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Abstract

Recently, there has been an increased interest in “life-
long” machine learning methods, that transfer knowl-
edge across multiple learning tasks. Such methods
have repeatedly been found to outperform conven-
tional, single-task learning algorithms when the learn-
ing tasks are appropriately related. To increase robust-
ness of such approaches, methods are desirable that
can reason about the relatedness of individual learning
tasks, in order to avoid the danger arising from tasks
that are unrelated and thus potentially misleading.

This paper describes the task-clustering (TC) algo-
rithm. TC clusters learning tasks into classes of mu-
tually related tasks. When facing a new learning task,
TC first determines the most related task cluster, then
exploits information selectively from this task cluster
only. An empirical study carried out in a mobile robot
domain shows that TC outperforms its non-selective
counterpart in situations where only a small number
of tasks is relevant.

1 INTRODUCTION

One of the exciting new developments in the field of machine
learning are algorithms that can gradually improve their abil-
ity to learn when applied to a sequence of learning tasks.
Motivated by the observation that humans encounter more
than just a single learning task during their lifetime, and
that they successfully improve their ability to learn [2, 17],
several researchers have proposed algorithms that are able
to acquire domain-specific knowledge and re-use it in fu-
ture learning tasks. For example, in the context of face
recognition, methods have been developed that improve the
recognition accuracy significantly when learning to recog-
nize a face, by transferring face-specific invariances learned
in other, previous face recognition tasks [5, 13]. Similar
results in the context of object recognition, robot navigation
and chess are reported in [26].

*The first author is also affiliated with the University of Bonn,
Germany, where part of the research was carried out.

Technically speaking, the problem of learning from mul-
tiple tasks can be stated as follows. Given

1. training data for the current learning task (training set),

2. training data for N other, previous learning tasks (called:
support sets), and

3. a performance measure

find a hypothesis which maximizes the performance in the
current (the N+ 1-th) learning task. Notice that item 2 in
this list, the data of previous learning tasks (the support
sets), does not appear in the usual formulation of machine
learning problems. This is because support data might only
be indirectly related, e.g., carry different class labels. To
utilize this data, mechanisms are required that can acquire
and re-use domain-specific knowledge in order to guide the
generalization in a knowledgeable way.

To date, there is available a variety of strategies for
the transfer of domain-specific knowledge across multiple
learning tasks (see [26, 27] for a more detailed survey and
comparison):
¢ learning internal representations for artificial neural net-
works, e.g., [1, 4, 8, 19, 21, 22, 24],
learning distance metrics, e.g., [4, 16, 29],
learning to re-represent the data, e.g., [12, 26, 29],
learning invariances in classification, e.g., [5, 13, 26, 28],
learning algorithmic parameters and choosing algo-
rithms, e.g., [6, 20, 25, 30], and
e learning domain models, e.g., [18, 26].

Many of these approaches have been demonstrated empiri-
cally to reduce the sample complexity when learning more
than one task. However, all of them weigh previous learning
tasks equally strongly when transferring knowledge —thus,
they may fail when only a small subset of learning tasks
is related appropriately. For example, the approaches to
object recognition described in [26] generalize better if pre-
vious learning tasks involve the recognition of other objects;
however—if the learner faced previously unrelated learning
tasks (such as stock market prediction), these approaches
will most likely fail due to their non-selective nature of their
transfer mechanisms. Consequently, it is common prac-
tice for human designers to pick a set of tasks which is
known to be related appropriately. To overcome this obvi-



ous limitation of current approaches, itis desirable to design
algorithms that can discover the relation between multiple
learning tasks by themselves, and transfer knowledge selec-
tively across related learning tasks.

This paper describes such an algorithm, called the TC
(task clustering) algorithm. Unlike previous methods, TC
transfers knowledge selectively, from the most related set
of learning tasks only. In order to do so, TC estimates the
mutual relatedness between tasks, and builds up an entire
hierarchy of classes of learning tasks. When a new learn-
ing task arrives, TC determines the most related task cluster
in the hierarchy of previous learning tasks. Knowledge is
transferred selectively from this single cluster only —other
task clusters are not employed. The clustering strategy en-
ables TC to handle multiple classes of tasks, each of which
may exhibit different characteristics.

