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Abstract

This paper presents an active learning method that di-
rectly optimizes expected future error. This is in con-
trast to many other popular techniques that instead
aim to reduce version space size. These other meth-
ods are popular because for many learning models,
closed form calculation of the expected future error is
intractable. Our approach is made feasible by taking a
sampling approach to estimating the expected reduc-
tion in error due to the labeling of a query. In exper-
imental results on two real-world data sets we reach
high accuracy very quickly, sometimes with four times
fewer labeled examples than competing methods.

1. Introduction

Traditional supervised learning methods set their parame-
ters using whatever training data is given to them. By con-
trast, active learning is a framework in which the learner
has the freedom to select which data points are added to
its training set. An active learner may begin with a very
small number of labeled examples, carefully select a few
additional examples for which it requests labels, learn from
the result of that request, and then using its newly-gained
knowledge, carefully choose which examples to request
next. In this way the active learner aims to reach high per-
formance using as few labeled examples as possible. Thus
active learning can be invaluable in the common case in
which there are limited resources for labeling data, and ob-
taining these labels is time-consuming or difficult.

Cohn et al. (1996) describe a statistically optimal solution
to this problem. Their method selects the training exam-
ple that, once labeled and added to the training data, is ex-
pected to result in the lowest error on future test examples.
They develop their method for two simple regression prob-
lems in which this question can be answered in closed form.
Unfortunately there are many tasks and models for which
the optimal selection cannot efficiently be found in closed
form.

Other, more widely used active learning methods attain
practicality by optimizing a different, non-optimal crite-
rion. For example, uncertainty sampling (Lewis & Gale,
1994) selects the example on which the current learner has
lowest certainty; Query-by-Committee (Seung et al., 1992;
Freund et al., 1997) selects examples that reduce the size
of the version space (Mitchell, 1982) (the size of the sub-
set of parameter space that correctly classifies the labeled
examples). Tong and Koller’s Support Vector Machine
method (2000a) is also based on reducing version space
size. None of these methods directly optimize the met-
ric by which the learner will ultimately be evaluated—the
learner’s expected error on future test examples. Uncer-
tainty sampling often fails by selecting examples that are
outliers—they have high uncertainty, but getting their la-
bels doesn’t help the learner on the bulk of the test distribu-
tion. Version-space reducing methods, such as Query-by-
Committee often fail by spending effort eliminating areas
of parameter space that have no effect on the error rate.
Thus these methods also are not immune to selecting out-
liers; see McCallum and Nigam (1998b) for examples.

This paper presents an active learning method that com-
bines the best of both worlds. Our method selects the
next example according to the optimal criterion (reduced
error rate on future test examples), but solves the practi-
cality problem by using sampling estimation. We describe
our method in the framework of document classification
with pool-based sampling, but it would also apply to other
forms of classification or regression, and to generative sam-
pling. We describe an implementation in terms of naive
Bayes, but the same technique could apply to any learning
method in which incremental training is efficient—for ex-
ample support vector machines (SVMs) (Cauwenberghs &
Poggio, 2000).

Our method estimates future error rate either by log-loss,
using the entropy of the posterior class distribution on a
sample of the unlabeled examples, or by 0-1 loss, using the
posterior probability of the most probable class for the sam-
pled unlabeled examples. At each round of active learn-
ing, we select an example for labeling by sampling from



the unlabeled examples, adding it to the training set with a
sample of its possible labels, and estimating the resulting
future error rate as just described. This seemingly daunt-
ing sampling and re-training can be made efficient through
a number of rearrangements of computation, careful sam-
pling choices, and efficient incremental training procedures
for the underlying learner.

We show experimental results on two real-world document
classification tasks, where, in comparison with density-
weighted Query-by-Committee we reach 85% of full per-
formance in one-quarter the number of training examples.

2. Optimal Active Learning and Sampling
Estimation

The optimal active learner is one that asks for labels on the
examples that, once incorporated into training, will result
in the lowest expected error on the test set.

