
Computational Discovery in Pure Mathematics

Simon Colton

Department of Computing
Imperial College
180 Queens Gate
London SW7 2BZ
United Kingdom
sgc@doc.ic.ac.uk

http://www.doc.ic.ac.uk/~sgc

Abstract. We discuss what constitutes knowledge in pure mathemat-
ics and how new advances are made and communicated. We describe
the impact of computer algebra systems, automated theorem provers,
programs designed to generate examples, mathematical databases, and
theory formation programs on the body of knowledge in pure mathemat-
ics. We discuss to what extent the output from certain programs can be
considered a discovery in pure mathematics. This enables us to assess
the state of the art with respect to Newell and Simon’s prediction that a
computer would discover and prove an important mathematical theorem.

1 Introduction

In a seminal paper predicting future successes of artificial intelligence and oper-
ational research, Alan Newell and Herbert Simon suggested that:

‘Within ten years a digital computer will discover and prove an important
mathematical theorem.’ (Simon & Newell, 1958)

As theorem proving involves the discovery of a proof, their predictions are about
automated discovery in mathematics. In this chapter, we explore what consti-
tutes knowledge in pure mathematics and therefore what constitutes a discovery.
We look at how automated techniques fit into this picture: which computational
processes have led to new knowledge and to what extent the computer can be
said to have discovered that knowledge.

To address the state of the art in automated mathematical discovery, we first
look at what constitutes mathematical knowledge, so that we can determine the
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ways in which a discovery can add to this knowledge. We discuss these issues in
Section 2. In Sections 3 to 7, we look at five broad areas where computational
techniques have been used to facilitate mathematical discovery. In particular,
we assess the contributions to mathematical knowledge from computer algebra
systems, automated theorem provers, programs written to generate examples,
mathematical databases, and programs designed to form mathematical theories.

We then return to Newell and Simon’s prediction and consider whether impor-
tant discoveries in mathematics have been made by computer yet. We conclude
that no theorem accepted as important by the mathematical community has
been both discovered and proved by a computer, but that there have been dis-
coveries of important conjectures and proofs of well known results by computer.
Furthermore, some systems have both discovered and proved results which could
potentially be important. We further conclude that, with the ubiquitous use of
computers by mathematicians and an increasing dependence on computer alge-
bra systems, many important results in pure mathematics are facilitated – if not
autonomously discovered – by computer. We then discuss possibilities for the
use of other software packages in the mathematical discovery process.

1.1 Scope of the Survey

We restrict our investigation to pure mathematics, to avoid discussion of any
application of the mathematics discovered. For instance, a program might invent
an algorithm, which when implemented, leads to a better design for an aircraft
wing. From our point of view, the algorithm is the discovery of importance, not
the wing design. By restricting our investigation to pure mathematics, we hope
to make this explicit.

(Valdés-Pérez, 1995) makes a distinction between (a) programs which have been
designed to model discovery tasks in a human-like manner and (b) programs
which act as scientific collaborators. While these two classes are certainly not
mutually exclusive, there have been many mathematics programs which have
not been used for discovery tasks. These include the AM and Eurisko programs
(Lenat, 1982) (Lenat, 1983), the DC program (Morales, 1985), the GT program
(Epstein, 1987), the ARE program (Shen, 1987), the Cyrano program (Haase,
1986), the IL program (Sims, 1990), and more recently the SCOT program (Pis-
tori & Wainer, 1999) and the MCS program (Zhang, 1999). These systems are
surveyed in (Colton, 2002b), but we restrict ourselves here to a survey of pro-
grams which have actually added to mathematics.

The Graffiti program, as discussed in Section 7.1, has been applied to chemistry
(Fajtlowicz, 2001), and the HR program, discussed in Section 7.3, is currently
being used in biology (Colton, 2002a). However, our final restriction in this sur-
vey is to look only at the mathematical applications of the discovery programs.
For comprehensive surveys of automated discovery in science, see (Langley, 1998)
and (Valdés-Pérez, 1999).
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2 Mathematical Knowledge and Discoveries

We can classify knowledge in pure mathematics into ground knowledge about
mathematical objects such as groups, graphs and integers, as well as meta-level
knowledge about how mathematical explorations are undertaken. To a large ex-
tent, only the ground knowledge is communicated via the conferences, journals,
and textbooks, with the meta-level knowledge discussed mainly between indi-
viduals and in a few books as listed in Section 2.2.

2.1 Ground Mathematical Knowledge

Many journal papers and textbooks in pure mathematics proceed with quartets
of background information, concept definitions, theorem and proof. The back-
ground information usually states some results in the literature that provide a
context for the new results presented in the paper.

Under the ‘definition’ heading, new concepts are defined and sometimes obvious
properties of the concept and/or some examples satisfying the definition are
provided. Concept definitions include, but are not limited to: classes of object,
(e.g., prime numbers), functions acting on a set of objects to produce an output,
(e.g., the calculation of the chromatic number of a connected graph (Gould,
1988)), and maps taking one set of objects to another, (e.g., isomorphisms in
group theory (Humphreys, 1996)).

Following the concept definitions, a theorem is proposed as a statement relating
known concepts and possibly some new concepts. Theorems include statements
that one class of objects has a logically equivalent definition as another class,
i.e., if-and-only-if theorems. For example: an even number is perfect – defined
as being equal to twice the sum of its divisors – if and only if it is of the form
2n(2n+1 − 1) where 2n+1 − 1 is prime (Hardy & Wright, 1938). Theorems also
include statements that one class of objects subsumes another, i.e., implication
theorems. For example: all cyclic groups are Abelian (Humphreys, 1996). In
addition, theorems include non-existence statements, i.e., that there can be no
examples of objects with a given definition. For example: there are no solutions
to the equation an +bn = cn for positive integers a, b and c with n > 2 (Fermat’s
Last Theorem (Singh, 1997)).

Finally, a proof demonstrating the truth of the theorem statement completes the
quartet. The proof is usually a sequence of logical inferences proceeding from the
premises of the theorem statement to the conclusion (although other strategies
exist, as discussed in Section 2.2). Any newly defined concepts which were not
explicitly mentioned in the theorem statement will probably appear in the proof,
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as the concepts may have been extracted from the proof in order to make it easier
to understand.

In addition to concepts, theorems and proofs, authors sometimes present open
conjectures which, like theorems, are statements about concepts, but which lack
a proof, such as the open conjecture that there are no odd perfect numbers. These
are provided in the hope that someone will one day provide a proof and turn the
conjecture into a theorem. Algorithms are another type of ground mathematics.
These provide a faster way to calculate examples of a concept than a naive
method using the definition alone, e.g., the sieve of Eratosthenes for finding
prime numbers. Finally, examples of concepts often appear in journal papers,
particularly when examples are rare, or when finding the next in a sequence has
historical interest, as with the largest prime number.