To elucidate TC in practice, this paper reports results of
a series of experiments carried out in a mobile robot domain
[29]. The three key results of this empirical study are:

1. The sample complexity can be reduced significantly
when domain-specific knowledge is transferred from pre-
vious learning tasks.

2. TC reliably succeeds in partitioning the task space into a
(surprisingly) meaningful hierarchy of related tasks.

3. Selective transfer significantly improves the results in
cases where only few support tasks are relevant (yet does
not hurt the performance when all support tasks are ap-
propriately related).

2 THE TC ALGORITHM

The TC algorithm has been designed to support fast learning
of large sets of (binary) classification tasks, that are defined
over the same input space. This research has been driven
by our interest in fast and data-efficient robot learning algo-
rithms. TC will be introduced in five steps, the first two of
which have been adopted from recent literature.

2.1 NEAREST NEIGHBOR GENERALIZATION

At the underlying function approximation level, the TC al-
gorithm uses nearest neighbor for generalization (see e.g.
[9, 23]). To determine the proximity of data points, TC uses
a globally weighted Euclidean distance metric:

distq(z,y) = ¢Zd(i) (x(i)_y(i))

Here d denotes an adjustable vector of weighting factors,
and the superscript () is used to refer to the i-th component
of a vector. d parameterizes the space of Euclidean dis-
tance metrics. Obviously, d determines the generalization
properties of nearest neighbor.

2.2 ADJUSTING THE DISTANCE METRIC

TC transfers knowledge across learning tasks by adjusting
d for some tasks, then re-using it in others. Following ideas
presented elsewhere [3, 4, 10, 11, 15, 16, 28], this is done
by minimizing the distance between training examples that
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belong to the same class, while maximizing the distance
between training examples with opposite class labels:

En(d) = Zéxy distg(z,y) — min
o,y
B 1 if class,(x) = classy(y)
where dpy = { —1 if class,(x) # class,(y)

Here the subscript n denotes a particular learning task. Let
d* = argmin, F/(d) denote the parameter vector that mini-
mizes F, henceforth called E-optimal, and let dist* be the
corresponding optimal distance metric. By minimizing the
distance when class,(x) = class,(y) and simultaneously
maximizing the distance when class,(x) # class,(y), dist*
focuses on the relevant input dimensions for the n-th learn-
ing task. In our implementation, d* is found using gradient
descent.

Notice that d can be optimized simultaneously for mul-
tiple learning tasks. Let A C {1,2,... N} denote a subset
of the support tasks. Then

argmin Z E,(d) (1)
d

neEA

&y =

is the F-optimal parameter vector and dist} the correspond-
ing distance metric for the task set A.

2.3 THE TASK TRANSFER MATRIX

Using the E-optimal distance metric obtained for one task
when learning another task is only likely to improve the
results when both tasks demand a similar feature weighting.
To determine the degree to which tasks are related to each
other, TC computes the matrix

C =

(¢n,m)

which is called the task transfer matrix. The task transfer
matrix contains a value ¢, ,,, for each pair of learning tasks
n and m. ¢, is the expected generalization accuracy ob-
tained in task n when using m’s E-optimal distance metric.
Each element ¢, ,, is estimated via %-fold cross-validation,
using the £-optimal distance metric of task m and the train-
ing set of task n. The task transfer matrix is the basis for
clustering tasks and building task hierarchies.

2.4 CLUSTERING TASKS AND THE TASK
HIERARCHY

TC clusters all N learning tasks into 7'<N disjunct bins,
denoted by Ay, ..., Ap. This is done by maximizing the
following functional:

|« 1
A DIDIEyw DI
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J measures the averaged estimated generalization accuracy
that is obtained when task n € A; uses the £-optimal dis-
tance metrics of another task m € A; in the same cluster.
In other words, maximizing J groups those tasks together
that are most related, i.e., those between which transferring



FE-optimal distance metrics leads to the largest performance
gain.! Notice that each of the 7' resulting task clusters
defines a cluster-specific £-optimal distance metric

d, = argmin Z En(d).

which is obtained by minimizing E4, (¢f. (1)). By re-
peating the clustering process for different values of T’
(T'=1,2,...N). Figures 6-8 on page 7 show examples
of task hierarchies, which will be explained in more detail
in Section 3.