Let
������� �	�

be an unknown conditional distribution over
inputs,

�
, and output classes,

��

�����������������������	�
, and

let
�������

be the marginal “input” distribution. The learner
is given a labeled training set, � , consisting of IID in-
put/output pairs drawn from

��������������� �	�
, and estimates a

classification function that, given an input
�

, produces an
estimated output distribution ��! "����� �	� . We can then write
the expected error of the learner as follows:#%$&('*),+�-/. �0������� �	�1� ��! "����� �	�2�3�������1� (1)

where . is some loss function that measures the degree
of our disappointment in any differences between the true
distribution,

������� ���
and the learner’s prediction, ��  ����� ��� .

Two common loss functions are:
log loss: .4)6587�9�: ������� �	�<;>=�?�� ��@ A����� �����
and 0/1 loss:.B),587�9�: ������� �	����CEDGF������2H�I2?3J�HLK 7NM�9�: ��@ "����OP� �	�2� .
First-order Markov active learning thus aims to select a
query,

�RQ
, such that when the query is given label

�SQ
and

added to the training set, the learner trained on the resulting
set

� �6T ���RQ<���<QU�2�
has lower error than any other

�
,V ���!�2���W#%$& 'SX<Y[Z]\�^ _�\N`ba #4$& 'SX<Y[ZN^ _2` � (2)

We concern ourselves here with pool-based active learn-
ing, in which the learner has available a large pool, c , of
unlabeled examples sampled from

�������
, and the queries

may be chosen only from this pool. The pool thus not only
provides us with a finite set of queries, but also an estimate
of
�����	�

.

This paper takes a sampling approach to error estimation
and the choice of query. Rather than estimating expected
error over the full distribution,

�����	�
, we measure it over

the sample in the pool. Furthermore, the true output distri-
bution

������� ���
is unknown for each sample

�
, so we esti-

mate it using the current learner.1 (For log loss this results
in estimating the error by the entropy of the learner’s pos-
terior distribution).

Writing the labeled documents �dT ��� Q ��� Q �
as � Q , for log

loss we havee#4$& ' \ ) C� c ��f- 9Lg f7U9�: ��@ \ ����� �	�<;>=�?�� ��@ \ ����� �����N� (3)

and for 0/1 losse#4$& ' \ ) C� c ��f- 9Lg4h CEDiJ�HLK7U9�: ��@ \ ����� �	��j4�
(4)

Of course, before we make the query, the true label for
��Q

is also unknown. Again, the current learned classifier gives
us an estimate of the distribution from which the

�	Q
’s true

label would be chosen, ��  ����� �RQL� , and we can use this in an
expectation calculation by calculating the estimated error
for each possible label,

�k
l�m�<�m�2���L�������2���R�
, and taking

an average weighted by the current classifier’s posterior,��@ "����� � Q � of
e#%$& 'S\ .

In the above formulation, we are using the current learner
to estimate the true label probabilities, which may seem
counter-intuitive. Using these loss functions will cause
the learner to select those examples which maximizes the
sharpness of learner’s posterior belief about the unlabeled
examples. An example will be selected if it dramatically re-
inforces the learner’s existing belief over unlabeled exam-
ples for which it is currently unsure. In practice, selecting
these instances for labeling is reasonable because the most
useful (or informative) labelings are usually consistent with
the learner’s prior belief over the majority (but not all) of
unlabeled examples.

Our algorithm thus consists of the following steps:
1. train a classifier using the current labeled examples

(a) consider each unlabeled example, n , in the pool as a can-
didate for the next labeling request

i. consider each possible label, o , for n , and add the pairp n	qrots to the training set
ii. re-train the classifier with the enlarged training set,u4v p n	qwots

iii. estimate the resulting expected loss as in equation (3)
or equation (4).