2.2 Meta-Mathematical Knowledge

Information about how mathematical explorations have been undertaken, and
how to undertake them in general, is rarely found in published form. There are,
of course, exceptions to this, and mathematicians such as Poincaré have written
about how to do mathematics (as discussed in (Ghiselin, 1996)), with similar
expositions from (Lakatos, 1976) and (Pólya, 1988).

There has also been research that makes explicit some ways to solve mathemat-
ical problems. Such problems are often posed as exercises in mathematics texts
and usually involve either the solution of a fairly simple, but illustrative, theo-
rem, or the construction of a particular example with some desired properties.
For instance, Paul Zeitz suggests the ‘plug and chug’ method: if possible, make
calculations which are relevant to the problem (e.g., put numbers into a for-
mula), and examine the output in the hope of finding a pattern which leads to a
Eureka step and the eventual solution (Zeitz, 1999). This approach is discussed
in more detail in (Colton, 2000).

Some work has also been undertaken to make explicit certain strategies for prov-
ing theorems, and there are some known approaches such as proof by induction,
proof by contradiction, and proof by reductio ad absurdum. In particular, the
area of proof planning has made more formal the notion of a proof strategy and
inductive theorem provers utilise these ideas (Bundy, 1988).

2.3 Discovery in Pure Mathematics

Before discussing computational approaches to discovery in pure mathematics,
we must first discuss what constitutes a discovery. Naively, any algorithm, con-
cept, conjecture, theorem or proof new to mathematics is a discovery. However,
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we need to qualify this: a new result in mathematics must be important in some
way. For instance, it is fairly easy to define a new concept in number theory.
However, if there are no interesting provable properties of the concept and no
obvious applications to previous results, the concept may be an invention, but
it is unlikely to be accepted as a genuine discovery.

Similarly, any conjecture, theorem, proof or algorithm must be interesting in the
context within which it is discovered. An important result may have application
to the domain in which it was discovered; for example the definition of a concept
may simplify a proof. Similarly, a conjecture, which if true, may demonstrate
the truth of many other results. An important result may also be something
without obvious application, but which expresses some unusual1 connection be-
tween seemingly unrelated areas. The question of interestingness in mathematics
is discussed more extensively in (Colton et al., 2000b) and (Colton, 2002b).

In addition to finding a new result, discoveries can be made about previous
results. For instance, while the nature of pure mathematics makes it less likely
to find errors than in other sciences, another type of discovery is the identification
of an error of reasoning in a proof. For example, Heawood discovered a flaw in
Kempe’s 1879 proof of the four colour theorem,2 which had been accepted for
11 years. A more recent example was the discovery that Andrew Wiles’ original
proof of Fermat’s Last Theorem was flawed (but not, as it turned out, fatally
flawed, as Wiles managed to fix the problem (Singh, 1997)).

Similarly, papers are often published with a shorter proof of a known result than
any previously found. For instance, Appel and Haken’s original proof of the
four colour theorem (Appel & Haken, 1977) was criticised because it required a
computer to verify around 1500 configurations, and as such was not repeatable
by a human. Fortunately, Robertson et al. have discovered a much simplified
proof (Robertson et al., 1996).

In predicting that a computer would discover a new theorem (which may involve
new concepts, algorithms, etc.), Newell and Simon restricted their discussion
to discoveries at the object level. It is true that most mathematical discoveries
occur at the object level, but discoveries at the meta-level are certainly possible.
In particular, a theorem may be important not because of the relationship it
expresses among the concepts in the theorem statement, but rather because
of an ingenious step in the proof that is applicable to many other problems.
Similarly, a new generic way to form concepts – such as a geometric or algebraic
construction – can also be viewed as a discovery. For instance, in the long term,
Galois’ thesis on the insolubility of polynomials was more important because
he introduced the notion of groups – an algebraic construct which arises in a
1 The mathematician John Conway is much quoted as saying that a good conjecture

must be ‘outrageous’ (Fajtlowicz, 1999).
2 This theorem states that every map needs only four colours to ensure that no two

touching regions are coloured the same.
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multitude of other domains – than the actual result, although that in itself was
a major breakthrough, as (Stewart, 1989) explains.

To summarise, mathematical discoveries include three main activities:

– discovering an important (interesting/applicable) concept, open conjecture,
theorem, proof or algorithm;

– revising a previous result, by for instance, the identification of a flaw or the
simplification of a proof;

– deriving a new method, in particular a proof strategy or a construction
technique for concepts.

2.4 Approaches to Computational Discovery

In the next five sections, we discuss some computational approaches that have
led to discoveries in pure mathematics. Firstly, we deal with computer algebra
packages, the most common programs employed in pure mathematics. Following
this, we look at the various uses of automated theorem provers which have led
to discoveries. The next category covers a broad range of general and ad-hoc
techniques designed to find examples of concepts. In the fourth category, we
examine how the use of mathematical databases can facilitate discovery. The
final category covers a multitude of systems designed to invent concepts, make
conjectures, and in general form a theory about a domain, rather than to pursue
specific results. We look at the first two categories in terms of the types of
problems solved. However, for the final three categories, because the techniques
are more ad-hoc, we sub-categorise them in terms of the techniques themselves,
rather than the problems the techniques are used to solve.

3 Computer Algebra Systems

Computer algebra systems are designed to perform complex mathematical calcu-
lations, including algebraic manipulations, polynomial solution, differentiation,
and so on. Such systems include Maple (Abell & Braselton, 1994), Mathematica
(Wolfram, 1999) and GAP (Gap, 2000). The systems are usually accompanied by
large libraries of functions – many of which are written by the mathematicians
who make use of them – which cover a wide range of domains.

Four common ways in which computer algebra systems are used to facilitate
discovery in pure mathematics are:
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– Verifying a result with examples before a proof is attempted;

– Providing examples from which a pattern can hopefully be induced in order
to state a conjecture;

– Filling in the specifics of a theorem statement;

– Proving theorems.

The first three applications are so common that we can illustrate them with
examples from our own experience. We illustrate the fourth application of com-
puter algebra to discovery with an example from the work of Doron Zeilberger.

3.1 Giving Empirical Weight

Computer algebra packages can be very useful for adding empirical weight to
a conjecture before attempting to prove the conjecture. That is, whenever a
plausible conjecture arises and it is possible to generate counterexamples, some
effort is usually expended trying to find such a counterexample before an attempt
to prove the conjecture is made. For example, using techniques described in
Section 7, we made the conjecture that perfect numbers are never refactorable
(with a refactorable number being such that the number of divisors is itself
a divisor). Using the fast routines for integers in the GAP computer algebra
package, we verified this result for all perfect numbers from 1 to 1054. This gave
us the confidence to attempt a proof, and we eventually proved this theorem
(Colton, 1999). Of course, the alternate outcome is possible: a counterexample
can be found, but we leave discussion of this until Section 5.