2.5 SELECTIVE TRANSFER TO NOVEL TASKS

When a new learning task arrives, TC identifies the most
related task cluster in the hierarchy of previous learning
tasks. This is done by minimizingc,, 4, over all task clusters
At (cn, 4, denotes the task transfer coefficient for using the
FE-optimal distance metric of task cluster A;). Notice if
an appropriate number of clusters 7" is unknown, the entire
hierarchy is consulted when searching for the most related
task cluster. Having determined the most appropriate task
cluster, TC uses the F-optimal distance metric d}, of that
task cluster for nearest neighbor generalization in the new
task.
To summarize, the steps of the TC algorithm are:

1. TC classifies by nearest neighbor, using a globally
weighted distance metric.

2. It transfers knowledge across multiple learning tasks by
learning a distance metric for some tasks, and re-using it
for nearest neighbor generalization in others.

3. To focus the transfer on the most related tasks, TC com-
putes the task transfer matrix, which measures the mutual
relation of learning tasks.

4. It constructs the task hierarchy by clustering learning
tasks according to the task transfer matrix.

5. When facing a new thing to learn, the distance metric is
transferred selectively, from the most related task cluster
only.

3 EXPERIMENTAL RESULTS

3.1 SETUP

To evaluate TC thoroughly under a variety of circumstances,
it was applied to three different families of binary classifica-
tion tasks that were obtained using a set of databases shown
in Figure 2. The databases were collected with the mobile
robot shown in Figure 1, using the color camera (top of the
robot) and the 24 sonar proximity sensors (arranged in a
ring around the robot) as input. Each database consists of
30 to 200 of snapshots which show examples and counter-
examples of a particular concept (such as persons, land-
marks, objects, and locations). The first six datasets were
constructed with a particular person somewhere in front of

"Notice that maximizing J defined over a pairwise matrix (C)
is a well-understood combinatorial data clustering problem for
which various algorithms exist (see for example [7]).

Figure 1: The mo-
bile robot XAVIER is
equipped with a cam-
era and 24 sonar sen-
Sors.

the robot. Different persons wore different clothes, so that
their recognition involved spotting certain colors. The re-
maining six datasets contained snapshots of a landmark (a
blue trash-bin), of situations with an obstacle in front of the
robot, of doors (open and closed doors), and finally a col-
lection of random snapshots taken at a particular location
(lab vs. hallway).
We defined three families of learning tasks:?

e 7. Task family 77; consists of thirteen tasks involving
the recognition of people, landmarks and locations, using
the databases a, b, ¢, d, g, j, k, and I in Figure 2. The
“new” task (testing task) is the task of recognizing the
status of doors (open vs. closed). The input space is
324-dimensional: Camera images are subsampled to a
10 by 10 matrix, yielding a total of 300 RGB pixels per
image. In addition, the 24 sonar measurements are also
presented. Each dataset contains exactly 200 examples.

e 75: 75 is aimed to test TC in situations where most tasks
are unrelated. It contains three groups of four tasks each:
The first group (called 2,4,5,6) consists of four tasks
adopted from task family 77, all involving the recog-
nition of people. The second group (called 2',4’,5,6)
consists of the same four tasks, but here the input pixels
are permuted randomly (using the same permutation for
all tasks). The third group (2",4”,5” ,6'") consists, too, of
the same four tasks, but this time the input space of each
task is permuted differently (also randomly). The testing
task is the same as in task family 7;. Task family 75,
thus, contains only four tasks that are potentially related
to the testing tasks. Four other tasks are mutually related
but unrelated to the testing task, and four tasks are neither
related to the testing task, nor mutually related. As we
will see below, non-selective transfer suffers from such
unrelated tasks.

e 73: Task family 73 consists of nine tasks that corre-
spond to the databases a, d, e, f, h, i, j, k, and I in
Figure 2. 73 uses a more sophisticated input representa-
tion. Following the ideas in [14, 15], images in 73 are
encoded using a “view-based” approach to scene recog-
nition. In this approach, feature dimensions are chosen
so that large changes in object pose and orientation pro-
duce small changes in feature space, yet small changes in

2Since our experiments were performed in two stages, not all
task families utilized each data set.