(b) Assign to n the average expected losses for each possible
labeling, o , weighted according to the current classifier’s
posterior, xy	z p o|{ nSs

2. Select for labeling the unlabeled example n that generated the
lowest expected error on all other examples.

If implemented naively, the above algorithm would be
hopelessly inefficient. However, with some thought and

1In order to reduce variance of this estimate we create several
training sets by sampling with replacement from the labeled set
(bagging), and averaging the resulting posterior class distribution.
See section 3.2 for more details.



some rearrangements of computation, there are a number
of optimizations and approximations that make this algo-
rithm much more efficient and very tractable:� Most importantly, many learning algorithms have algo-

rithms for very efficient incremental training. That is,
the cost of re-training after adding one more example to
the training set is far less than re-training as if the entire
set were new. For example, in a naive Bayes classifier,
only a few event counts need be incremented. SVMs also
have efficient re-training procedures (Cauwenberghs &
Poggio, 2000).� Furthermore, many learners have efficient algorithms for
incremental re-classification of the examples in the pool.
In incremental re-classification, the only parts of compu-
tation that need to be redone are those that would have
changed as a result of the additional training instance.
Again, naive Bayes and SVMs are two examples of al-
gorithms that permit this.� After adding a candidate query to the training set, we do
not need to re-estimate the error associated with all other
examples in the pool—only those likely to be effected
by the inclusion of the candidate in the training set. In
many cases this means simply skipping examples not in
the “neighborhood” of the candidate or skipping exam-
ples without any features that overlap with the features
of the candidate. Inverted indices, in which all the exam-
ples containing a particular features are listed together,
can make this extremely efficient.� The pool of candidate queries can be reduced by random
sub-sampling, or pre-filtering to remove outliers accord-
ing to some criteria. In fact, any of the suboptimal active
learning methods might make good pre-filters.� The expected error can be estimated using only a sub-
sample of the pool. Especially when the pool is large,
there is no need to use all examples—a good estimate
may be formed with only few hundred examples.

In the remainder of the paper we describe a naive Bayes
implementation of our method, discuss related work, and
present experimental results on two real-world data sets
showing that our method significantly outperforms meth-
ods optimize indirect criteria, such as query uncertainty.
We also outline some future work.

3. Naive Bayes Text Classification

Text classification is not only a task of tremendous practical
significance, but is also an interesting problem in machine
learning because it involves an unusually large number of
features, and thus requires estimating an unusually large
number of parameters. It is also a domain in which ob-
taining labeled data is expensive, since the human effort
of reading and assigning documents to categories is almost
always required. Hence, the large number of parameters
often must be estimated from a small amount of labeled
data.

When little training data is being used to estimate the pa-
rameters for a large number of features, it is often best to
use a simple learning model. In such cases, there is not
enough data to support estimations of feature correlations
and other complex interactions. One such classification
method that performs surprisingly well given its simplicity
is naive Bayes. Naive Bayes is not always the best perform-
ing classification algorithm for text (Nigam et al., 1999;
Joachims, 1998), but it continues to be widely used for the
purpose because it is efficient and simple to implement, and
even against significantly more complex methods, it rarely
trails far behind in accuracy.

This paper’s sampling approach to active learning could be
applied to several different learners. We apply it here to
naive Bayes for the sake of simplicity of explanation and
implementation. Experiments with other learners is an item
of future work.

Naive Bayes is a Bayesian classifier based on a genera-
tive model in which data are produced by first selecting
a class,

� 
��
, and then generating features of the in-

stance,
� 
��

, independently given the class. For text
classification, the common variant of naive Bayes has un-
ordered word counts for features, and uses a per-class
multinomial to generate the words (McCallum & Nigam,
1998a). Let ��� be the � th word in the dictionary of words	

, and 
 ) � 
 7�� � 
�
���� 7 � � 7��19�:�� 
 � 9�� be the parameters of
the model, where 
 7�� is the prior probability of class

���
(otherwise written

����� � � 
 � ), and where 
�
 � � 7�� is the prob-
ability of generating word � � from the multinomial asso-
ciated with class

� �
(otherwise written

��� � � � � � � 
 � , and5 � 
�
���� 7 � ) C
for all

� �
.