3.2 Presenting Data for Eureka Steps

Another way in which computer algebra systems can facilitate discovery is to
produce examples from complex calculations and present the data in a way that
lets the user notice patterns and possibly make a conjecture. To the best of
our knowledge, there are no data-mining tools within computer algebra pack-
ages that could automate the pattern spotting part of the process. However,
they are often equipped with visualisation packages, which can certainly help
to highlight patterns in output. Furthermore, computer algebra systems include
programmable languages, so the output can be tailored to enhance the chances
of identifying a pattern.

A fairly trivial, but illustrative, example occurred when we used the Maple com-
puter algebra system to help solve a problem posed by Paul Zeitz (Zeitz, 1999):
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Show that integers of the form n(n + 1)(n + 2)(n + 3) are never square
numbers.

Following Zeitz’s ‘plug and chug’ advice, we simply used Maple to calculate the
value of the function f(n) = n(n + 1)(n + 2)(n + 3), for the numbers 1 to 4,
giving:

f(1) = 24, f(2) = 120, f(3) = 360, f(4) = 840

As predicted by Zeitz, we noticed that the output was always one less than a
square number, so proving this would solve the problem. We also used Maple in
the proof, by guessing that n(n+1)(n+2)(n+3) could be written as a quadratic
squared minus one. Then we tried different quadratics until Maple agreed upon
an equality between (n2 + 3n + 1)2 − 1 and n(n + 1)(n + 2)(n + 3). We could, of
course, have done all this entirely without Maple, but it illustrates how computer
algebra systems can be used to find, and, in some cases, verify patterns in data.
We discuss a different approach to Zeitz’s problem in (Colton, 2000).

3.3 Specifying Details in Theorems

A third way in which computer algebra systems can aid discovery is by filling
in details in theorem statements. For example, we became interested in divisor
graphs of integers, which are constructed by taking an integer n and making the
divisors of n the nodes of a graph. Then, we joined any two distinct nodes with
an edge if one divided the other. Figure 1 show three examples of divisor graphs:

Fig. 1. Divisor graphs for the numbers 10, 12 and 14.

As both 1 and n divide all the other divisors, it follows that, for every integer, the
result is a connected graph. We became interested in the question: which integers
produce planar divisor graphs? A planar graph can be drawn on a piece of paper
in such a way that no edge crosses another, such as the first and third graphs in
Figure 1. Kuratowski’s theorem (Kuratowski, 1930) is used to determine whether
or not a graph is planar.

To answer our question, we first realised that the divisor graph of an integer
is dependent only on its prime signature: if an integer n can be written as
n = pk1

1 pk2
2 . . . pkm

m , for primes p1 < p2 < . . . < pm, then the prime signature of n
is the list [k1, k2, . . . , km]. Hence, as depicted in Figure 1, the numbers 10 = 2×5
and 14 = 2× 7 have the same divisor graph because they have the same prime
signature: [1, 1]. Furthermore, we determined that if an integer n is divisible by
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a non-planar integer, then n itself will be non-planar, because its divisor graph
will have a non-planar subgraph.

These two facts enabled us to approach our problem by looking at the divi-
sor graphs of numbers with different prime signatures and seeing whether the
divisor graphs are planar. As most prime signatures will produce non-planar di-
visor graphs, we reasoned that we could determine a boundary on those prime
signatures producing planar divisor graphs. We wrote a small Maple program
to construct the divisor graph for an integer, then used the built-in isplanar
function to determine whether the graph was planar. Rather than thinking too
hard about the exact strategy, we simply printed out ‘planar’ or ‘non-planar’
for the numbers 1 to 100, and looked at the occurrences of non-planar divisor
graphs.

We found that the number 30 produced a non-planar divisor graph. The number
30 can be written as pqr for three distinct primes p, q and r. Hence, using the
above reasoning about prime signatures and graphs with non-planar subgraphs
being non-planar themselves, we concluded that all integers divisible by three
or more primes must be non-planar. Hence we focussed on integers with 1 or 2
prime divisors and we easily identified a boundary for the planar divisor graphs:
integers of the form p4 produced non-planar divisor graphs, as did integers of
the form p2q2.

Hence, we answered our question, and could state the theorem as follows:

Only the number 1 and integers of the form: p, p2, p3, pq and p2q for
distinct primes p and q produce planar divisor graphs.

We see that, whereas the overall idea for the theorem was ours, using Maple let
us easily fill in the specifics of the theorem statement. Note also that the proof of
the theorem evolved alongside the actual statement. That is, there was no time
when we stated a conjecture and tried to prove it. This method of discovery is
common in mathematics, but publications are usually stated with the theorem
and proof very much separate. Further details of this and related theorems are
found in (Colton, 2002b), appendix C.

3.4 Proving Theorems

As highlighted by Doron Zeilberger’s invited talk at the IJCAR-2001 conference,
Levi Ben Gerson’s treatise of 1321 had around 50 theorems with rigorous proofs
proving what are now routine algebraic identities, such as: (a + b)2 = a2 +
2ab+ b2 (which took a page and a half to prove). Computer algebra systems can
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now “prove” much more elaborate identities than these with simple rewriting
techniques. Zeilberger argues that, if mathematicians are happy to embrace such
theorems as routine enough for a computer to carry out the proof, then we
should embrace all such computer generated proofs. That is, rather than being
skeptical of theorems that require a computer to prove them (such as the four
colour theorem, which we discuss in Section 5.5), he encourages such proofs,
arguing that they are an order of magnitude more difficult than theorems that
a mere human can prove (but still trivial, as they can be proved).

As an example, we can take Zeilberger’s proof of Conway’s Lost Cosmological
Theorem (Ekhad & Zeilberger, 1997). This starts with the sequence of integers
1, 11, 21, 1211, 111221, . . ., which is obtained by describing in words the previous
term, e.g., one, one one, two ones, one two (and) one one, etc. Remarkably,
Conway proved that the length of the (n + 1)th term divided by the length
of the nth term tends to a constant λ = 1.303577269 . . . known as Conway’s
constant. The generalised cosmological theorem states that starting with any
non-trivial integer other than 22, and constructing the sequence in the same
manner, will give the same ratio between lengths. Conway lamented that his
proof of this theorem, and another by Guy, were lost (Conway, 1987).

Zeilberger chose not to prove this theorem with pen and paper, but rather to
write a Maple package called HORTON (after John Horton Conway). The proof
relies on the fact that most numbers can be split into halves that develop in-
dependently of each other as the sequence proceeds. There are a finite number
of integers (atoms) that cannot be split in this way. By ranging over all possi-
bilities for atoms, the HORTON program showed that all numbers eventually
decompose into atoms after a certain number of steps, which proved the con-
jecture (Ekhad & Zeilberger, 1997). This proof is similar in nature to the proof
of the four colour theorem described in Section 5.5, but was undertaken using
a computer algebra systems, rather than by writing software specifically for the
problem.