(a) person 1 (Joseph) (b) person 2 (Sean)

(d) person 4 (Sebastian)

(e) person 5 (Greg) (f) person 6 (Shyjan)

Wi

(g) trash-bin

(1) nearby obstacle

(k) closed door

(1) lab vs. hallway

Figure 2: Examples of the learning tasks (image and sonar scan).
The actual images are in color.

object “quality” (shape, texture, color) produce relatively
large differences in feature space. In particular the rep-
resentation comprises of 720 features corresponding to
color, intensity, texture and correlation,augmented by 24
sonar measurements. The datasets in 73 were generally
smaller; some of them contained as few as 30 examples.

When clustering tasks, each value ¢,,,, was estimated using
100-fold cross-validation with a training set of 10 exam-
ples per dataset and a testing set of 24 to 190 examples
(depending on the dataset). The distance metric (Sect. 2.2)
was optimized by gradient descent, which was iterated for
100 steps using a step-size of 0.1 and a momentum of 0.9.
Convergence, however, was consistently observed much ear-
lier (often after 6 epochs). The results were not sensitive
to these learning parameters. After bounding the distance

metric (with 0.01<d(")<1), we did not observe noticeable
over-fitting, neither for the tasks that the distance metrics
were optimized for, nor for the testing task. All experimen-
tal results reported below are test set results (i.e., perfor-
mance was measured for data points that were not part of a
training set). They are all averaged over 20 to 100 experi-
ments using different sets of training examples. To illustrate
the effect of transfer across tasks, we will compare the I-
optimal distance metric (transfer) with a non-optimized (i.e.,
equally-weighted) distance metric, or, alternatively, with a
distance metric that is F-optimal only for the training set.
The latter two metrics do not rely on the support sets; thus,
there is no transfer. Whenever appropriate, the diagrams
also show 95% confidence bars for the true value. All per-
formance graphs show the generalization accuracy (testing
set accuracy) for the testing task.

3.2 NON-SELECTIVE TRANSFER

The first question investigated here addresses the effective-
ness of learning a distance metric based on support sets
(Step 1 and 2 of the TC algorithm, ¢f. Section 2). How
much does a learner benefit from a distance metric that has
previously been optimized for other, related tasks? We first
conducted experiments using (non-selectively) all support
tasks for computing the F-optimal distance metric. Non-
selective transfer can be understood as a special case of the
TC algorithm in which the number of clusters 7" is set to
one.

The first key empirical result of this paper is shown in
Figure 3, which compares the accuracy of nearest neighbor
as a function of the number of training examples. Both the
grey and the thin black curve in Figure 3a illustrate nearest
neighbor in the absence of support tasks: The grey curve
shows the generalization accuracy of the equally-weighted
distance metric, and the thin curve shows the generalization
accuracy for the distance metric that is Z-optimal for the
training set. The thick curve depicts the generalization ac-
curacy when transferring knowledge, using the metric thatis
I-optimal distance for all 12 support tasks. As can be seen
from these graphs, the latter approach shows significantly
better results than the other two approaches, particularly in
the early phase of learning. This result illustrates the benefit
of transferring knowledge across tasks.

There are two ways to quantify these results.

1. Relative generalization accuracy. The generalization
error is obtained by averaging the curves in Figure 3a.
The support set- F-optimal distance metric infers an aver-
age classification error of 15.1%, which is only 52.8% of
that of the equally-weighted distance metric, and 63.6%
of the distance metric that is Z-optimal for the training
set.

2. Relative sample complexity. The second quantity mea-

sures the reduction in sample complexity. Figure 3b
shows the result of statistical tests on the generalization
accuracy for the training set--optimal distance metric
versus the support set-/-optimal metric, using differ-
ent numbers of training examples. In the white region,
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Figure 3: Non-selective transfer in task
family 7;. (a) Error as a function of
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Figure 4: Non-selective transfer in task
family 7>. Obviously, unselective trans-
fer increases the need for training data

in 7a.

