistent with the majority of work
in this area. Our comparison focuses on issues of imperfect knowledge, uncertainty in
initial state, the transition model, the observation model, the objective of planning, the
representation of domains, and plan structures. The most closely related work to our own
is that of Kushmerick, Hanks, and Weld [30] on the BURIDAN system, and Draper, Hanks
and Weld [141 on the C-BURIDAN system.

6.1. Itnpegect knowledge

Plans generated using standard MDP algorithms and classical planriing algorithms lo
assume that the underlying state of the process will be known with certainty during plan

execution. In the MDP framework, the agent is informed of the current state each time it
takes an action. In many classical planners (e.g., SNLP [39], UCPOP [45]), the current state

‘” By “classical planning” we mean linear or partial-order planners using STRIPS-like operators

126 L.P: Kaelbling et al. /Artificial Intelligence 101 (1998) 99-134

can be calculated trivially from the known initial state and knowledge of the deterministic

operators.
The assumption of perfect knowledge is not valid in many domains. Research on

epistemic logic [43,44,52] relaxes this assumption by making it possible to reason about
what is and is not known at a given time. Unfortunately, epistemic logics have not been
used as a representation in automatic planning systems, perhaps because the richness of

representation they provide makes efficient reasoning very difficult.

A step towards building a working planning system that reasons about knowledge is to
relax the generality of the logic-based schemes. The approach of CNLP [46] uses three-

valued propositions where, in addition to true and false, there is a value unknown, which
represents the state when the truth of the proposition is not known. Operators can then

refer to whether propositions have an unknown value in their preconditions and can have
the value in their effects. This representation for imperfect knowledge is only appropriate
when the designer of the system knows, in advance, what aspects of the state will be known

and unknown. It is insufficient for multiple agents reasoning about each others’ knowledge
and for representing certain types of correlated uncertainty [20].

Formulating knowledge as predicate values that are either known or unknown makes
it impossible to reason about gradations of knowledge. For example, an agent that is
fairly certain that it knows the combination to a lock might be willing to try to unlock it

before seeking out more precise knowledge. Reasoning about levels of knowledge is quite
common and natural in the POMDP framework. As long as an agent’s state of knowledge

can be expressed as a probability distribution over possible states of the world, the POMDP

perspective applies.

6.2. Initial state

Many classical planning systems (SNLP, UCPOP, CNLP) require the starting state to be
known during the planning phase. An exception is the U-PLAN [38] system, which creates
a separate plan for each possible initial state with the aim of making these plans easy to

merge to form a single plan. Conditional planners typically have some aspects of the initial
state unknown. If these aspects are important to the planning process, they are tested during

execution.
In the POMDP framework, the starting state is not required to be known precisely and

can instead be represented as a probability distribution over possible states. BURIDAN and
C-BURIDAN also use probability distributions over states as an internal representation of

uncertainty, so they can deal with initial-state uncertainty in much the same way.

6.3. Transition model

In classical planning systems, operators have deterministic effects. The plans constructed
are brittle, since they apply to a specific starting state and require the trajectory through the

states to go exactly as expected. Many domains are not easily modeled with deterministic
actions, since an action can have different results, even when applied in exactly the same

state.

L.P Kaelbling et al. /Artijcial Intelligence 101 (1998) 99-134 127

Extensions to classical planning, such as CNLP [46] and CASSANDRA [48] have consid-
ered operators with nondeterministic effects. For each operator, there is a set of possible
next states that could occur. A drawback of this approach is that it gives no information
about the relative likelihood of the possible outcomes. These systems plan for every possi-

ble contingency to ensure that the resulting plan is guaranteed to lead to a goal state.
Another approach used in modeling nondeterministic actions is to define a probability

distribution over the possible next states. This makes it possible to reason about which of
the resulting states are more likely and makes it possible to assess whether a plan is likely to
reach the goal even if it is not guaranteed to do so. This type of action model is used in MDPS
and POMDPS as well as in BURIDAN and C-BURIDAN. Other work [5,15,19] has used
representations that can be used to compute probability distributions over future states.

6.4. Observation model

When the starting state is known and actions are deterministic, there is no need to get
feedback from the environment when executing a plan. However, if the starting state is
unknown or the actions have nondeterministic effects, more effective plans can be built by
exploiting feedback, or observations, from the environment concerning the identity of the
current state.