4 Automated Theorem Proving

One of the original goals of computer science and artificial intelligence was to
write a program that could prove mathematics theorems automatically, and
many systems have been implemented which can prove fairly complicated theo-
rems. The ability to prove theorems is a powerful skill and automated theorem
provers have performed a variety of discovery tasks in pure mathematics. These
include proving established conjectures, improving proofs, finding new axiomati-
sations, and discovering new theorems. We concentrate here on discoveries made
using deductive methods. We leave discussion of (counter)example construction
methods – which have also solved theorems – until Section 5.
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4.1 Proving Established Conjectures

The most extensive application of automated theorem proving to pure mathe-
matics has been undertaken by the research team at Argonne laboratories, using
various theorem provers, including EQP and, more recently, Otter (McCune,
1990).

Certainly the most famous theorem to be proved by an automated theorem
prover is the Robbins Algebra conjecture, which McCune et al. solved using the
EQP theorem prover (McCune, 1997). Herbert Robbins proposed that commu-
tative, associative algebras are Boolean if they satisfy the extra condition that
n(n(x) + y) + n(n(x) + n(y)) = x. These algebras became known as Robbins
algebras and the question of whether they are Boolean defeated the attempts of
mathematicians and logicians for more than 60 years.

In addition to providing the solution in 1996, automated reasoning techniques
were also used during the development of this problem. In particular, on the ad-
vice of Wos, Winker used a combination of automated techniques and a standard
mathematical approach to find two simpler conditions on the algebras, which, if
true, would show that they are Boolean. The EQP program eventually proved
that the second condition does in fact hold for Robbins algebras. The search for
the proof took around eight days on an RS/6000 processor and used around 30
megabytes of memory.

EQP’s successor, the Otter program (McCune, 1990), has also had much suc-
cess discovering proofs to theorems in pure mathematics. In addition to find-
ing new axiomatisations of algebras, as discussed in Section 4.3, Otter has
been used to prove research theorems in algebraic geometry and cubic curves,
lattice theory, Boolean algebras and quasigroup theory. A particularly fruit-
ful partnership between McCune (Otter’s author and principal user) and the
mathematician Padmanabhan has developed. Padmanabhan has supplied many
theorems relevant to his research that Otter has proved for the first time.
Much of this work was written up in (McCune & Padmanabhan, 1996). A web
page describing the discoveries due to the Argonne provers can be found at:
http://www-unix.mcs.anl.gov/AR/new results/.

4.2 Improving Proofs

One of the first applications of automated theorem proving was the use of Newell,
Shaw and Simon’s Logic Theory Machine (Newell et al., 1957) to prove theorems
from Whitehead and Russell’s Principia Mathematica. The program proved 38
of the 52 theorems they presented to it, and actually found a more elegant proof
to theorem 2.85 than provided by Whitehead and Russell. (MacKenzie, 1995)
points out that, on hearing of this, Russell wrote to Simon in November 1956:
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‘I am delighted to know that Principia Mathematica can now be done by
machinery . . . I am quite willing to believe that everything in deductive
logic can be done by machinery.’

Newell, Shaw and Simon submitted an article about theorem 2.85, co-authored
by the Logic Theory Machine, to the Journal of Symbolic Logic. However, it was
refused publication as it was co-authored by a program.

More recently, Larry Wos has been using Otter to find smaller proofs of theorems
than the current ones. To this end, he uses Otter to find more succinct methods
than those originally proposed. This often results in detecting double negations
and removing unnecessary lemmas, some of which were thought to be indispens-
able. (Wos, 1996) presents a methodology using a strategy known as resonance
to search for elegant proofs with Otter. He gives examples from mathematics
and logic, and also argues that this work also implications for other fields such
as circuit design.

(Fleuriot & Paulson, 1998) have studied the geometric proofs in Newton’s Prin-
cipia and investigated ways to prove them automatically with the Isabelle in-
teractive theorem prover (Paulson, 1994). To do this, they formalised the Prin-
cipia in both Euclidean geometry and non-standard analysis. While working
through one of the key results (proposition 11 of book 1, the Kepler problem)
they discovered an anomaly in the reasoning. Newton was appealing to a cross-
multiplication result which wasn’t true for infinitesimals or infinite numbers.
Isabelle could therefore not prove the result, but Fleuriot managed to derive an
alternative proof of the theorem that the system found acceptable.

4.3 Finding Axiom Schemes

Another interesting project undertaken by the Argonne team aims to find differ-
ent axioms systems for well known algebras, such as groups and loops (McCune,
1992) (McCune, 1993). In many cases, it has been possible to reduce the axioms
to a single axiom. For instance, group theory can be expressed in terms of the
multiplication and inverse operators in a single axiom:

∀ x, y, z, u ∈ G, (x(y(((zz′)(uy)′)x))′) = u,

where a′ indicates the inverse of a. These results were achieved by using Otter to
prove the equivalence of the standard group axioms with exhaustively generated
formulae. Similar results have been found for different operators in group theory
and for Abelian groups, odd exponent groups and inverse loops. (Kunen, 1992)
has subsequently proved that there are no smaller single axioms schemes than
those produced by Otter.
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4.4 Discovering Theorems

With a powerful theorem prover, it is possible to speculate that certain state-
ments are theorems, and discard those which the prover does not prove. As the
prover is so efficient, an exhaustive search of theorems can be undertaken, with-
out having to invent concepts or worry about notions of interestingness as is the
case with the programs described in Section 7.

(Chou, 1985) presents improvements on Wu’s method for proving theorems in
plane geometry (Wu, 1984). In Chapter 4, he describes three approaches to using
his prover to find new theorems: (i) ingenious guessing using geometric intuition
(ii) numerical searching and (iii) a systematic approach based on the Ritt-Wu de-
composition algorithm. Using the first approach, he found a construction based
on Pappus’ Theorem which led to a colinearity result believed to be new. Using
the second method – suggesting additional points and lines within given geo-
metric configurations – he started with a theorem of Gauss (that the midpoints
of the three diagonals of a complete quadrilateral are collinear) and constructed
a theorem about taking subsets of five lines from six, which he believed to be of
importance. With the third method, he discovered a generalisation of Simson’s
theorem. (Bagai et al., 1993) provide a more general approach to automated ex-
ploration in plane geometry, although it appears that no new theorems resulted
from this work.

5 Example Construction

The construction of examples of concepts has advanced pure mathematics in at
least these three ways:

– by discovering counterexamples to open conjectures;

– by solving non-existence conjectures, either by finding a counterexample or
by exhausting the search space to prove the conjecture;

– by finding larger (more complex) examples of certain objects, such as the
largest primes.