°o
0% 0 10 20 30 40 °

training examples

E-optimal metric

the training set-optimal distance metric (no transfer) out-
performs the support set-optimal metric (transfer) with
at least 95% confidence. In the large grey region, the
opposite is the case. In between, both methods work
about equally well and their generalization accuracies do
not differ significantly (at the 95% level). Notice that,
on average, the support set-F-optimal distance metric
uses only 55.2% of the number of training examples that
are required when using the training-set optimal met-
ric, and 39.2% of the training examples required for the
equally-weighted metric. Thus, transfer cuts the sample
complexity roughly in half.

To summarize, the generalization error when transferring
knowledge is only 63.6% of that inferred by the best non-
transfer approach, and it requires only 55.2% of the samples
required without transfer. These results apply to task family
Ti.

The positive impact of the knowledge transfer depends
crucially on the fact that the support tasks are sufficiently
related to the testing task. Task family 75, in which the
majority of tasks is unrelated, shows quite the opposite ef-
fect. As can be seen in Figure 4, the F-optimal distance
metric when transferring knowledge non-selectively is in
fact inferior to the best non-transfer approach. When trans-
ferring knowledge unselectively the average generalization
error is 19.7%, which is 9.9% larger than that of the best
non-transfer approach. The sample complexity increases by
18.7% through the (non-selective) transfer of knowledge.
These findings support our claim that unselective transfer

hurts the performance if the tasks are not appropriately re-
lated. As will be shown in the next sections, selectively
transferring knowledge from the right cluster of tasks can
avoid the damaging effects stemming from poorly related
tasks.

3.3 CLUSTERING TASKS

Figure 5 shows a normalized version of the transfer ma-
trix (¢n m) for each task family. Each row depicts how a
particular task n (including the testing task) benefits from
knowledge transferred from task m. White boxes indicate
that the generalization accuracy of task n improves when
the F-optimal distance metric of task m is used instead of
the equally-weighted distance metric. Black boxes indicate
that the opposite is the case, meaning that tasks are “anti-
related.” The size of the box visualizes the magnitude of the
effect.

In task family 7;, most tasks are either related to the
testing task or unrelated, but none of them is notably “anti-
related” (first row in Figure 5a). The diagram for the more
diverse task family 7, shows that some of the tasks, in par-
ticular 2/, 2", and 4", are anti-related to the testing task. In
other words, using their respective F-optimal distance met-
rics will hurt the performance in the testing tasks. However,
Figure 5a also shows that the non-permuted tasks 2, 3, 4, and
6 are indeed well-related to the testing task, showing that
there exists the opportunity for synergy through knowledge
transfer.
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tasks to the testing tasks is also depicted.

3.4 TASK HIERARCHIES

Figures 6-8 depict the task hierarchies for the three task
families. These figures illustrate the second key result of
the empirical study: In all three task families, TC manages
to discover surprisingly meaningful tasks clusters. This is
most apparent in task family 73 (Figure 8). Early on in
Figure 8, starting with 7'=3 clusters, three major clusters
have been found, that split the set of tasks into (a) peo-
ple recognition, (b) determining obstacle proximity, and (c)
landmarks/locations. The latter class (c) is then splitinto one
class containing both door-related tasks, and one containing
the single location-related task. Notice that the informa-
tion of the type of learning task has not been communicated
explicitly to the TC algorithm —itis discovered from the im-
portance of individual input features the different learning
tasks.

Similar results can be found in the hierarchy of
task family 7, (Figure 7). Here the two major task
families that use the same encoding ({2,4,5,6} and
{2/,4',5' 6'}) are grouped together. For example, for
T'=4 partitions TC generates the following task clusters:
{2,4,5,6},{2/,4,5",6'},{2,4",6"},{5"}. When T>4
all three different task types are clustered into separate clus-
ters. When 7=6, TC groups exactly those tasks together
that rely on the same input encoding. Here the clusters are
{2,4,5,6}.{2", 4,5, 6'}, {2"}, {4}, {5"}, and {6" }.