Thus the probability of generating the � th instance,
���

is����� � � 
 ��� � : �f���@� �������(� 
 � �
-! �"
# �@� ��� � -$ &% � ����� 
 �N� (5)

where
� � # is the ' th word in document

� �
. Then, by Bayes

rule, the probability that document
� �

was generated by
class

���
is����� � � �(�2� 
 � ) �������(� 
 �()*� -  �# �@� ��� � -  +% � ����� 
 �5 � : �, �@� ����� , � 
 �-).� -  �# �@� ��� � -  &% � � , � 
 � � (6)

Maximum a posteriori parameter estimation is performed
by taking ratios of counts:

�
�
(��� 7 � ) C T 5 �  �� � ��/ � � � �2�(�w������� � � ���P�� 	"� T 5 � � �0 �@� 5 �  �� �@� / � � 0 �2� � ���������<� � � � � (7)

�
 7 � ) C T 5 �  �� �@� �������(� � � �� � T � � � �
(8)

where
/ � ��� �2� � � is the number of times word ��� occurs in

document
� �

, and
�������(� � � �

is an indicator variable that is
1 when document

���
has label

� �
and 0 otherwise.



3.1 Fast Naive Bayes Updates

Equations (3) and (4) show how the pool of unlabeled doc-
uments can be used to estimate the change in classifier er-
ror if we label one document. However, in order to choose
the best candidate from the pool of unlabeled documentsc , we have to train the classifier

� c � times, and each time
classify

� c �tD8C
documents. Performing � �2� c � � � classifi-

cations for every query can be computationally infeasible
for large document pools.

While we cannot reduce the total number of classifications
for every query, we can take advantage of certain data struc-
tures in a naive Bayes classifier to allow more efficient re-
training of the classifier and relabeling of each unlabeled
document.

Recall from equation (6) that each class probability for an
unlabeled document is a product of the word probabilities
for that label. When we compute the class probabilities
for each unlabeled document using the new classifier, we
make an approximation by only modifying some of the
word probabilities in the product of equation (6). By prop-
agating only changes to word probabilities for words in the
putatively labeled document, we gain substantial compu-
tational savings compared to retraining and reclassifying
each document.

Given a classifier learned from training data � , we can add
a new document

���
with label

���
to the training data and

update the class probabilities (for that class
� �

) of each un-
labeled document

� �
in c by:����� � � �(�2� �
 O � ) ����� � � ���2� �
 �-) 
 9 -$ ��<- � � O0� � � � � � �
 O �) 
 9 -  �<- � ��� � � � � � �
 � �

(9)

where
��� � � � � � �
 O � are the new word probabilities given� T �����S�2���L�

, and
��� � � ����� �
 � are the old word probabil-

ities given only � . The denominator divides out the old
multinomials from the previous classifier. The product in
the right hand side of the numerator multiplies in the new
word probabilities that result from adding the putatively la-
beled document

� �
.

The old multinomials that are divided out are the same as in
equation (6). The new multinomials for the numerator can
be obtained rapidly by incrementally adding to the word
counts, (i.e. only the first terms of the numerator and de-
nominator need to be added to the pre-existing counts for
the rest of the numerator and denominator):��� � � � � � � �
 O � ) (10)

/ � � � �����t� T C T 5 �  �� �@� / � � � ��� � ���������R� � � �� � � � T � 	"� T 5 � � �0 �@� 5 �  �� �@� / � � 0 �����P������� � � �(�w� �
where

/ � � � �2���t� is the word count for a word ��� in the
putatively labeled document

�	�
. Again, we only do this

for the label probabilities of the putative label
�
�

; all other
label probabilities remain unchanged.

