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Abstract

We try to give a helpful concrete example that demonstrates how to
use PCA, LLE and Isomap, attempts to provide some intuition as to how
and why they work, and compares and contrasts the three techniques.

1 Introduction

Suppose we are given the following data points in <2 (see Figure 1):{(
−20
−8

)
,

(
−10
−1

)
,

(
0
0

)
,

(
10
1

)
,

(
20
8

)}
These points all live on a nonlinear 1D manifold described by the equation

f(x) = (x/10)3. We would like to represent this data in <1. What mapping
is appropriate? PCA, LLE and Isomap all have something slightly different to
say, and we will try to see how they compare by using this simple example.

Figure 1: Sample data points on the manifold defined by f(x) = (x/10)3
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2 PCA

We begin by computing the covariance matrix (note that in general we would
have to preprocess the data by subtracting out the mean, but in this clever
example the mean is zero),

C =
(

200 68
68 26

)
Next, we calculate the eigenvectors and eigenvalues of the covariance matrix.
How do we do this, you might ask – MATLAB or some other math package
will do it nicely (note that I am making liberal use of rounding throughout this
example):

Eigenvalues: 223 and 2.6

Eigenvectors:
(

0.95
0.33

)
and

(
0.33
−0.95

)
Notice that one eigenvalue is much larger than the other, indicating a sig-

nificant difference in the variance in the two derived dimensions. Even though
this data is non-linear, we can get a pretty decent linear fit in 1D and the best
single linear axis for the data is represented by the eigenvector associated with
the large eigenvalue (see Figure 2).

Remember, if we think of the covariance matrix as an operator, the eigen-
vectors of that operator define the basis – if we limit ourselves to thinking about
unit vectors, they are the axes that are invariant under the application of the
operator. So, our new major (and only since we are going to 1D) axis is defined
by the first eigenvector above and we transform our data into the new (1D)
coordinate system by taking the dot product of this eigenvector with our data
vectors: (

0.95 0.33
) (

−20
−8

)
= (−21.64)

(
0.95 0.33

) (
−10
−1

)
= (−9.83)

(
0.95 0.33

) (
0
0

)
= (0)

(
0.95 0.33

) (
10
1

)
= (9.83)

(
0.95 0.33

) (
20
8

)
= (21.64)
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Figure 2: Major axis discovered by PCA

3 Isomap

Isomap uses the same basic idea as PCA, the difference being that linearity is
only preserved locally (via small neighborhoods). The global geometry of the
discovered axes are nonlinear because of the fact that these small neighbor-
hoods are stitched together without trying to maintain linearity. The result is
a nonlinear axis or axes that define a manifold. The steps of the algorithm are
basically

1. define neighbors for each data point

2. find interpoint distances (graph represented as a matrix M)

3. find eigenvectors of M

In PCA we try to preserve covariance. Here we try to do the same thing in
a nonlinear way and our approach is to try to preserve interpoint distance on
the manifold. The matrix M acts just as the matrix C in PCA. In fact, it is
really the same thing in a higher dimensional space. M can actually be thought
of as the covariance matrix for the space whose dimensions are defined by the
data points (if we have N data points, M is an N × N matrix). Since in this
N -dimensional space, the dimensions are the datapoints, the covariance for a
particular pair of dimensions is simply the distance between the datapoints that
define those dimensions. Pretty much everything we do here is linear, just as
it is in PCA. The source of the nonlinearity is the way in which we calculate
our interpoint distances. We do not, in general use the Euclidean distances
between the points. Rather, we use those distances only for points considered
neighbors. The rest of interpoint distances are calculated by finding the shortest
path through the graph on the manifold.

Starting with the original data points as shown in Figure 1 and setting the
number of neighbors K = 2, we can begin to calculate the matrix M . Here
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we have filled in only the actual Euclidean distances of neighbors (we index the
matrix with the data in Figure 1 from left to right and rows represent data
points and columns represent neighbors):

Mneighbors =


0 12.21 21.54 ? ?

12.21 0 10.05 ? ?
? 10.05 0 10.05 ?
? ? 10.05 0 12.21
? ? 21.54 12.21 0


Next, we can fill in the remaining entries in M using Floyd’s algorithm:

MFloyd =


0 12.21 21.54 31.59 43.8

12.21 0 10.05 20.1 32.31
22.26 10.05 0 10.05 22.26
32.31 20.1 10.05 0 12.21
43.8 31.59 21.54 12.21 0


Notice that M is not quite symmetric. Can you see why? Now, we lied

just a little in step 3 above – we don’t actually calculate the eigenvectors of
M . What we do instead is calculate the eigenvectors of τ(M), where τ(M) =
−HSH/2 and Sij = (Mij)2 (that is, S is the matrix of squared distances) and
Hij = δij − 1/N . (Recall that N is the number of data points and δ is the
Krönecker delta function). I believe the point of the τ operator is analogous to
subtracting the mean in the PCA case. So,