In task family 7; (Figure 6), where the differences be-
tween different tasks are more subtle, it is interesting to note
that the tasks involving the recognition of people form the
most similar subgroup (particularly those involving two dif-
ferent people, c¢f. Figure 5a). When T'>4, those tasks that
involve the recognition of a person (1 to 9) and than those
that do not (10, 11, 12) are always arranged in different
clusters. These findings clearly illustrate the second key re-
sult of this research: TC indeed manages to find meaningful
clusters. In all our experiments, TC discovered the structure
that inherently exists for the different tasks.

3.5 SELECTIVE TRANSFER

Figure 9 shows performance results obtained using the TC
algorithm in task family 7, for 7=3 clusters (thick black
curve in Figure 9a), and when using the entire hierarchy
(grey curve). In both experiments, only one of the clusters,
namely {2,4,5 6}, is appropriately related to the testing
task, i.e., leads to results that are better than those obtained
with the equally-weighted distance function. Across the
board, TC selects the best task cluster considerably often,
hence generalizes well. For example, when 7'=4 and only
two training examples are given in the test task (one exam-
ple of an open door, and one of a closed door), TC picks in
59% of our experiments the correct task cluster {2,4,5,6}.
In 24% of all experiments, however, TC selects task cluster
{5"}, in 9% task cluster {2’,4' /5’ 6'}, and in 8% task clus-
ter {2”, 4" 6""}. The situationchanges as more training data
arrives. With 20 training examples, TC correctly guesses
the best task cluster in 91% of all experiments, and with 32
or more patterns it reliably (100%) identifies the best cluster.
This illustrates that TC, with some error (when training data
is scarce), manages to identify the most relevant tasks.

The performance results obtained in family 7, illustrate
the third key result of the empirical study: Selective trans-
fer is superior to non-selective transfer in situations where
many tasks are unrelated (irrelevant). For example, if T'=3,
TC achieves 14.5% average generalization error in the test
task, if knowledge is transferred selectively from the support
tasks. Relatively speaking, this is only 73.46% of the aver-
age error that is being observed in the non-selective approach
(which is 19.7%, cf. thick curve in Figure 4a), and it is also
considerably close to the best possible distance metric (see
[29]). The relative improvement in the sample complexity
is even more significant: The sample complexity in the test
set is only 58.7% when TC transfers knowledge selectively,
when compared to the non-selective counterpart.

When TC is compared to the best non-transfer approach,
TC with T'=3 uses only 78.5% of the samples to reach the
same level of generalization accuracy, and its generaliza-
tion accuracy is on average 80.8% of that inferred by the



Figure 8: The task hierarchy for task family 73. Despite the small
size of the datasets, TC reliably discovers the different types of
learning problems, as it groups different types of learning problems
into different branches of the hierarchy.

equally-weighted distance metric. These results are remark-
ably close to those that could have been achieved if one knew
in advance which ones of the 12 support sets were appro-
priately related. In our experiments, we observed that the
number of task clusters 7" only weakly impacts the results,
as long as 7>>3. For smaller values of 7", the number of task
clusters is insufficient, and TC’s performance degrades to
that of the regular nearest neighbor with an equally-weighted
distance metric.

Figure 10 shows the results obtained when applying TC
in task family 73. These results basically match the results
obtained for 7; and 7;. The most notable difference here
is that optimizing the distance metric based on the train-
ing set does not lead to an improvement over the equally-
weighted, non-optimized distance metric—a finding which
we attribute to the fact that the input features in’/3 are more
appropriate for image classification tasks (see Section 3.1).
Compared to the equally-weighted distance metric, the rela-
tive generalization accuracy of TC is 73.1% and the relative
sample complexity is 74.3%. Not shown here are results
obtained in task family 77, in which case TC performs ap-
proximately as well as its non-selective counterpart (see
[29D).