We break down our overview of example construction according to the general
techniques used to solve problems, rather than the type of problem solved.
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5.1 Constraint Satisfaction Solving

Specifying a problem in terms of constraint satisfaction has emerged as a pow-
erful, general purpose, technique (Tsang, 1993). To do this, the problem must
be stated as a triple of: variables, domains for the variables, and constraints on
the assignment of values from the domain to each variable. The solution of the
problem comes with the assignment of a value (or a range of values) to each
of the variables in such a way that none of the constraints are broken. There
are various strategies for the assignment of variables, propagation of constraints,
and backtracking in the search.

This approach has been applied to problems from pure mathematics, in particu-
lar quasigroup existence problems. For instance, the FINDER program (Slaney,
1992) has solved many quasigroup existence problems. (Slaney et al., 1995) used
FINDER along with two different automated reasoning programs called DDPP
(a Davis Putnam implementation, as discussed in Section 5.2) and MGTP to
solve numerous quasigroup existence problems. For example, they found an idem-
potent type 3 quasigroup (such that ∀ a, b(a ∗ b) ∗ (b ∗ a) = a) of size 12, settling
that existence problem. They had similar results for quasigroups of type 4 and
solved many other existence questions, both by finding counterexamples and by
exhausting the search to show that no quasigroups of given types and sizes exist.

Open quasigroup problems have also been solved with computational methods by
a number of other researchers.3 Constraint satisfaction techniques have been ap-
plied to other problems from combinatorial mathematics, such as Golomb rulers
(Dewdney, 1985), and Ramsey numbers (Graham & Spencer, 1990). However,
optimised, specialised algorithms usually out-perform the constraint satisfaction
approach. For instance, while the constraint approach works well for Golomb
rulers, all the actual discoveries have been made by specialised algorithms.

5.2 The Davis Putnam Method

This method is used for generating solutions to satisfiability problems (Davis
& Putnam, 1960), (Yugami, 1995). It works by searching for an assignment of
variables that satisfies all clauses in a formula expressed in conjunctive normal
form. The procedure uses unit propagation to improve performance and works
by choosing a variable in a clause containing a single literal, and assigning a
value that satisfies the clause.

The MACE program (McCune, 2001) uses the Davis-Putnam method to generate
models as counterexamples to false conjectures and has also been employed to
3 With details at this web page:
http://www.cs.york.ac.uk/~tw/csplib/combinatorial.html.
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solve some existence problems. As discussed in (McCune, 1994), MACE found
a pair of orthogonal Mendelsohn triple systems of order 9. Also, MACE found
a quasigroup of type 3 of order 16 with 8 holes of size 2. Furthermore, MACE
has solved the existence problem of size 17 quasigroups of type 6 (such that
f(f(x, y), y) = f(x, f(x, y))) by finding an example. Another Davis Putnam
program which has been used to solve more than 100 open questions about
quasigroups in design theory is SATO (Zhang et al., 1996), (Zhang & Hsiang,
1994). Also, as mentioned above, the DDPP program is an implementation of
the Davis-Putnam method.

5.3 The PSLQ Algorithm

The PSLQ algorithm, as described in (Bailey, 1998), is able to efficiently suggest
new mathematical identities of the form:

a1x1 + a2x2 + . . . + anxn = 0

by finding non-trivial coefficients ai if supplied with real numbers x1 to xn.

One application of the algorithm is to find whether a given real number, α, is
algebraic. To do this, the values α, α2, . . . , αn are calculated to high precision
and the PSLQ algorithm then searches for non trivial values ai such that

a1α + a2α
2 . . . + anαn = 0

This functionality finds application in discovering Euler sums, which has led to
a remarkable new formula for π:

π =
∞∑

i=0

1
16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
.

Note that the formula was actually discovered by hand and the numbers found
by computation. This formula is interesting as it can be used to calculate the
nth hexadecimal digit of π without calculating the first n− 1 digits, as discussed
in (Bailey et al., 1997). Until this discovery, it was assumed that finding the nth
digit of π was not significantly less expensive than finding the first n− 1 digits.
The new algorithm can calculate the millionth hexadecimal digit of π in less
than two minutes on a personal computer.
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5.4 Distributed Discovery Projects

With the increase in internet usage in the last decade, many distributed at-
tempts to find ever larger examples of certain concepts have been undertaken.
In particular, the latest effort to find the largest prime number is the Great
Internet Mersenne Prime Search (GIMPS), which is powered by parallel tech-
nology running free software available at www.mersenne.org. Since 1996, the
GIMPS project has successfully found the four most recent record primes. The
record stands with a prime number with over two million digits and there are
predictions that GIMPS will find a billion-digit prime number by 2010.

The search for prime numbers has an interesting history from a computational
point of view. In particular, in 1961 in a single session on an IBM7090, Hurwitz
found two Mersenne primes which beat the previous record. However, due to the
way in which the output was presented, Hurwitz read the largest first. There is
now a debate as to whether the smaller of the two was ever the largest known
prime: it had been discovered by the computer before the larger one, but the
human was only aware of it after he had found a larger one. Opinions4 are split
as to whether a discovery only witnessed by a computer should have the honour
of being listed historically as the largest prime number known at a given time.

While finding the next largest prime is not seen as the most important activity
in pure mathematics, it is worth remembering that one of the first programs
worked on by Alan Turing (actually written by Newman and improved by Turing
(Ribenboim, 1995)) was to find large prime numbers. Moreover, finding primes
may one day lead to the solution of an important number theory conjecture by
Catalan: that 8 and 9 are the only consecutive powers of integers.

There are many similar distributed attempts, some of which have come to a
successful conclusion. Examples include a search to find ten consecutive primes
in arithmetic progression (www.ltkz.demon.co.uk/ar2/10primes.htm) and a
distributed computation to find the quadrillionth bit of π (which is a 0), as
described at http://www.cecm.sfu.ca/projects/pihex/pihex.html.

5.5 Ad-hoc Construction Methods

Individual programs tailored by mathematicians to solve particular problems are
ubiquitous. One famous instance, which can be considered under the umbrella
of example generation, is the four colour theorem. As mentioned in Section 2.1
above, this theorem has a colourful history (Saaty & Kainen, 1986) and was
eventually solved in 1976 with the use of a computer to check around 1500
4 See www.utm.edu/cgi-bin/caldwell/bubba/research/primes/cgi/discoverer/

for some opinions on the notion of discovery with respect to prime numbers.
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configurations in an avoidable set (see (Saaty & Kainen, 1986) for details). To
solve the conjecture, Appel and Haken used around 1200 hours of computing
time to check the configurations, looking for (and not finding) a configuration
which would break the four colour theorem. This was the first major theorem
to be proved by a computer that could not be verified directly by a human.
As discussed above, simplifications have since been made to the proof that has
made it less controversial and the truth of the theorem is now generally accepted
(Robertson et al., 1996).

