
 
 

  

Abstract—In Liquid State Machines, separation is a critical 
attribute of the liquid—which is traditionally not trained.  The 
effects of using Hebbian learning in the liquid to improve 
separation are investigated in this paper.  When presented with 
random input, Hebbian learning does not dramatically change 
separation.  However, Hebbian learning does improve 
separation when presented with real-world speech data. 

I. INTRODUCTION 
PIKING recurrent neural networks (neural microcircuits) 
have powerful representational power due to the 

complex time dimension of the network.  Spiking neurons 
closely emulate biological neurons by transmitting signals in 
the form of spike trains where each spike has constant 
amplitude.  Information is encoded in the varying 
frequencies of spikes produced by the neurons rather than 
the single rate value commonly used in non-spiking 
networks [1].  Spiking neural networks can convey temporal 
information more accurately by maintaining non-uniform 
spiking frequencies.  In addition, the recurrent property of 
neural microcircuits allows for input acquired previously in 
time to change how later input affects the network.  
Unfortunately, the additional computational abilities of the 
network result in more variables which complicate the 
training of the network.  The recurrent properties of neural 
microcircuits further obscure the networks so that only very 
simple neural microcircuits have been successfully trained. 
 

In an attempt to exploit the power of very complex neural 
microcircuits, the liquid state machine (LSM) [2][3], was 
invented.  The liquid state machine consists of two major 
components: the liquid and the reading function.  An input 
signal (Fig. 1a) is introduced into the liquid in the form of 
spike trains (Fig. 1b).  This instigates a pattern of spikes 
throughout the neurons in the liquid (Fig. 1c) which is 
allowed to persist for a set duration.  In this paper the 
duration is always the length of the input spike train.  The 
spiking neurons are recorded as a state vector (Fig. 1d) at set 
intervals determined by a sampling rate.  Each of these state 
vectors can be thought of as a snap shot of the current state 
of the liquid.  Once the state vector(s) have been collected, 
they are passed as input to the reading function (Fig. 1e) 
which performs the task of classifying the input. [4] 
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Intuitively, the liquid state machine can be compared to 
electroencephalography in which a device measures brain 
activity and creates EEGs (electroencephalograms) that 
contain information about the state of the brain.  This 
information can provide insight into how the brain interprets 
any sensory stimulus it may have been experiencing at the 
time the EEG was recorded.  In this example, the input into 
the liquid is the sensory stimulus that the brain is exposed to.  
The liquid is the brain itself and the EEGs represent the state 
vectors.  The reading function is the human or machine that 
interprets the EEGs. 

 
The LSM is, in effect, an attempt to avoid the necessity of 

training a neural microcircuit.  Rather, a random neural 
microcircuit is created in order to change a complex 
temporal input space into the spatial domain that traditional 
learning algorithms perform well on.  This paper investigates 
the possibility of actually training the liquid through the use 
of Hebbian learning in an attempt to create structure in the 
liquid that will allow for a more effective mapping of the 
input from the temporal to the spatial domain.  Because of 
the unsupervised nature of Hebbian learning, the effects of 
both random and non-random input on the Hebbian-trainable 
liquid (Hebbian liquid) are explored in this paper.  Section 
II.A contains a description of how Hebbian Learning is used 
to mold the neural microcircuit in this paper.  Section II.B 
defines a method of measuring the effectiveness of neural 
microcircuits used as liquids for LSMs.  Section III reports 
on two experiments: the effects of random and non-random 
input on liquid structure.  Finally a discussion of the results 
is presented in section IV.  

II. METHODS 

A. Hebbian Learning and STDP Synapses 
Hebbian learning is often implemented in neural 

microcircuits with STDP synapses (spike-time-dependant 
plasticity synapses).  As with other spiking synapses there is 
a weight and time delay associated with the synapse.  In 
addition, the STDP synapse has several other parameters that 
are related to how its weight changes as its pre- and post-
synaptic neurons fire [3].  The synapse’s weight changes in  
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proportion to the temporal correlation between the pre- and 
post-synaptic neurons.  If the pre-synaptic neuron fires first, 
then the weight is increased; if the post-synaptic neuron fires 
first then the weight is decreased.  In this way, synapses that 
participate in a neuron’s breach of threshold (resulting in a 
spike) are strengthened while those that don’t are weakened 
[1].  We will refer to an LSM that uses STDP synapses as a 
Hebbian Liquid State Machine (HLSM). 

B. Separation 
The effectiveness of an LSM is a function of two 

qualities: the approximation and the separation of the LSM.  
Approximation refers to the reading function’s ability to 
classify the state vectors acquired from the liquid.  
Separation refers to “the amount of separation between 
trajectories of internal states of the system that are caused by 
two different input streams” [5]; or in other words, the 
ability of the liquid to produce discernibly different patterns 
when given different classes of inputs.  Since any machine 
learning algorithm can be used for the reading function, this 
paper focuses on improving the separation attribute of the 
LSM. 