τ(MFloyd) =


480.6 210.7 0.987 −213.8 −478.5
223 102 −0.658 −100 −224.4
−0.709 1 −0.658 1 −0.709
−224.4 −100 −0.658 102 223
−478.5 −213.8 0.987 210.7 480.6


Now, remember, this is just like the covariance matrix C in the PCA ex-

ample. What we have done is taken 2D data and “exploded” it into 5D. This
interpoint distance matrix is the covariance matrix for the 5D space. So, we
now find the eigenvectors and eigenvalues for τ(M):

Eigenvalues: 1157 3.5 3.3 0.5 −0.02

Eigenvectors:


−0.64
−0.3

0
0.3
0.64



−0.66
0.28
0.37
0.28
−0.66



−0.29
0.65

0
−0.65
0.29



−0.95
−0.56
0.17
−0.56
−0.95



−0.08
−0.33
−0.88
−0.33
−0.08


Just as in the PCA example, the first eigenvalue dominates the others,

though in this case, the difference in even greater. Why? Our final step is
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to transform our original data into the new coordinate system defined by the
major eigenvector. Let us re-emphasize that this new axis is linear in the 5D
space but is nonlinear in the way it preserves interpoint distances in the lower
dimensional space that we are really interested in. Because of this high dime-
sional/low dimensional game we are playing, the data transformation is a little
murkier than it was for PCA. We have a 5D eigenvector but we need a trans-
form for 2D datapoints. The trick is, and I quote from the paper, “Let λp be
the p-th eigenvalue (in decreasing order) of the matrix τ(DG), and vi

p be the
i-th component of the p-th eigenvector. Then set the p-th component of the
d-dimensional coordinate vector yi equal to

√
λpv

i
p.”

We can rephrase this in terms of our example, for which we are only in-
terested in the largest eigenvalue – Let λ1 be the 1-st eigenvalue (in decreasing
order) of the matrix τ(M), and vi

1 be the i-th component of the 1-st eigenvector.
Then set the 1-st component of the 1-dimensional coordinate vector yi equal
to
√
λ1v

i
1. Here, i ranges from 1 to 5 because there are 5 components to the

eigenvector because there are 5 data points. So, our transformed data points
are (

−20
−8

)
⇒ (−21.77)

(
−10
−1

)
⇒ (−10.2)

(
0
0

)
⇒ (0)

(
10
1

)
⇒ (10.2)

(
20
8

)
⇒ (21.77)

Since the stated goal of Isomap is to preserve geodesic distances rather than
Euclidean distances, let’s end this section by comparing the original geodesic
and Euclidean distances in 2D with the interpoint distances of the final 1D
data. Here are the original Euclidean distances:

DEuclidean =


0 12.21 21.54 31.32 43.08

12.21 0 10.05 20.1 31.32
21.54 10.05 0 10.05 21.54
31.32 20.1 10.05 0 12.21
43.08 31.32 21.54 12.21 0


Here are the original geodesic distances (calculated by moving along the gross

approximation of the manifold given the five points and linear interpolation
between them):
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Dgeodesic =


0 12.21 22.26 31.32 43.53

12.21 0 10.05 20.1 31.32
22.26 10.05 0 10.05 22.26
31.32 20.1 10.05 0 12.21
43.53 31.32 22.26 12.21 0


Now, here are the interpoint distances for newly transformed data:

Dnew =


0 11.57 21.77 31.97 43.54

11.57 0 10.2 20.4 31.97
21.77 10.2 0 10.2 21.77
31.97 20.4 10.2 0 11.57
43.54 31.97 21.77 11.57 0


To emphasize the point, let’s look at the L2 matrix norm

√
Σi,jA2

ij of the
difference between the Euclidean distance matrix and the new distance matrix

E1 = ‖DEuclidean −Dnew‖L2 = 2.05

and the L2 matrix norm of the difference between the geodesic distance matrix
and the new distance matrix

E2 = ‖Dgeodesic −Dnew‖L2 = 2.14

Hmmm. If we are really preserving geodesic distance rather than Euclidean, we
should expect E1 > E2, but that is not what we find. Can you figure out why?

4 LLE

Locally Linear Embedding (LLE) does the same basic thing as Isomap – it
finds a nonlinear manifold by stitching together small linear neighborhoods.
The difference between the two algorithms is in how they do the stitching. As
we saw in the previous section, Isomap does this by doing a graph traversal.
In contrast, LLE does it by finding a set of weights that perform local linear
interpolations that closely approximate the data. This time the steps are

1. define neighbors for each data point

2. find weights that allow neighbors to interpolate original data accurately
(represented as a matrix W )

3. given those weights, find new data points that minimize interpolation error
in lower dimensional space

We again consider the data of Figure 1 and again set the number of neighbors
K = 2. We must find a weight matrix W that minimizes the cost function