Another set of ad-hoc computational methods were used to solve the existence
problem of finite projective planes of order 10. Clement Lam eventually proved
that there are none, but only with the help of many mathematicians who wrote
numerous programs during the 1980s. The complexities of this problem and its
eventual solution are beyond the scope of this survey, but full details are given
in (Lam et al., 1989).

Finally, we mentioned in Section 3 that mathematicians use computer algebra
programs to find counterexamples to conjectures they originally think to be true.
As an example of this, in appendix C of (Colton, 2002b), we discuss the following
conjecture:

A refactorable number is such that the number of divisors is itself a
divisor (Colton, 1999). Given a refactorable number, n, then define the
following function: f(n) = |{(a, b) ∈ N×N : ab = n and a 6= b}|. Then
f(n) divides n if and only if n is a non-square.

We attempted to find a counterexample to this claim using the GAP computer
algebra system, but found none between 1 and 1,000,000. After abortive attempts
to actually prove the conjecture, we began to look for counterexamples again.
We eventually found three counterexamples: 36360900, 79388100 and 155600676.
Hence, in this case, we disproved a conjecture by finding a counterexample.
Unless the theorem is of importance, these kinds of results are rarely published,
but they still represent computer discoveries in mathematics.

6 Mathematical Databases

The representation of mathematical knowledge and its storage in large databases
is a priority for many researchers. For example, the MBASE project (Kohlhase
& Franke, 2000) aims to create a database of concepts, conjectures, theorems
and proofs, to be of use to the automated reasoning community, among others.
Simply accessing databases of mathematical information can lead to discoveries.
Such events occur when the item(s) returned by a database search differ radically
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from those expected. Because the data is mathematical, there is a chance that
the object returned from the search is related in some mathematical way to the
object you were actually looking for.

One particularly important database is the Online Encyclopedia of Integer Se-
quences,5 which contains over 75,000 integer sequences, such as prime numbers
and square numbers. They have been collected over 35 years by Neil Sloane,
with contributions from hundreds of mathematicians. The Encyclopedia is very
popular, receiving over 16,000 queries every day. The first terms of each sequence
are stored, and the user queries the database by providing the first terms of a se-
quence they wish to know more about. In addition to the terms of the sequence,
a definition is given and keywords are assigned, such as ‘nice’ (intrinsically inter-
esting) and ‘core’ (fundamental to number theory or some other domain). Sloane
has recorded some times when using the Encyclopedia has led to a conjecture
being made. For instance, in (Sloane, 1998), he relates how a sequence that arose
in connection with a quantization problem was linked via the Encyclopedia with
a sequence that arose in the study of three-dimensional quasicrystals.

Another important database is the Inverse Symbolic Calculator,6 which, given a
decimal number, attempts to find a match to one in its database of over 50 mil-
lion taken largely from mathematics and the physical sciences. Other databases
include the GAP library of around 60 million groups, the Mizar library of for-
malised mathematics (Trybulec, 1989), the Mathworld online Encyclopedia,7

and the MathSciNet citation and review server,8 which contains reviews for
more than 10,000 mathematics articles and references for over 100,000. (Colton,
2001b) provides a more detailed survey of mathematical databases

7 Automated Theory Formation

We collect here some ad-hoc techniques generally designed to suggest conjec-
tures and theorems rather than prove them. This usually involves an amount
of invention (concept formation), induction (conjecture making), and deduction
(theorem proving), which taken together amount to forming a theory.

7.1 The Graffiti Program

The Graffiti program (Fajtlowicz, 1988) makes conjectures of a numerical nature
in graph theory. Given a set of well known, interesting graph theory invariants,
5 http://www.research.att.com/~njas/sequences
6 http://www.cecm.sfu.ca/projects/ISC/
7 http://mathworld.wolfram.com
8 http://www.ams.org/mathscinet
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such as the diameter, independence number, rank, and chromatic number, Graf-
fiti uses a database of graphs to empirically check whether one sum of invariants
is less than another sum of invariants. The empirical check is time consuming, so
Graffiti employs two techniques, called the beagle and dalmation heuristics, to
discard certain trivial or weak conjectures before the empirical test (as described
in (Larson, 1999)). If a conjecture passes the empirical test and Fajtlowicz can-
not prove it easily, it is recorded in (Fajtlowicz, 1999), and he forwards it to
interested graph theorists.

As an example, conjecture 18 in (Fajtlowicz, 1999) states that, for any graph G:

cn(G) + r(G) ≤ md(G) + fmd(G),

where cn(G) is the chromatic number of G, r(G) is the radius of G, md(G) is
the maximum degree of G and fmd(G) is the frequency of the maximum degree
of G. This conjecture was passed to some graph theorists, one of whom found
a counterexample. The conjectures are useful because calculating invariants is
often computationally expensive and bounds on invariants may bring computa-
tion time down. Moreover, these types of conjecture are of substantial interest to
graph theorists, because they are simply stated, yet often provide a significant
challenge to resolve – the mark of an important theorem such as Fermat’s Last.

In terms of adding to mathematics, Graffiti has been extremely successful. The
conjectures it has produced have attracted the attention of scores of mathemati-
cians, including many luminaries from the world of graph theory. There are over
60 graph theory papers published which investigate Graffiti’s conjectures.9

7.2 The AutoGraphiX Program

(Caporossi & Hansen, 1999) have recently implemented an algorithm to find lin-
ear relations between variables in polynomial time. This has been embedded in
AutoGraphiX (AGX), an interactive program used to find extremal graphs for
graph invariants (Caporossi & Hansen, 1997). AGX has been employed to refute
three conjectures of Graffiti and has also been applied to automatic conjecture
making in graph theory. Given a set of graph theory invariants calculated for
a database of graphs in AGX, the algorithm is used to find a basis of affine
relations on those invariants. For example, AGX was provided with 15 invari-
ants calculated for a special class of graphs called colour-constrained trees. The
invariants included:

α = the stability number
D = the diameter

9 See http://cms.dt.uh.edu/faculty/delavinae/research/wowref.htm for a list of
the papers involving Graffiti’s conjectures.
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m = the number of edges
n1 = the number of pending vertices
r = the radius

The algorithm discovered a new linear relation between the invariants:

2α−m− n1 + 2r −D = 0,

which Caporossi and Hansen have proved for all colour-constrained trees (Ca-
porossi & Hansen, 1999).

7.3 The HR Program

HR is a theory formation program designed to undertake discovery tasks in
domains of pure mathematics such as group, graph and number theory (Colton,
2002b), (Colton et al., 1999). The system is given some objects of interest from a
domain, such as graphs or integers or groups, and a small set of initial concepts,
each supplied with a definition and examples. From this, HR constructs a theory
by inventing new concepts using general production rules to build them from one
(or two) old concepts. The new concepts are produced with correct examples
and a predicate definition that describes some relation between the objects in
the examples.