If observations reveal the precise identity of the current state, the planning model is
called “completely observable.” The MDP model, as well as some planning systems such
as CNLP and PLINTH [18,19] assume complete observability. Other systems, such as
BURIDAN and MAXPLAN [37], have no observation model and can attack “completely
unobservable” problems. Classical planning systems typically have no observation model.
but the fact that the initial state is known and operators are deterministic means that they
can also be thought of as solving completely observable problems.

Completely observable and completely unobservable models are particularly clean but
are unrealistic. The POMDP and C-BURIDAN frameworks model partially observable

environments, in that observations provide some information about the underlying state,
but not enough to guarantee that it will be known with certainty. This model provides for
a great deal of expressiveness (both completely observable and completely unobservable
models can be viewed as special cases), but is quite difficult to solve. It is an interesting
and powerful model because it allows systems to reason about taking actions to gather
knowledge that will be important for later decision making.

6.5. Objective

The job of a planner is to find a plan that satisfies a particular objective; most often, the
objective is a goal of achievement, that is, to arrive at some state that is in a set of problem-
specific goal states. When probabilistic information is available concerning the initial state

and transitions, a more general objective can be used-reaching a goal state with sufficient
probability (see, for example, work on BURIDAN and C-BURIDAN).

A popular alternative to goal attainment is maximizing total expected discounted reward
(total-reward criterion). Under this objective, each action results in an immediate reward
that is a function of the current state. The exponentially discounted sum of these rewards

128 L.P Kaelbling et ~1. /Artificial Intelligence 101 (1998) 99-134

over the execution of a plan (finite or infinite horizon) constitutes the value of the plan.
This objective is used extensively in most work with MDPS and POMDPS, including ours.

Several authors (for example, Koenig [27]) have pointed out that, given a completely
observable problem stated as one of goal achievement, reward functions can be constructed
so that a policy that maximizes reward can be used to maximize the probability of goal
attainment in the original problem. This shows that the total-reward criterion is no less
general than goal achievement in completely observable domains. The same holds for
finite-horizon partially observable domains.

Interestingly, a more complicated transformation holds in the opposite direction: any
total expected discounted reward problem (completely observable or finite horizon) can

be transformed into a goal-achievement problem of similar size [12,691. Roughly, the
transformation simulates the discount factor by introducing an absorbing state with a small
probability of being entered on each step. Rewards are then simulated by normalizing all
reward values to be between zero and one and then “siphoning off” some of the probability
of absorption equal to the amount of normalized reward. The (perhaps counterintuitive)
conclusion is that goal-attainment problems and reward-type problems are computationally
equivalent.

There is a qualitative difference in the kinds of problems typically addressed with
POMDP models and those addressed with planning models. Quite frequently, POMDPS are

used to model situations in which the agent is expected to go on behaving indefinitely,
rather than simply until a goal is achieved. Given the inter-representability results between
goal-probability problems and discounted-optimality problems, it is hard to make technical
sense of this difference. In fact, many POMDP models should probably be addressed in an
average-reward context [171. Using a discounted-optimal policy in a truly infinite-duration

setting is a convenient approximation, similar to the use of a situation-action mapping from
a finite-horizon policy in receding horizon control.

Littman [35] catalogs some alternatives to the total-reward criterion, all of which are
based on the idea that the objective value for a plan is based on a summary of immediate
rewards over the duration of a run. Koenig and Simmons [28] examine risk-sensitive
planning and showed how planners for the total-reward criterion could be used to optimize
risk-sensitive behavior. Haddawy et al. [21] looked at a broad family of decision-theoretic
objectives that make it possible to specify trade-offs between partially satisfying goals

quickly and satisfying them completely. Bacchus, Boutilier and Grove [2] show how some
richer objectives based on evaluations of sequences of actions can actually be converted to
total-reward problems. Other objectives considered in planning systems, aside from simple
goals of achievement, include goals of maintenance and goals of prevention [15]; these
types of goals can typically be represented using immediate rewards as well.

6.6. Representation of problems

The propositional representations most often used in planning have a number of
advantages over the flat state-space representations associated with MDPS and POMDPS. The
main advantage comes from their compactness-just as with operator schemata, which can
represent many individual actions in a single operator, propositional representations can be
exponentially more concise than a fully expanded state-based transition matrix for an MDP.