3.2 Obtaining Smoother Posteriors for Naive Bayes

Our active learning method relies on obtaining reasonably
accurate class posteriors from the classification procedure.
It is well-known that naive Bayes, with its violated inde-
pendence assumption, gives overly sharp posteriors—the
probability of the winning class tends to be very close to 1,
and the losing classes have probabilities close to 0.

We address this problem with a sampling-based ap-
proach to variance reduction, otherwise known as bag-
ging (Breiman, 1996). From our original labeled training
set of size � , a different training set is created by sampling� times with replacement from the original. The learner
then creates a new classifier from this sample, this proce-
dure is repeated � times, and the final class posterior for
an instance is taken to be the unweighted average of the
class posteriors for each of the classifiers. For each round
in which a new query is to be chosen, these training set
bags are resampled, and each putatively labeled document
is temporarily added to each bag in turn.

In regions of uncertain classification is it often the case
that the classifiers from different samples give different an-
swers. Thus, even when the posteriors from any individual
classifier are completely extreme, the bagged posterior is
more smooth and reflective of the true uncertainty. This
approach has been shown not necessarily to reduce over-
fitting (Domingos, 2000), but it does certainly give better
posterior probabilities.

One interesting aspect of this approach is that it can be ap-
plied to any classifier—even ones that don’t give class pos-
terior probabilities at all, or for which the distribution over
classifier parameters is unclear. This “bagging approach”
to sampling from the distribution over classifiers has been
used in previous work related to QBC (Abe & Mamitsuka,
1998); see the related work section for more details.

4. Related Work

Cohn et al. (1996) propose one of the first statistical anal-
yses of active learning, demonstrating how to construct
queries that maximize the error reduction by minimizing
the learner’s variance. They take advantage of the fact
that an unbiased learner that minimizes the expected er-
ror given as the expected sum of squared error is equivalent
to an unbiased learner that minimizes its variance. Such a
learner can then use the estimated distribution of �� to esti-
mate 
 �� �7�� , the expected variance of the learner after query-
ing at �� . However, a closed-form solution for the expected
variance of the text classifier is difficult to compute. Fur-
thermore, they construct exactly the query that maximizes
this reduction, rather than choosing from a pool of possible
queries.

Cohn et al.’s “Constructive Query Generation” approach is
contrasted with “Query-Filtering” (or Seung et al. (1992)’s



“Selective Sampling”), in which unlabeled data is pre-
sented to the learner from some distribution, and the learner
chooses queries from this sample (either as a pool or a
stream). From this data-oriented perspective, Lewis and
Gale (1994) presented the uncertainty sampling algorithm
for choosing the example with the greatest uncertainty in
predicted label. Freund et al. (1997) showed that uncer-
tainty sampling does not converge to the optimal classifier
as quickly as the “Query-By-Committee” algorithm (Seung
et al., 1992).

In the “Query By Committee” (QBC) approach, the method
is to reduce the error of the learner by choosing the in-
stance to be labeled that will minimize the size of the ver-
sion space (Mitchell, 1982) consistent with the labeled ex-
amples. Instead of explicitly determining the size of the
version space, predicted labels for each unlabeled exam-
ple are generated by first drawing hypotheses probabilis-
tically from the version space, according to a distribution
over the concepts in the version space. These hypotheses
are then used to predict the example label. Examples ar-
rive from a stream, and are labeled whenever the ‘commit-
tee’ of hypotheses disagree on the predicted label. This ap-
proach chooses examples that “split the version space into
two parts of comparable size” with a degree of probabil-
ity that guarantees data efficiency that is logarithmic in the
desired probability of error.

A number of others have made use of QBC-style algo-
rithms; in particular, Liere and Tadepalli (1997) use com-
mittees of Winnow learners for text classification, and
Argamon-Engelson and Dagan (1999) use QBC for natu-
ral language processing. Our algorithm differs from theirs
in that we are estimating the error reduction, whereas Arga-
mon et al. are simply estimating the example disagreement.
They also point out that committee-based selection can be
viewed as a Monte Carlo method for estimating label dis-
tributions over all possible models, given the labeled data.