HR uses the examples of the invented concepts to make empirical conjectures
about them. For instance, if it finds that the examples of a new concept are ex-
actly the same those of an old one, it conjectures that the definitions of the two
concepts are logically equivalent. In finite algebraic systems such as group theory,
HR uses the Otter theorem prover (McCune, 1990) to prove the conjectures it
makes. If Otter fails to prove a conjecture, HR invokes the MACE model genera-
tor (McCune, 1994) to attempt to find a counterexample. Any counterexamples
found are incorporated into the theory, thus reducing the number of further false
conjectures generated.

We have used HR in domains such as anti-associative algebras (with only one
axiom – no triple of elements is associative). This made us aware of theorems
which were new to us; for example, there must be two different elements on the
diagonal of the multiplication tables and that anti-associative algebras cannot
be quasigroups or have an identity (in fact, no element can have a local identity).
More results from HR’s application to discovery tasks are presented in Chapter
12 of (Colton, 2002b). More recently, as discussed in (Colton & Miguel, 2001), we
have applied HR to the invention of additional constraints to improve efficiency
when solving constraint satisfaction problems. For instance, HR conjectured and
proved that Qg3-quasigroups are anti-Abelian; i.e., for each a, b such that a 6= b,
a∗b 6= b∗a. HR also discovered a symmetry on the diagonal of Qg3-quasigroups,
namely that ∀ a, b (a ∗ a = b → b ∗ b = a).
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7.4 The NumbersWithNames Program

As discussed in (Colton, 1999) and (Colton et al., 2000a), one of the original
applications of HR to mathematical discovery was the invention of integer se-
quences worthy of inclusion in the Encyclopedia of Integer Sequences. To be
included, they must be shown to be interesting, so we also used HR to supply
conjectures about the sequences it invented, some of which we proved. To aug-
ment the supply of conjectures, we enabled HR to search the Encyclopedia to
find sequences which were empirically related to the ones it had invented. Such
relationships include one conjecture being a subsequence (or supersequence) of
another, and one sequence having no terms in common with another.

We have extracted this functionality into a program called NumbersWithNames,
which HR accesses. NumbersWithNames contains a subset of 1000 sequences
from the Encyclopedia, such as prime numbers, and square numbers, which are
of sufficient importance to have been given names. The internet interface10 lets
the user choose one of the sequences or input a new one. The program then
makes conjectures about the sequence by relating it to those in its database. It
also attempts to make conjectures by forming related sequences and searching the
Encyclopedia with respect to them. The new sequences are formed by combining
the given sequence with ‘core’ sequences in the database. NumbersWithNames
orders the conjectures it makes in terms of a plausibility measure which calculates
the probability of the conjecture occurring if the sequence had been chosen at
random along the number line.

Some examples of conjectures made using this approach are given in (Colton,
1999), (Colton et al., 2000a) and appendix C of (Colton, 2002b). An example is
the theorem that if the sum of the divisors of an integer n is a prime number,
then the number of divisors of n will also be a prime number. Another recent
appealing example is that perfect numbers are pernicious. That is, if we write
a perfect number in binary, there will be a prime number of 1s (the definition
of pernicious numbers). More than this, the 1s will be first, followed by zeros
(another relation found by the program). For example, the first three perfect
numbers are 6, 28 and 496, and when written in binary, these are 110, 11100
and 111110000. This unobvious conjecture – which we proved – is typical of
those found by NumbersWithNames.

8 Summary

We have described what constitutes knowledge in pure mathematics and sur-
veyed some computational techniques which have led to new knowledge in this
10 This is available at: http://www.machine-creativity.com/programs/nwn.
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field. We do not claim to have covered all mathematical discoveries aided by
computer, as there are hundreds or perhaps thousands of individual programs
crafted to assist in the discovery process, many of which we never hear about.
However, from the evidence presented, we can draw some general conclusions:

– Computational discovery occurs at the object-level. While proof planning
and automated theorem proving in general help us understand proof strate-
gies, no new ones suitable for mathematicians have resulted from this. Sim-
ilarly, although some work in meta-level concept formation (Colton, 2001a)
has been undertaken, and theory formation in general gives us a better under-
standing of the exploration process, no new concept formation or conjecture
making techniques have come to light.

– Most discoveries identify new results rather than improving old results, al-
though improving proofs is developing into a useful application of theorem
proving.

– Most types of object-level mathematics have been discovered by computer,
including concepts, examples of concepts, open conjectures, theorems and
proofs. We have not given evidence of any algorithms being discovered by
computer, but neither do we rule this out.

– While theory formation programs are designed to carry out most activities
in mathematics, computer algebra systems appear to be the most equipped
to do this in a way that might lead to genuine discovery. We have given
evidence of computer algebra systems being used to generate examples, to
prove and disprove conjectures, to fill in specifics in theorem statements, and
to make new conjectures.

– Most major discoveries have been made via specialised programs, or by much
manipulation of the problem statement into a form by which automated
techniques were applicable. For example, while a general theorem prover
solved Robbin’s algebra, this was only after much human (and automated)
theory formation about the problem.

– Most of the important discoveries have played on the ability of computers
to perform massive calculations with high accuracy. However, the discover-
ies made by theory formation programs required relatively less computing
power.

Given this summarization, we can return to Newell and Simon’s prediction and
suggest ways in which we can increase and improve the use of computers in the
mathematical discovery process.
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9 Discussion

To recap, Newell and Simon predicted that, by 1968, a computer would have dis-
covered and proved an important theorem in mathematics. By 2002, however, it
is difficult to claim that a computer has both discovered and proved a theorem
which the mathematical community would describe as important. Certainly, the
smallest axiomatisations of groups discussed, the new geometry theorems dis-
cussed in Section 4 and the results in quasigroup theory as discussed in Section
7 were both discovered and proved by computer. Furthermore, as it is difficult to
assess discoveries at the time they are made (there may be hidden applications
or implications), these results may be considered important one day.

Moreover, automated theorem provers have proved important theorems, in par-
ticular the Robbins Algebra theorem, but they did not discover them. Conversely,
the NumbersWithNames program and Graffiti have discovered, but not proved
theorems in number theory and graph theory, respectively, which have interested
mathematicians. The theorems from Graffiti are particularly important, as they
provide bounds for numerical invariants that increase efficiency in calculations.

In looking for possible reasons for the lack of success, we refer back to the title
of Newell and Simon’s paper in which they make their predictions: “Heuristic
Problem Solving: The Next Advance in Operations Research”. The key word
here is, of course, heuristic. When asked about theorem provers, Simon (per-
sonal communication, 2002) lamented that the heuristic approach in theorem
proving had dwindled, replaced largely by complete methods. While guaran-
teed to find proofs eventually, complete methods have difficulty in proving hard
results because of combinatorial explosions in their searches.