L.I? Kaelbling et al. /Artificial Intelligence 101 (1998) 99-134 129

Algorithms for manipulating compact (or factored) POMDPS have begun to ap-
pear [6,14]-this is a promising area for future research. At present, however, there is
no evidence that these algorithms result in improved planning time significantly over the
use of a “flat” representation of the state space.

6.7. Plan structures

Planning systems differ in the structure of the plans they produce. It is important that
a planner be able to express the optimal plan if one exists for a given domain. We briefly
review some popular plan structures along with domains in which they are sufficient for
expressing optimal behavior.

Traditional plans are simple sequences of actions. They are sufficient when the initial
state is known and all actions are deterministic. A slightly more elaborate structure is
the partially ordered plan (generated, for example, by SNLP and UCPOP), or the parallel

plan 141. In this type of plan, actions can be left unordered if all orderings are equivalent

under the performance metric.
When actions are stochastic, partially ordered plans can still be used (as in BURIDAN).

but contingent plans can be more effective. The simplest kind of contingent or branching
plan is one that has a tree structure (as generated by CNLP or PLINTH). In such a plan,
some of the actions have different possible outcomes that can be observed, and the flow
of execution of the plan is conditioned on the outcome. Branching plans are sufficient
for representing optimal plans for finite-horizon domains. Directed acyclic graphs (DAGs)
can represent the same class of plans, but potentially do so much more succinctly, because
separate branches can share structure. C-BURIDAN uses a representation of contingent

plans that also allows for structure sharing (although of a different type than our DAG-
structured plans). Our work on POMDPS finds DAG-structured plans for finite-horizon

problems.
For infinite-horizon problems, it is necessary to introduce loops into the plan represen-

tation [3 1,571. (Loops might also be useful in long finite-horizon POMDPS for representa-
tional succinctness.) A simple loop-based plan representation depicts a plan as a labeled
directed graph. Each node of the graph is labeled with an action and there is one labeled
outgoing edge for each possible outcome of the action. It is possible to generate this type
of plan graph for some POMDPS [8,22,23,47,59].

For completely observable problems with a high branching factor, a more convenient
representation is a policy, which maps the current state (situation) to a choice of action.
Because there is an action choice specified for all possible initial states, policies are

also called universal plans [53]. This representation is not appropriate for POMDPS, since
the underlying state is not fully observable. However, POMDP policies can be viewed as
universal plans over belief space.

It is interesting to note that there are infinite-horizon POMDPS for which no finite-state
plan is sufficient. Simple 2-state examples can be constructed for which optimal behavior
requires counting (i.e., a simple stack machine); there is reason to believe that general
pushdown automata and perhaps even Turing machines are necessary to represent optimal
plans in general. This argues that, in the limit, a plan is actually a program. Several
techniques have been proposed recently for searching for good program-like controllers

130 L.P. Kaelbling et al. /Arti$cial Intelligence 101 (1998) 99-134

in POMDPS [29,68]. We restrict our attention to the simpler finite-horizon case and a small
set of infinite-horizon problems that have optimal finite-state plans.

7. Extensions and conclusions

The POMDP model provides a firm foundation for work on planning under uncertainty in
action and observation. It gives a uniform treatment of action to gain information and action
to change the world. Although they are derived through the domain of continuous belief
spaces, elegant finite-state controllers may sometimes be constructed using algorithms such
as the witness algorithm.

However, experimental results [34] suggest that even the witness algorithm becomes
impractical for problems of modest size (ISJ > 1.5 and IL2 1 > 15). Our current work

explores the use of function-approximation methods for representing value functions and
the use of simulation in order to concentrate the approximations on the frequently visited
parts of the belief space [33]. The results of this work are encouraging and have allowed us
to get a very good solution to an 89-state, 16-observation instance of a hallway navigation
problem similar to the one described in the introduction. We are optimistic and hope to
extend these techniques (and others) to get good solutions to large problems.

Another area that is not addressed in this paper is the acquisition of a world model.
One approach is to extend techniques for learning hidden Markov models [50,60] to learn
POMDP models. Then, we could apply algorithms of the type described in this paper
to the learned models. Another approach is to combine the learning of the model with
the computation of the policy. This approach has the potential significant advantage of

being able to learn a model that is complex enough to support optimal (or good) behavior
without making irrelevant distinctions; this idea has been pursued by Chrisman [1 l] and

McCallum [40,4 I].