Abe and Mamitsuka (1998) use a bagging and boosting ap-
proach for maximizing the classifier accuracy on the test
data. This approach suggests that by maximizing the mar-
gin on training data, accuracy on test data is improved, an
approach that is not always successful (Grove & Schuur-
mans, 1998). Furthermore, like the QBC algorithms be-
fore it, the QBC-by-boosting approach fails to maximize
the margin on all unlabeled data, instead choosing to query
the single instance with the smallest margin.

McCallum and Nigam (1998b) extend the earlier QBC ap-
proach by not only using pool-based QBC, but also us-
ing a novel disagreement metric. Whereas the stream-
based approaches classify whenever a level of disagree-
ment (possibly any) occurs, in pool-based QBC, the best
unlabeled example is chosen. Argamon-Engelson and Da-
gan (1999) suggest using a probabilistic measure based
on vote-entropy of the committee, whereas McCallum &
Nigam explicitly measure disagreement using the Jensen-

Shannon divergence (Lin, 1991; Pereira et al., 1993). How-
ever, they recognize that this error metric does not measure
the impact that a labeled document had on classifier un-
certainty on other unlabeled documents. They therefore
factored document density into their error metric, to de-
crease the likelihood of uncertain documents that are out-
liers. Nevertheless, document density is a rough heuris-
tic that is specific to text classification, and does not di-
rectly measure the impact of a document’s label on other
predicted labelings.

More recently, Tong and Koller (2000a) use active learning
with Support Vector Machines for text classification. Their
SVM approach reduces classifier uncertainty by estimating
the reduction in version space size as a function of querying
instances. Thus, like QBC, they explicitly reduce version
space size, implicitly reducing future expected error. The
active learning technique they propose also makes strong
assumptions about the linear separability of the data.

Similar in approach to our work, Lindenbaum et al. (1999)
examine active learning by minimizing the expected error
using nearest neighbor classifiers. Their approach is very
similar to ours with respect to loss function; the maximiza-
tion of expected utility is exactly equivalent to our mini-
mization of error with a 0/1 loss function. However, they
do not smooth label distributions by using bagging.

Tong and Koller (2000b) describe a method of active learn-
ing for learning the parameters of Bayes nets. Their “ex-
pected posterior risk” is very similar to our expected error
as in equation (1). However, they use a slightly different
loss function and average the loss over the possible models,
as opposed to estimating the loss of the maximum a poste-
riori distribution itself. Their method emphasizes learn-
ing a good joint distribution over the instance space, which
has the advantage of creating better generative models, but
may not necessarily lead to the most useful queries for a
discriminative model.

5. Experimental Results

NEWSGROUP DOMAIN

The first set of experiments used Ken Lang’s News-
groups, containing 20,000 articles evenly divided among
20 UseNet discussion groups (McCallum & Nigam,
1998b). We performed two experiments to perform binary
classification. The first experiment used the two classes
comp.graphics and comp.windows.x. The data
was pre-processed to remove UseNet headers and UU-
encoded binary data. Words were formed from contiguous
sequences of alphabetic characters. Additionally, words
were removed if they are in a stoplist of common words,
or if they appear in fewer than 3 documents. As in Mc-
Callum and Nigam (1998b), no feature selection or stem-
ming was performed. The resulting vocabulary had 10,205
words. All results reported are the average of 10 trials. The



data set of 2000 documents was split into a training set of
1000 documents, and 1000 test documents.

We tested 4 different active learning algorithms:
� Random – choosing the query document at random.

� Uncertainty Sampling – choosing the document with the
largest label uncertainty, as in (Lewis & Gale, 1994).

� Density-Weighted QBC – choosing the document with
the greatest committee disagreement in the predicted
label, as measured by Jensen-Shannon divergence,
weighted by document density, as in (McCallum &
Nigam, 1998b). The number of committees used is three.