 
In order to measure the separation of a liquid we use the 

following definition presented first by Goodman [6]: 
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where Ψ  is a neural microcircuit (or liquid), O is a set of 
state vectors, and N is the total number of output classes 
represented by O.  O is divided into N subsets each of which 
contains all elements of O belonging to a common output 
class.  The center of mass, mC  for each subset is calculated 
as follows: 
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The Euclidean distance between every pair wise 
combination of center of mass vectors is determined.  Each 
center of mass is the estimate of the representative state 
vector for each output class.  The ideal liquid would separate 
the state vectors for each output class into distinct clusters 
within the vector space.  Goodman's research indicates that 
there is a positive correlation between this separation 
measure and the accuracy of the LSM [6]. 

 
There are certain negative behaviors common in LSMs 

that can significantly decrease their separation.  These 
behaviors are termed pathological synchrony and over-
stratification.  Pathological synchrony occurs when most of 
the neurons in the liquid get caught in infinite positive 
feedback loops with respect to their firing.  These infinite 
loops continuously influence the state of the liquid 
overriding the flow of information from the input.  In 
extreme cases the entire liquid can begin firing continuously 
in synchrony (see Fig. 2).  Such liquids have low separation 
because of the loss of pattern associated with such crowded 
spiking.  

 
The opposite extreme is over-stratification—when groups 

of neurons do not propagate a series of spikes induced by an 
input spike long enough.  In these cases, input spikes do not 
influence each other within the liquid, thus resulting in a loss 
of temporal coherency that can be represented by the liquid 
(see Fig. 3).  Since both of these features are detrimental to 
the effectiveness of LSMs, this study emphasizes 
eliminating them. 

III. RESULTS 
Two experiments were performed in order to observe how 

Hebbian learning affects the structure and separation of 
liquids.  Random input was introduced into the liquid for the 
first experiment while speech data was used as input for the 
second experiment.  Also, Hebbian learning was compared 

Fig. 1   Diagram of a liquid state machine.  (a, b) The input signal is transformed into a series of spikes via some function.  
(c) The spike train is introduced into the neural microcircuit, or “liquid”.  (d)  Snapshots of the state of the “liquid” are 
recorded in state vectors.  (e) The state vectors are used as input to train a learning algorithm, the reading function. 



 
 

to random weight updates in the first experiment. 

A. Effects of Random Input on HLSMs 
For this experiment, the effect of a single channel of 

random input on an HLSM’s separation was tested in order 
to better understand the dynamics of the HLSM architecture.  
Two initial liquid states were explored, a pathological 
synchrony state and an over-stratification state.  These initial 
states were selected in order to observe how Hebbian 
Learning could potentially recover from them.  For each 
initial state, actual Hebbian learning versus random weight 
updates were compared.  Each of these four experiments 
employed 100 iterations of training of the liquid.  This 
training was either Hebbian learning or random weight 
update.  For each iteration of training the separation of the 
liquid was determined with a set of state vectors, O, of size 
100.  Each state vector in O was created by introducing a 
randomly generated train of 25 spikes over a 1.0 second time 
interval, d, as input into the liquid.  The state vector was 
measured at time d with ε = 1.0 ms.  Since the input was 
random, each state vector belonged to a unique output class.  
Thus, for this experiment ON =  (see section II.B above). 

 
Each liquid was prepared with 135 neurons to be 

comparable to previous research [7]. The input was encoded 
as a spike train from a single input neuron.  Future research 
will expand the number of input neurons used.  The 
remainder of the settings were chosen based on a series of 
preliminary experiments and reflect the best results obtained 
in those trials.  The connection probability from the input 
neuron to the other inter-neurons was 0.1 while the 
probability of connection between the inter-neurons was 
0.05.  The mean delay for the synapses of the liquid was 10 
ms with a standard deviation of 1 ms.    For the liquids 
initiated in a pathological synchrony state, the mean weight 
value for synapses was set at 7101 −× while the mean weight 
value in liquids initiated in an over-stratification state 
was 8108 −× .  The standard deviation of weight values for 
both initial states was 8101 −× . 

 
For the Hebbian learning, all STDP Synapse settings were 

selected based on preliminary experiments.  The maximum 
weight value allowed for all synapses in both Hebbian 
learning and random weight update experiments was 5101 −× .  
Each training of the liquid involved introducing a randomly 
generated train of 25 spikes over a 1.0 second time interval.  
This is identical to when separation data is collected except 
that the weights are now allowed to change in accordance 
with the STDP synapse rules outlined earlier. 