Theorem A.1. Let U, be a nonempty set of useful policy trees, and Qy be the complete set

of useful policy trees. Then U, # Qy if and only if there is some tree p E U,, observation

o* E Q, and subtree p’ E Vt-l for which there is some belief state b such that

VP,,,@) > V,(b) (A.11

for all j? E U,, where pnew is a t-step policy tree that agrees with p in its action and all its

subtrees except for observation o’, for which o* (pnew) = p’.

Note that we are defining two trees to be equal if they have the same valuefinction; this

makes it unnecessary to deal with the effect of ties in the set U,.

Proof. The “if” direction is easy since the b can be used to identify a policy tree missing
from U, .

The “only if” direction can be rephrased as: If U, # &?y then there is a belief state b, a
p E U,, and a pnew such that pnew has a larger value than any other jj E U, at b.

L.l? Kaelbling et al. /Artificial Intelligence 101 (1998) 99-134 131

Start by picking some p* E QF - U, and choose any b such that p* has the highest value
at b (there must be such a b since p* is useful). Let

p = argmax V,r (b).
p’EUa

Now, p* is the policy tree in Qf - U, that has the highest value at b, and p is the policy
tree in U, that has the highest value at b. By construction, V,*(b) > V,(b).

Now, if p and p* differ in only one subtree, then we are done, p* can serve as a pnew in
the theorem.

If p and p* differ in more than one subtree, we will identify another policy tree that can
act as pnew. Choose an observation O* E G2 such that

xbW(c ~(~,~(P*).s’~V,*(~*~(S’))
s S’ES

> ~b(s)(c T(st a(~*), ~‘)Vo.,,,,(~‘$
s S’ES

There must be a O* satisfying this inequality since otherwise we get the contradiction

V,,* (6)

Define pnew to be identical to p except that in the place of subtree o*(p), we put o*(p*).

From this, it follows that

+ Y C T(st u(Pnew)~ S’) C O(s’, a(pnew)~ @)Voi(pnew) S’

S’ES oid2 (0

+ Y C T(s, u(P)9 S’) C O(s’9 u(P)3 @)Vo.r,J(s’))

S’ES Uj&

= V,(b) 3 Vfi(b)

for all @ E U, . Therefore, the policy trees p and pnew, the observation o*, p’ = o*(p*) and
the belief state b satisfy the conditions of the theorem. q

132 L.I? Kaelbling et al. /Artijicial Intelligence 101 (1998) 99-l-134

References

[l] K.J. Astrom, Optimal control of Markov decision processes with incomplete state estimation, J. Math. Anal.

Appl. 10 (1995) 174-205.

[2] F. Bacchus, C. Boutilier and A. Grove, Rewarding behaviors, in: Proceedings Thirteenth National

Conference on Artificial Intelligence (AAAI-96). Portland, OR, AAAI Press/MIT Press, Menlo Park, CA,

1996, pp. 1160-l 167.

[3] D.P. Bertsekas, Dynamic Programming and Optimal Control, Vols. 1 and 2, Athena Scientific, Belmont,

MA, 1995.

[4] A.L. Blum and M.L. Furst, Fast planning through planning graph analysis, Artificial Intelligence 90 (l-2)

(1997) 279-298.

[5] J. Blythe. Planning with external events, in: Proceedings Tenth Conference on Uncertainty in Artificial

Intelligence (UAI-94), Seattle, WA, 1994, pp. 9PlOl.

[6] C. Boutilier and D. Poole, Computing optimal policies for partially observable decision processes using

compact representations, in: Proceedings Thirteenth National Conference on Artificial Intelligence (AAAI-

96), Portland, OR, AAAI Press/MIT Press, Menlo Park, CA, 1996, pp. 1168-1175.

[7] A. Cassandra, M.L. Littman and N.L. Zhang, Incremental Pruning: a simple, fast, exact method for partially

observable Markov decision processes, in: Proceedings Thirteenth Annual Conference on Uncertainty in

Artificial Intelligence (UAI-97), Morgan Kaufmann, San Francisco, CA, 1997, pp. 5461.