Simon certainly had a point and his early work shows the undeniable utility
of heuristics in artificial intelligence. Certainly, if automated theorem provers
are to prove important results in pure mathematics, heuristic searches will play
an important role. However, this criticism may be a little unfair on automated
theorem provers, some of which do use heuristic techniques. More importantly,
theorem provers have found greater application in hardware and software ver-
ification and safety critical systems – where it is imperative that the proof be
formal and complete – than in pure mathematics.

This suggests another possible reason why there has been less success than we
expected: a lack of interest from the mathematical community. It has become
clear through personal communication with mathematicians and through organ-
isation of workshops such as (Colton & Sorge, 2000), that many mathematicians
believe that, for the moment, they have all the computer tools they want. Only
a few pure mathematicians use automated theorem provers on a regular basis,
including Padmanabhan, who has used Otter on many occasions. However, we
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should note that Padmanabhan has never actually invoked Otter: he passes theo-
rems to Otter’s author, Bill McCune, who tunes settings, runs Otter, and emails
proofs back. Without mathematicians using and improving automated tools, it
seems unlikely that an important theorem will be discovered and proved in the
near future.

Perhaps the major reason why Newell and Simon’s prediction has not come true
is the implicit assumption that the computer acts autonomously – somehow it
finds an important conjecture and manages to prove it. We have repeatedly men-
tioned that many discoveries are made possible only through the use of software
packages (in particular computer algebra systems), but that the computer only
facilitates the discovery: it cannot be said to have made the discovery, as usu-
ally the result is known (at least sketchily) to the user before the computer is
employed.

For autonomous discovery to occur, more research must be put into automated
theory formation. Much more research has been undertaken into automated the-
orem proving than into concept formation and conjecture making. Hence, com-
puters are more able to prove results suggested by their user than to intelligently
suggest interesting new ones. While many theorem proving systems have been
built by entire teams, the more general question of automated theory forma-
tion has only been addressed in an ad-hoc manner by individual researchers. As
mentioned in Section 1.1, examples of AI research in this area include the AM,
Eurisko, GT, ARE, IL, DC, SCOT, MCS and Cyrano programs. While some
of these built on previous work (e.g., Cyrano was based on AM), they were all
isolated projects, and with the exception of SCOT and MCS, they are no longer
current.

10 Conclusions

We have supplied evidence that a number of computational techniques have led
to discoveries in pure mathematics, and argued that computer algebra systems
are the most widely used programs among research mathematicians, many of
whom believe they have all the computational tools they require at the moment.
Taken together, these insights suggest that we embed more discovery techniques
into computer algebra systems, such as theorem proving in the Theorema sys-
tem (Buchberger et al., 1997). Alternatively, we could enable computer algebra
systems to utilise other computational processes via some network of systems,
as in the MathWeb project (Franke et al., 1999) and the Calculemus project.11

Certainly, to encourage more autonomous discoveries, we need more integrated
systems, as in the HR project and the SCOTT theorem prover (Hodgson &
Slaney, 2001), which combines the example generation power of FINDER with
11 See http://www.eurice.de/calculemus for details of the Calculemus project.
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the deductive power of Otter. Furthermore, if we embed general techniques such
as resolution theorem proving, constraint solving, and the Davis Putnam pro-
cedure into computer algebra systems, this may enhance the mathematician’s
productivity, as they would have to spend less time hand crafting programs to
complete a task.

The mathematicians Andrew Wiles and Doron Zeilberger represent two extremes
of computer use in pure mathematics. Wiles famously proved Fermat’s last the-
orem in 1995 (Singh, 1997), and was reported to have used a computer only to
write up his results. Zeilberger, on the other hand, recommends that we teach
students of mathematics to program rather than to prove and – drawing on
Chaitin’s results on the limits of mathematics (Chaitin, 1998) – argues that the
mathematics we can actually prove is trivial. He states that we can only view
non-trivial mathematics through computer experimentation, and we should rely
on quasi-proof rather than formal deduction to determine whether or not to
accept a theorem. Zeilberger regularly publishes papers co-authored with his
computer, which he calls Shalosh B. Ekhad.

It is difficult to gauge the extent to which an average mathematician uses a
computer. There are still mathematicians who do not use computers at all, and
many who use them for email and/or typesetting only. However, computer al-
gebra systems such as Maple and Mathematica are being employed increasingly
by mathematicians for research and teaching purposes. Furthermore, due to the
number of undergraduate and postgraduate computer algebra courses, it seems
likely that every new university-trained mathematician will be literate in this
topic. Moreover, computer algebra systems have, without doubt, enriched pure
mathematics, and there are scores of theorems that would not have been stated or
proved without computer algebra systems and other computational techniques.

With projects such as the Center for Experimental Mathematics at Simon Fraser
University and journals like the Journal of Experimental Mathematics, computer
enhanced discovery is now recognised as a worthy approach to pure mathemat-
ics. Newell and Simon’s 1958 predictions were optimistic, but they were certainly
not unachievable. Their prediction, for instance, that a computer would beat the
world chess champion did eventually come true. We hope that, with a new gen-
eration of mathematicians and the increased power of the mathematical software
available to them, Newell and Simon will soon be vindicated in their optimism
about automated mathematical discovery.

Acknowledgments

I would like to thank Derek Sleeman and the Departments of Computing Science
and Mathematics at the University of Aberdeen for inviting me to talk about
computational discovery in pure mathematics, which provided the backbone for



26

the work presented here. Ideas presented here have also arisen from conversations
at the 2000 CADE workshop on the role of automated deduction in mathemat-
ics, the 2001 IJCAR workshop on future directions in automated deduction and
the 2001 IJCAI Workshop on Knowledge Discovery from Distributed, Dynamic,
Heterogeneous, Autonomous Sources. I would like to thank Alan Bundy and
Toby Walsh for their continued input to this work and I am very grateful to
Ursula Martin, Paul Cairns, Ian Gent, Geoff Sutcliffe, Larry Wos, and Doron
Zeilberger for suggesting some mathematical discoveries made by computer. Fi-
nally, I would like to thank Herbert Simon for meeting with me and discussing
many interesting topics, some of which have inspired this paper. This work was
supported by EPSRC grant GR/M98012.

References

Abell & Braselton, 1994. Abell, M., & Braselton, J. (1994). Maple V handbook. Aca-
demic Press.

Appel & Haken, 1977. Appel, K., & Haken, W. (1977). Every planar map is four
colorable. Illinois Journal of Mathematics, 21, 429–567.

Bagai et al., 1993. Bagai, R., Shanbhogue, V., Żytkow, J., & Chou, S. (1993). Auto-
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