 
For random weight updates, each synapse’s weight was 

updated by a value drawn from a normal distribution with a 
mean of 8108742.2 −×−  and a standard deviation of  
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7105726.1 −× .  This mean and standard deviation were 

obtained by calculating and averaging the mean and standard 
deviation of weight changes in ten preliminary runs through 
unique liquids using Hebbian Learning.  Thus, the values, 
though random, represent reasonable changes in weight for 
the liquids in this study. 
  

The results of the above experiment are seen in Figure 4.  
For each of the four experiments, the average separation of 
ten unique liquids is displayed.  The Hebbian learning trials 
don’t show a significant change in separation while the 
random weight update trials drop steadily in separation after 
only ten iterations. 

 

Fig.3   Over-Stratification. The x-axis is time from 
zero to one seconds. The y-axis contains neuron 
identification numbers. Dots indicate spikes

Fig. 2  Pathological Synchrony.  This occurs when most of 
the neurons in the liquid get caught in infinite positive 
feedback loops with respect to their firing.  Dots indicate the 
presence of a spike. 
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Figure 5 demonstrates how the physical structure of the 

liquid changes with training.  The images show how the 
synapses (lines) connect to each of the neurons (dots).  The 
brighter the synapse, the stronger the magnitude of the 
weight.  We don’t differentiate between positive and 
negative weights.  Black synapses have effectively zero 
weight.  When stimulated with random input, Hebbian 
learning eliminates many of the synapses while 
strengthening those that remain.  Random weight updates, 
on the other hand, results in overall significantly 
strengthened synapses after random stimulation. 

 
Figures 6 and 7 demonstrate how the spiking patterns of 

each experiment change with training.  For each graph, the 
x-axis represents time in seconds and the y-axis the neuron 
ID number (there are 135 total).  Hebbian learning relieves 
the state of pathological synchrony as seen in the reduction 
of firing (Fig. 6).  It also overcomes over-stratification by 
generating denser firing patterns.  Random weight updates 
results in over-stratification regardless of the initial state 
(Fig. 7).  This seems unusual since the synapses are much 
stronger according to the results in Figure 5.  This occurs 
because most of the synapses become strongly inhibitory 
due to the mean negative weight update. 

B. Effects of Non-Random input on HLSMs 
For this experiment, the effects of non-random input on an 

HLSM’s separation were tested in order to predict how the 
HLSM may behave as a complete machine learning 
architecture.  The input for this experiment was a selection 
of 3519 training files from the TIDIGIT dataset [8].  These 
files consist of different people speaking single digits: one 
through nine, and zero and ‘oh’ (both for 0).  To convert the 
files into spike trains, all silence was removed from the 
sound files, and they were converted into thirteen Mel 

frequency cepstral coefficients (mfcc) as is common in 
speech applications [9].  The frame size for the Fourier 
transform was 256 bytes with a frame step of 128 bytes.  
Thirteen input neurons were used, one for each of the 
thirteen mfcc's.  The firing rate of each of these neurons was 
determined with the following equation taken from [6]: 
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where Ω  represents the largest frequency for a given mfcc, 
ω  represents the smallest frequency, and t is the time 
interval of a given firing rate, determined by the frame step. 
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Fig. 4  Separation values for four experiments given 
completely random input.  Separation values are the mean 
reported by ten trials each with a different initial liquid.  The 
Hebbian learning trials don’t show a significant change in 
separation while the random weight update trials show a 
steady drop in separation after only ten iterations. 

Fig. 5  The physical characteristics of the liquid can be seen 
before and after training.  Bright colors indicate strong weights 
(either negative or positive), dark colors indicate weak weights. 
Top: Hebbian learning eliminates many of the synapses while 
strengthening those that remain.  Bottom: Random weight 
updates results in overall significantly strengthened synapses 
after random stimulation. 

Fig. 6  Spiking patterns in liquids trained with Hebbian 
learning.  Top: the pathological synchrony state of the liquid 
is somewhat relieved by Hebbian learning—there are fewer 
neurons firing continuously and less dense patterns of firing.  
Bottom: Over-stratification is clearly relieved by iteration 100 
through the Hebbian process. 
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The separation of the liquid was calculated before and 
after 1000 iterations of training on the TIDIGIT training 
dataset.  The training dataset contained 3519 files, 1000 of 
which were randomly selected to train the liquid.  To 
calculate separation, a set of state vectors, O, of size 100 was 
used as in the previous experiment.  In this case each state 
vector of O was created by introducing one of 3519 
randomly selected test files from the TIDIGIT testing dataset 
as input into the liquid.  This test data was different from the 
training data but was prepared for the HLSM in the same 
fashion.  Each file had a unique time interval, d.  The state 
vector was measured at time d for each file with ε = 1.0 ms.  
In order to allow for an exhaustive permutation correlation 
test, the 100 test samples chosen before and after the training 
were identical. 