[8] A.R. Cassandra, L.P. Kaelbling and M.L. Littman, Acting optimally in partially observable stochastic

domains, in: Proceedings Twelfth National Conference on Artificial Intelligence (AAAI-94), Seattle, WA,

1994, pp. 1023-1028.

[9] A.R. Cassandra, Exact and approximate algorithms for partially observable Markov decision problems,

Ph.D. Thesis, Department of Computer Science, Brown University, Providence, RI, 1998.

[lo] H.-T. Cheng, Algorithms for partially observable Markov decision processes, Ph.D. Thesis, University of

British Columbia, Vancouver, BC, 1988.
f I 11 L. Chrisman, Reinforcement learning with perceptual aliasing: The perceptual distinctions approach, in:

Proceedings Tenth National Conference on Artificial Intelligence (AAAI-92) San Jose, CA, AAAI Press,

San Jose, CA, 1992, pp. 183-188.
[121 A. Condon, The complexity of stochastic games, Inform. and Comput. 96 (2) (1992) 203-224.

[13] T. Dean, L.P. Kaelbling, J. Kirman and A. Nicholson, Planning under time constraints in stochastic domains,

Artificial Intelligence 76 (l-2) (1995) 35-74.

[14] D. Draper, S. Hanks and D. Weld, Probabilistic planning with information gathering and contingent

execution, Technical Report 93-l 2-04, University of Washington, Seattle, WA, 1993.

[151 M. Drummond and J. Bresina, Anytime synthetic projection: maximizing the probability of goal satisfaction,

in: Proceedings Eighth National Conference on Artificial Intelligence (AAAI-90), Boston, MA, Morgan

Kaufmann, San Francisco, CA, 1990, pp. 138-144.

[16] J.N. Eagle, The optimal search for a moving target when the search path is constrained, Oper. Res. 32 (5)

(1984) 1107-1115.

[171 E. Femandez-Gaucherand, A. Arapostathis and S.1. Marcus, On the average cost optimality equation and the

structure of optimal policies for partially observable Markov processes, Ann. Oper. Res. 29 (1991) 471-512.

[18] R.P. Goldman and M.S. Boddy, Conditional linear planning, in: K. Hammond (Ed.), The Second

International Conference on Artificial Intelligence Planning Systems, AAAI Press/MIT Press, Menlo Park,

CA, 1994, pp. 80-85.
[191 R.P. Goldman and MS. Boddy, Epsilon-safe planning, in: Proceedings 10th Conference on Uncertainty in

Artificial Intelligence (UAl-94) Seattle, WA, 1994, pp. 253-261.
[20] R.P. Goldman and M.S. Boddy, Representing uncertainty in simple planners, in: Proceedings 4th

International Conference on Principles of Knowledge Representation and Reasoning (KR-94) Bonn,

Germany, 1994, pp. 238-245.

(211 P. Haddawy and S. Hanks, Utility models for goal-directed decision-theoretic planners, Technical Report

93-06-04, Department of Computer Science and Engineering, University of Washington, 1993.

[22] E.A. Hansen, Cost-effective sensing during plan execution, in: Proceedings Twelfth National Conference on

Artificial Intelligence (AAAI-94), Seattle, WA, AAAl Press/MIT Press, Menlo Park, CA. 1994, pp. 10299

1035.

L.f? Kaelbling et al. /Artificial Intelligence 101 (1998) 99-134 133

[23] EA. Hansen, An improved policy iteration algorithm for partially observable MDPs, in: Advances in Neural

Information Processing Systems 10 (1998).

[24] R.A. Howard, Dynamic Programming and Markov Processes, MIT Press, Cambridge, MA, 1960.

[25] R.A. Howard, Information value theory, IEEE Trans. Systems Science and Cybernetics SSC-2 (I) (1966)

22-26.

[26] R.E. Kalman, A new approach to linear filtering and prediction problems, Trans American Society of

Mechanical Engineers, Journal of Basic Engineering 82 (1960) 3545.

[27] S. Koenig, Optimal probabilistic and decision-theoretic planning using Markovian decision theory, Technical

Report UCB/CSD 92/685, Berkeley, CA, 1992.

[ZS] S. Koenig and R.G. Simmons, Risk-sensitive planning with probabilistic decision graphs, in: Proceedings

4th International Conference on Principles of Knowledge Representation and Reasoning (KR-94) Bonn.