4 DISCUSSION

This paper considers situations in which a learner faces an
entire collection of learning tasks. It shows how hierarchical
structure can be discovered in the space of learning tasks,
and how it can be used to selectively transfer knowledge to
other, new learning tasks, in order to boost generalization.
The TC algorithm proposed here employs a nearest neigh-
bor algorithm, which transfers knowledge by adjusting the
distance metric in some tasks while re-using it in others. To
transfer knowledge selectively, TC clusters tasks into bins
of related tasks. Relatedness is defined in the context of
TC’s knowledge transfer mechanisms. When facing a new
learning task, TC determines the most related task cluster
and selectively transfers knowledge form this one cluster
only. In an experimental comparison conducted in a mobile
robot perceptual domain it was shown that

1. If tasks are appropriately related, TC’s transfer mecha-
nisms successfully reduces the sample complexity. For
example, in task family 7; TC consumes only 55.2% of
the training examples that the best non-transfer approach
requires.

2. TC’s clustering mechanisms manages to discover mean-
ingful task clusters and to build hierarchies of tasks. For
example, in task family 73 TC consistently groups tasks
involving people, doors, obstacles, and locations into dif-
ferent bins given that 7'>4 clusters are available. In task
family 7, TC groups the three different task types into
separate clusters.

3. If tasks are not appropriately related, selectively trans-
ferring knowledge from the most related task cluster im-
proves the results significantly. For example, in task
family 7, in which most tasks are not appropriately re-
lated to the testing task, selective transfer requires only
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58.7% of the amount of training data required by the
corresponding non-selective transfer mechanisms.

These results are well in tune with other results obtained in
robot perception, robot control and game playing domains
[26], which illustrate that a lifelong learner can generalize
more accurately from less data if it transfers knowledge
acquired in previous learning tasks.

A key assumption made in the TC approach is the exis-
tence of groups of tasks so that all tasks are related within
each group. Little is known for cases where the class bound-
aries are smoother. In such cases, smoother arbitration
schemes (e.g., weighting the impact of a task cluster in
proportion to ¢, ;) might produce superior results. The
results presented in this paper, however, illustrate that even
hard class boundaries consistently improve the generaliza-
tion accuracy. Hard boundaries have the advantage that the
cluster-optimal distance metric can be computed off-line,
before the arrival of a new learning tasks, which makes TC
very fast in practice.

One of the main potential limitations of TC arises from
the fact that task clustering is based on pairwise compar-
isons. TC will not capture effects of transfer that arise if
only three or more tasks are involved. It remains to be seen
whether pairwise comparisons will prevent TC from finding
useful clusters in different application domains. However,
a full evaluation of transfer in all subsets of tasks requires
time exponentially in the number of tasks N, whereas TC
time requirements are quadratic. It even appears feasible to
design incremental strategies whose time requirements are

in O(NT'), which will be more efficient than the current
implementation of TC if 7" is small.

A third limitation of the current implementation arises
from the fact that the space of all partitions is searched ex-
haustively (which can only be done when the overall number
of tasks is sufficiently small, which was the case in our ex-
periments). Clearly, the complexity of exhaustive search
prohibits global optimization for large values of N and 7.
However, we do not view this as a principal limitation of the
TC algorithm, since heuristic and/or stochastic optimiza-
tion methods are certainly applicable [7]. If learning tasks
arrive one after another, task clusters may also be learned
incrementally, by determining cluster membership when a
task arrives. Little is known concerning how much the re-
sults presented here depend on the fact that the partitioning
always represents the global minimum of J.

The reader may notice that the general scheme underly-
ing the TC approach may be applicable to other approaches
that transfer knowledge across multiple learning tasks, such
as those surveyed in [26] (see also Section 1). Many of
these approaches can learn and transfer more than just a
global weighting vector. Of course, for some approaches
this will be computationally infeasible, since the general
scheme underlying the TC algorithm requires in the order
of N2 comparisons, each involving repeated experiments
with transfer across tasks. The key difference of the TC ap-
proach to previous approaches lies in TC’s ability to transfer
knowledge selectively. Rather than weighting all previous
learning tasks equally when learning bias for a new one,



TC structures the space of learning tasks and reasons about
their relatedness. In the light of the experimental findings,
we conjecture that the TC approach scales much better ap-
plication domains in which there are many diverse tasks to
be learned, i.e., domains in which the learning tasks are not
all just of a single type.
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