 
This experiment was run ten times on different liquids 

with the results indicated in Figure 8.  The average 
improvement in separation for all ten trials was 0.064 and is 
statistically significant with a p-value of <0.001.  This p-
value was calculated by finding the average difference in 
separation for every permutation of differences for the 10 
trials.  A single permutation consisted of swapping the order 
of the difference calculation (pre-training - post-training 
rather than post-training - pre-training) for a single trial.  The 
number of permutations with averages greater than 0.064 
was tabulated and divided by the total number of 
permutations, 1024, to yield the given p-value. Unsupervised 
Hebbian learning can improve the separation of the liquid 
indicating a strong likelihood that the organization of the 
liquid has become a more effective component for learning. 

IV. DISCUSSION 
The experiment introducing random inputs into the liquid 

showed that given ideal initial liquids, Hebbian learning 

cannot improve separation with random input.  However, it 
showed that given poor initial conditions it can improve 
performance.  It also showed that even under the fabricated 
random input scenario, Hebbian learning does more than 
simply randomly update weights.  The experiment 
introducing speech data into the liquid showed that Hebbian 
learning can improve separation in the liquid given non-
random input. 

A. Random Input Experiments 
In the experiments initiated in a pathological synchronous 

state, both random update and Hebbian learning improved 
the separation of the liquids dramatically after only a single 
iteration of training.  In fact, in the initial pathological state, 
the separation was zero in all trials.  This dramatic 
improvement can best be explained by the assumption that 
arbitrary pruning of synapses reduces the number of infinite 
loops in the liquid.  This also concurs with previous findings 
that investigated the reduction of neuron inter-connections to 
reduce synchronous firing [6]. 

 
Other than the initial improvement in pathological states, 

Hebbian learning doesn’t improve the separation of the 
liquid over successive iterations of training.  Also, the 
amount of separation at each level of training fluctuates 
greatly.  The overall lack of improvement is likely due to the 
fact that the input for the training is entirely random—the 
input is effectively noise.  While it is clear that the 
effectiveness of the liquid is not lessened by this noise, there 
is no useful structure in the data.  

 
In the experiments using random weight update training, 

after the initial increase in separation, we see a steady 
decline in separation, until it levels off close to zero.  The 
change in spiking patterns indicate that the patterns become 
over-stratified (see Fig. 7) explaining the poor results.  The 
primary benefit of these random weight update experiments 
is that through comparison, we can see that Hebbian 
Learning performs a role beyond random weight changing, 
even when confronted with nothing but noise. 

  

B. Non-random Experiments 
Fig. 9 and 10 show how the physical structure of the 

liquid changes with non-random input from a speech 
recognition task.  Notably, very little does change in 
comparison to the experiments with random input.  The 
noticeable change is that a few connections are greatly 
strengthened.  These figures were representative of all ten 
trials.  More interesting was the improvement in separation 
noted after Hebbian learning took place, demonstrating that 
unsupervised learning can improve separation in complex 
neural microcircuits.  The new question raised is whether or 
not the improvement comes at a lower cost than simply 
creating an effective liquid to begin with.  The effectiveness 
of the original liquid is a product of all of the  

Fig. 7  Spiking patterns in liquids trained with 
random weight updates.  Random updates to synapse 
weights results in over-stratification over time 
regardless of the initial state of the liquid. 
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parameters used to create it, including mean weight, 
probability of inter-neuron connections, mean delay values, 
etc.  Separation values for the pre-training liquids ranged 
from 2.09 to 2.70, a much greater difference than the 
average difference between pre- and post-training 
separation.  Also, the effectiveness of the Hebbian learning 
is sensitive to initial parameter settings (with different 
settings for the parameters used in the Hebbian learning, the 
post-training liquids actually resulted in lower separation).  
It is unclear whether discovering the ideal settings for 
Hebbian learning is less difficult then the effort required 
discovering the ideal settings for the initial liquid.  It is also 
uncertain whether Hebbian learning or any other post-
parameter-setting adjustments provide a gain in separation 
that is not available in the parameter setting stage.  Future 
work will investigate the possibility of separation gain 
exclusive to learning in the liquid. 

 
Other possible avenues for further research include 

experimenting with different (liquid) training algorithms (e.g 
some variant of back-propagation through time [10] or 
reinforcement learning) and exploring theoretical bounds for 
separation.  Preliminary studies indicate that the separation 
values presented in this paper are low compared to the ideal 
separation, given the values of |O| and |N| used here. 
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Fig. 10  The network connections of a liquid after 1000 
iterations of training on the TIDIGIT dataset using 
Hebbian learning.  Note that there are several bright 
connections that were not present prior to training 
corresponding to synapses strengthened by Hebbian 
learning.   

Fig. 9  The network connections of a liquid prior to 
training with Hebbian learning.  The brighter the color of 
the connection, the stronger the weight of the synapse.  

Fig. 8  Average separation in liquid before 
and after training on the TIDIGIT dataset. 