Germany, 1994, pp. 363-373.

1291 J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT

Press, Cambridge, MA. 1992.

[30] N. Kushmerick, S. Hanks and D.S. Weld, An algorithm for probabilistic planning. Artificial Intelligence 76

(l-2) (1995) 239-286.

1311 S.-H. Lin and T. Dean, Generating optimal policies for high-level plans with conditional branches and loops,

in: Proceedings Third European Workshop on Planning (1995) 205-218.

1321 M.L. Littman, Memoryless policies: theoretical limitations and practical results, in: D. Cliff, P. Husbands.

J.-A. Meyer and S.W. Wilson (Eds.), From Animals to Animats 3: Proceedings Third International

Conference on Simulation of Adaptive Behavior, MIT Press, Cambridge, MA, 1994.

[33] M.L. Littman, A.R. Cassandra and L.P. Kaelbling, Learning policies for partially observable environments:

scaling up, in: A. Prieditis and S. Russell (Eds.), Proceedings Twelfth International Conference on Machine

Learning, Morgan Kaufmann, San Francisco, CA, 1995, pp. 362-370. Reprinted in: M.H. Huhns and

M.P. Singh (Eds.), Readings in Agents, Morgan Kaufmann, San Francisco, CA, 1998.

[34] M.L. Littman, A.R. Cassandra and L.P. Kaelbling. Efficient dynamic-programming updates in partially

observable Markov decision processes, Technical Report CS-95-19, Brown University. Providence. RI.

1996.

1351 M.L. Littman, Algorithms for sequential decision making, Ph.D. Thesis, Department of Computer Science,

Brown University, 1996; also Technical Report CS-96-09.

[36] W.S. Lovejoy, A survey of algorithmic methods for partially observable Markov decision processes. Ann.

Oper. Res. 28 (1) (1991) 47-65.

1371 S.M. Majercik and M.L. Littman, MAXPLAN: a new approach to probabilistic planning, Technical Report

CS-1998-01, Department of Computer Science, Duke University, Durham, NC, 1998; submitted for review.

1381 T.M. Mansell, A method for planning given uncertain and incomplete information, in: Proceedings 9th

Conference on Uncertainty in Artificial Intelligence (UAI-93), Morgan Kaufmann, San Mateo, CA, 1993,

pp. 35@358.

1391 D. McAllester and D. Rosenblitt, Systematic nonlinear planning, in: Proceedings 9th National Conference

on Artificial Intelligence (AAAI-91). Anaheim, CA, 1991, pp. 634-639.

1401 R.A. McCallum, Overcoming incomplete perception with utile distinction memory, in: Proceedings Tenth

International Conference on Machine Learning, Morgan Kaufmann, Amherst, MA, 1993, pp. 190-196.

1411 R.A. McCallum, Instance-based utile distinctions for reinforcement learning with hidden state, in:

Proceedings Twelfth International Conference on Machine Learning, Morgan Kaufmann, San Francisco,

CA, 1995, pp. 387-395.

1421 G.E. Monahan, A survey of partially observable Markov decision processes: theory, models, and algorithms.

Management Science 28 (I) (1982) 1-16.

1431 R.C. Moore, A formal theory of knowledge and action, in: J.R. Hobbs and R.C. Moore (Eds.), Formal

Theories of the Commonsense World, Ablex Publishing, Norwood, NJ, 1985, pp. 319-358.

1441 L. Morgenstem, Knowledge preconditions for actions and plans, in: Proceedings 10th International Joint

Conference on Artificial Intelligence (IJCAI-87), Milan, Italy, 1987, pp. 867-874.

1451 J.S. Penberthy and D. Weld, UCPOP: a sound, complete, partial order planner for ADL, in: Proceedings

Third International Conference on Principles of Knowledge Representation and Reasoning (KR-92).

Cambridge, MA, 1992, pp. 103-I 14.

134 L.P Kaelbling et al. /Art$cial Intelligence 101 (1998) 99-134

[46] M.A. Peot and D.E. Smith, Conditional nonlinear planning, in: Proceedings First International Conference

on Artificial Intelligence Planning Systems, 1992, pp. 189-197.