� Error-Reduction Sampling – the method introduced in
this paper – choosing the document that maximizes the
reduction in the total predicted label entropy, as in equa-
tion (1), with error as given in equation (3).2 The number
of bags used is three.

The algorithms were initially given 6 labeled examples, 3
from each class.

At each iteration, 250 documents (25% of the unlabeled
documents) were randomly sampled from the larger pool
of unlabeled documents as candidates for labeling.3 The
error metric was then computed for each putative label-
ing against all remaining unlabeled documents (not just the
sampled pool.) Figure 1 shows the active learning process.
The vertical axis show classification accuracy on the held-
out test set, up to 100 queries. All results reported are the
average of 10 trials.

The solid gray line at 89.2% shows the maximum possi-
ble accuracy after all the unlabeled data has been labeled.
After 16 queries, the Error-Reduction Sampling algorithm
reached 77.2%, or 85% of the maximum possible accu-
racy. The Density-Weighted QBC took 68 queries to reach
the same point (four times more slowly), and maintained a
lower accuracy for the remainder of the queries.

It is also interesting to compare the documents chosen by
the two algorithms for initial labeling. Looking at the doc-
uments chosen in the first 10 queries, over the 10 trials,
the first 10 documents chosen by the Error-Reduction Sam-
pling algorithm were an FAQ, tutorial or HOW-TO 9.8
times out of ten. By comparison, the first 10 documents
chosen by the Density-Weighted QBC algorithm were an
FAQ or HOW-TO only 5.8 times out of 10. While the high
incidence of the highly informative documents in the initial
phases is not quantitatively meaningful, it does suggest that
the learner’s behavior is somewhat intuitive.

2We also tried Error-Reduction Sampling with 0/1 loss, but
performance was essentially random. As of yet, we have no ex-
planation.

3The sub-sampling was performed in the interests of these ex-
perimental results. In a real active learning setting, all algorithms
would be run over as much unlabeled data as was computationally
feasible in that setting.
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Figure 1. Average test set accuracy for comp.graphics vs.
comp.windows.x. The Error-Reduction Sampling algorithm
reaches 85% of maximum in 16 documents, compared to 68 docu-
ments for the Most Disagreed algorithm. The error bars are placed
at local maximum to reduce clutter.

The particular newsgroups in the preceding experiment
were chosen because they are relatively easy to distinguish.
A more difficult text-categorization problem is classifying
the newsgroups comp.sys.ibm.pc.hardware and
comp.os.ms-windows.misc. The documents were
pre-processed as before, resulting in a vocabulary size of
9,895. The data set of 2000 documents was split into a
training set of 1000 documents, and 1000 test documents.
Also as before, the unlabeled data was sampled randomly
down to 250 documents for candidate labelings at each it-
eration, although the sampling error was measured against
all unlabeled documents.

We can again examine the documents chosen by the differ-
ent algorithms during the initial phases. Error-Reduction
Sampling had an average incidence of 7.3 FAQs in the first
10 documents, compared with 2.6 for Density-Weighted
QBC. In this experiment, however, we see that the intu-
itive behavior is not sufficient for one algorithm to clearly
out-perform another, and the learners required several more
documents to begin to achieve a reasonable accuracy.

The solid gray line at 88% shows the maximum possi-
ble accuracy after all the unlabeled data has been labeled.
After 42 queries, the Error-Reduction Sampling algorithm
reached 75%, or 85% of the maximum possible accuracy.
The Density-Weighted QBC algorithm reached the same ac-
curacy after 70 queries, or 1.6 times more slowly.