ε(W ) =
∑

i

∣∣∣ ~Xi − ΣjWij
~Xj

∣∣∣2
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subject to the constraints that Wij = 0 if ~Xj is not a neighbor of ~Xi and
that the rows of the weight matrix sum to one: ΣjWij = 1. These constraints
are reasonable and guarantee some nice invariance properties that make W
useful for mapping into a lower dimensional space. In general finding the ma-
trix W involves solving a least-squares problem, and there is not much detail
in the paper about how to do that; however, there is more detail available
at http://www.cs.toronto.edu/ roweis/lle/algorithm.html. Following the recipe
there results in the following weight matrix:

W =


0 2.06 −1.06 0 0

0.448 0 0.552 0 0
0 0.5 0 0.5 0
0 0 0.552 0 0.448
0 0 −1.06 2.06 0


If you really try this, you will discover that following the recipe given for

calculating the weights results in a singular covariance matrix for row three
– there are an infinite number of solutions. Given our particular data and
constraints, it is clear that the weights we want are 0.5 and 0.5 (but I would like
something better than that). Figure 3 shows the reconstructed points (using
W ) compared with the original data.

So, now we have completed steps 1 and 2 and all we have left to do is step
3. Since our original data is 2D and we are interested in moving to 1D, step 3
involves finding points in <1 that minimize the embedding cost function

Φ(Y ) =
∑

i

∣∣∣~Yi − ΣjWij
~Yj

∣∣∣2
Once again this is done by solving an eigenvalue problem. In fact, this

is quite intuitive here, if we realize that W supposedly preserves important
local geometry independent of what dimensional space we work in. So, what

Figure 3: LLE reconstruction for K=2 compared with original data
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we are looking for is a vector ~V of data points (each one being one of the d-
dimensional vectors ~Yi) such that ~V = W~V , or in other words we are looking
for a set of points in d-dimensional space that don’t move when W is applied,
or in other words a set of points that are all perfectly reconstructed by their
neighbors and W , or in other words a set of points that perfectly fit the local
geometry described by W . In any case, we have to find these points by solving
for eigenvectors again, and it would be extra intuitive if we could use W . Of
course, that would be a little too intuitive, and we have to do some processing
to W first, analogous to what we did to M with τ() in the Isomap example.
Digging through the notes of the paper, or visiting the website above will reveal
that the way to do this is to compute the matrix M = (I −W )T (I −W ) [where
I is the appropriately sized identity matrix] and then find its eigenvectors and
eigenvalues. So,

M =


1.2007 −2.508 1.3073 0 0
−2.508 5.4936 −3.2356 0.25 0
1.3073 −3.2356 3.85661 −3.2356 1.3073

0 0.25 −3.2356 5.4936 −2.508
0 0 1.3073 −2.508 1.2007


Eigenvalues: 0 0.00092 0.28836 6.44338 10.5125

Eigenvectors:


−0.447214
−0.447214
−0.447214
−0.447214
−0.447214




0.637875
0.305148

0.0
−0.305148
−0.637875



−0.449742
0.166066
0.667352
0.166066
−0.449742




0.305148
−0.637875

0
0.637875
−0.305148




0.224182
−0.521941
0.595517
−0.521941
0.224182


This time we are looking for small eigenvalues, rather than large, and we

discard the smallest one (which will always be 0 with an accompanying eigen-
vector whose components are all equal). We take the d next smallest and use
them as the d dimensions of our transformed data (the smallest gives the first
dimension for each of our points, the next smallest the second dimension for
each point, etc.) Since we are moving to 1D, we will use only the (second)
smallest eigenvalue/vector. Both the paper and the website imply that having
found the eigenvector(s) you already have the transformed data, but that isn’t
exactly true. In fact, you have to divide each eigenvector by the square root of
its eigenvalue to get the magnitudes correct (it took me a long time to figure
this out, and I have sent a note to Sam Roweis seeking confirmation). In this
particular case, since the phase of the discarded eigenvector is −1, we also have
to multiply all our eigenvectors by −1 to make the signs all work out correctly.
Doing both of these things gives us our final transformation:
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(
−20
−8

)
⇒ (−21.03)

(
−10
−1

)
⇒ (−10.06)

(
0
0

)
⇒ (0)

(
10
1

)
⇒ (10.06)

(
20
8

)
⇒ (21.03)

The big win for LLE, supposedly, is that even though it requires solving an
N × N eigenvalue problem just like Isomap does, the matrix for LLE is very
sparse (because many weights are 0), whereas the matrix for Isomap has 0s only
down the diagonal.

Some annoying unanswered questions for LLE:

1. Is the intuition for eigenvectors here right? In this example WV 6= V so
it is not a perfect fit anyway.

2. *Why are we using smallest eigenvectors this time?

5 Conclusion

As a final note, in these examples, we assumed a target d for the number of
dimensions to which we wanted to reduce. These algorithms can somewhat
automatically discover the best d. PCA and Isomap do this in an iterative
fashion, trying increasing values for d and computing some sort of residual
variance. Plotting this residual against d will allow us to find an inflection point
that indicates a good value for d. LLE estimates d by analyzing a reciprocal
cost function in which reconstruction weights derived from the lower dimensional
data are applied to the original high dimensional data (again, we would iterate
on d).
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