[47] L.K. Platzman, A feasible computational approach to infinite-horizon partially-observed Markov decision

problems, Technical Report, Georgia Institute of Technology, Atlanta, GA, 198 1.

[48] L. Pryor and G. Collins, Planning for contingencies: a decision-based approach, .I. Artif. Intell. Res. 4 (1996)

287-339.

[49] M.L. Puterman, Markov Decision Processes-Discrete Stochastic Dynamic Programming, Wiley, New

York, NY, 1994.

[50] L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proc.

IEEE 77 (2) (1989) 257-286.

[51] K. Sawaki and A. Ichikawa, Optimal control for partially observable Markov decision processes over an

infinite horizon, J. Oper. Res. Sot. Japan 21 (1) (1978) l-14.

[52] R.B. Scherl and H.J. Levesque, The frame problem and knowledge-producing actions, in: Proceedings 11 th

National Conference on Artificial Intelligence (AAAI-93), Washington, DC, 1993, pp. 6899697.

[53] M.J. Schoppers, Universal plans for reactive robots in unpredictable environments, in: Proceedings Tenth

International Joint Conference on Artificial Intelligence (IJCAI-87), Milan, Italy, 1987, pp. 1039-1046.

[54] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience, New York, NY, 1986.

[55] S.I? Singh, T. Jaakkola and M.I. Jordan, Model-free reinforcement learning for non-Markovian decision

problems, in: Proceedings Eleventh International Conference on Machine Learning, Morgan Kaufmann,

San Francisco, CA, 1994, pp. 284-292.

[56] R.D. Smallwood and E.J. Sondik, The optimal control of partially observable Markov processes over a finite

horizon, Oper. Res. 21 (1973) 1071-1088.

[57] D.E. Smith and M. Williamson, Representation and evaluation of plans with loops, Working Notes for the

1995 Stanford Spring Symposium on Extended Theories of Action, 1995.

[58] E. Sondik, The optimal control of partially observable Markov processes, Ph.D. Thesis, Stanford University,

1971.

[59] E.J. Sondik, The optimal control of partially observable Markov processes over the infinite horizon:

discounted costs, Oper. Res. 26 (2) (1978) 282-304.

[60] A. Stolcke and S. Omohundro, Hidden Markov model induction by Bayesian model merging, in:

S.J. Hanson, J.D. Cowan and CL. Giles (Eds.), Advances in Neural Information Processing Systems 5,

Morgan Kaufmann, San Mateo, CA, 1993, pp. 1 l-18.

[61] J. Tash and S. Russell, Control strategies for a stochastic planner, in: Proceedings 12th National Conference

on Artificial Intelligence (AAAI-94), Seattle, WA, 1994, pp. 1079-1085.

[62] P. Tseng, Solving H-horizon, stationary Markov decision problems in time proportional to log(H), Oper.

Res. Lett. 9 (5) (1990) 287-297.

[63] C.C. White and D. Harrington, Application of Jensen’s inequality for adaptive suboptimal design, J. Optim.

Theory Appl. 32 (1) (1980) 89-99.

[64] C.C. White III, Partially observed Markov decision processes: a survey, Ann. Oper. Res. 32 (1991).

[65] C.C. White III and W.T. Scherer, Solution procedures for partially observed Markov decision processes,

Oper. Res. 37 (5) (1989) 791-797.

[66] R.J. Williams and L.C. Baird III, Tight performance bounds on greedy policies based on imperfect value

functions, Technical Report NU-CCS-93-14, Northeastern University, College of Computer Science, Boston,

MA, 1993.
[67] N.L. Zhang and W. Liu, Planning in stochastic domains: problem characteristics and approximation,

Technical Report HKUST-CS96-3 1, Department of Computer Science, Hong Kong University of Science

and Technology, 1996.

[68] J. Zhao and J.H. Schmidhuber, Incremental self-improvement for life-time multi-agent reinforcement

learning, in: P. Maes, M.J. Mataric, J.-A. Meyer, J. Pollack and SW. Wilson (Eds.), From Animals to

Animats: Proceedings Fourth International Conference on Simulation of Adaptive Behavior, MIT Press,

Cambridge, MA, 1996, pp. 516-525.

[69] U. Zwick and M. Paterson, The complexity of mean payoff games on graphs, Theoret. Comput. Sci. 158

(l-2) (1996) 343-359.