JOB CATEGORY DOMAIN

The third set of experiments used a data set collected at
WhizBang! Labs. The Job Category data set contained
112, 643 documents containing job descriptions for 16 dif-
ferent categories such as Clerical, Educational or
Engineer. The 16 different categories were then bro-
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Figure 2. Average test set accuracy for the comp.sys.ibm.-
pc.hardware vs. comp.os.ms-windows.misc. The
Error-Reduction Sampling algorithm reaches 85% of maximum
in 45 documents, compared to 72 documents for the Density-
Weighted QBC algorithm. The error bars again are placed at local
maximum.

ken down into as many as 9 subcategories. The data set
was collected by automatic spidering company job open-
ings on the web, and labeled by hand. We selected the
Engineer job category, and took 500 articles from each
of the six Engineer categories: Chemical, Civil,
Industrial, Electrical, Mechanical, Opera-
tions and Other. The documents were pre-processed to
remove the job title, as well as rare and stoplist words.

This experiment trained the naive Bayes classifier to dis-
tinguish one job category from the remaining five. Each
data point is an average of 10 trials per job category, av-
eraged over all 6 job categories. In this example, the
Error-Reduction Sampling algorithm reached 82% accu-
racy (94% of the maximum accuracy at 86%) in 5 docu-
ments. The Job Category data set is easily distinguishable,
however, since similar accuracy is achieved after choos-
ing 36 documents at random. The region of interest for
evaluating this domain is the initial stages as shown by
figure 4. Although the other algorithms did catch up, the
Error-Reduction Sampling algorithm reached very high ac-
curacy very quickly.

6. Summary

Unlike earlier work in version-space reduction, our ap-
proach aims to maximize expected error reduction directly.
We use the pool of unlabeled data to estimate the expected
error of the current learner, and we determine the impact
of each potential labeling request on the expected error.
We reduce the variance of the error estimate by averag-
ing over several learners created by sampling (bagging) the
labeled data. This approach can be compared to existing
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Figure 3. Average test set accuracy for the Job Category do-
main, distinguishing one job category from 5 others. The Error-
Reduction Sampling algorithm reaches 82% accuracy in 5 docu-
ments, compared to 36 documents for both the Density-Weighted
QBC and Random algorithms.

statistical techniques (Cohn et al., 1996) that compute the
reduction in error (or some equivalent quantity) in closed
form; however, we approximate the reduction in error by
repeated sampling. In this respect, we have attempted to
bridge the gap between closed-form statistical active learn-
ing and more recent work in Query-By-Committee (Freund
et al., 1997; McCallum & Nigam, 1998b).

We presented results on two domains, the Newsgroups
domain and also the Job Category domain. Our results
show that Error-Reduction Sampling algorithm outper-
forms some existing algorithm substantially, achieving a
high level of accuracy with fewer than 25% of the label-
ing queries required by Density-Weighted QBC.

A naive implementation of our approach is computation-
ally complex compared to most existing QBC algorithms.
However, we have shown a number of optimizations and
approximations that make this algorithm much more effi-
cient and tractable. Ultimately, the trade-off between com-
putational complexity and the number of queries should al-
ways be decided in favor of fewer queries, each of which
requires humans in the loop. A human labeler typically
requires 30 seconds or more to label a document, during
which time a computer active learner can select an exam-
ple in a very large pool of documents. The results presented
here typically required less than a second of computation
time per query.

Furthermore, our algorithm uses sub-sampling of the unla-
beled data to generate a pool of candidates at each iteration.
By initially using a fairly restrictive pool of candidates for
labeling, and increasing the pool as time permits, our algo-
rithm can be considered an anytime algorithm.

Our technique should perform even more strongly with
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Figure 4. A magnified view of the average test set accuracy for
the Job Category domain, distinguishing one job category from 5
others. The Error-Reduction Sampling algorithm clearly reaches
a high level of accuracy much before the Density-Weighted QBC
algorithm.

models that are complex and have complex parameter
spaces, not all regions of which are relevant to performance
on a particular data set. In these situations active learning
methods based on version space reduction would not be
expected to work as well, since they will expend effort ex-
cluding portions of version space that have no impact on
expected error.

We plan to extend this active learning technique to other
classifiers, such as Support Vector Machines. The recent
work by Cauwenberghs and Poggio (2000) describes tech-
niques for efficient incremental updates to SVMs and will
apply to our approach.
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