CS 252 - Markov Chains
Additional Reading 1
and
Homework problems

1 Markov Chains

The first model we discussed, the DFA| is deterministic—it’s transition function must be
total and it allows for transition from one state to exactly one other state at each processing
step. Our second model, the NFA, relaxed this deterministic constraint in a “magical” sort
of way, and provided us with some interesting new insights into regular languages, and the
potential for additional efficiency of computation (though this is something we have ignored
for now). Even though NFAs are “magical” in the sense that we can’t actually implement
them, we know we can simulate them with a DFA that has (in the worst case) an exponential
number of states. What if we relaxed our determinism in another way? What if, instead of
having to track an exponential number of states, we allowed the transition function to be
probabilistic—at each computational step, we allow a transition to only a single next state,
but we allow it to happen with some probability over many different states? In essence, we
avoid the exponential state explosion at the cost of introducing uncertainty into our model—
we no longer can be certain about what path the computation follows and in what state the
machine is in at any point in the computation. Such a model exists and it is called a Markov
chain.

Figure 1 shows a Markov chain that models the flipping of a fair coin. Probablilities on
the edges show that from the start state, there is a 50% chance of transitioning to the heads
state and a 50% chance of transitioning to the tails state. Transitioning from the heads state

Figure 1: A Markov chain ' that models the flipping of a fair coin



to the tails state is as likely as remaining in the heads state, and transitioning from the tails
state to the heads state is as likely as remaining in the tails.

Using this model, we can simulate a series of (fair) coin flips and calculate their proba-
bilities. We will use the notation P(z|y) to represent the conditional probability of event z
happening, given that event y has happened. So, given the model of Figure 1, we can write
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What is the probability P(H) of flipping the coin a single time and having it land heads
up? It is P(heads|start) = 0.5, which is represented by beginning in the start state and
transitioning to the heads state in our diagram!. What about the probability of flipping
three heads in a row P(HHH)? The probability of both event x and event y happening is
computed by multiplying their individual probabilities together, P(xy) = P(x)P(y)*. Thus
the probability of flipping three heads in a row is

P(HHH) = P(heads|start) P(heads|heads)P(heads|heads) = 0.5 x 0.5 x 0.5 = 0.125

Figure 1 shows a computation tree for all possible sequences of three or fewer coin flips.
Note that each unique path in the tree corresponds to a unique sequence of events (coin
flip results), and the probability of a particular sequence is computed by multiplying the
probabilities on the edges of the path.

What about the probability of flipping the coin three times and having exactly two of
them be heads? This is a bit trickier, as there are several possible ways this can happen
(HHT, HT'H, THH). The probability of either event = or event y happening is computed
by adding their individual probabilities together, P(z or y) = P(z) + P(y). So, to compute
the probability of seeing exactly two heads in three coin flips, we want to compute the
probability of each path in the tree that has exactly two heads and one tail and then add

IBecause the first event in a sequence cannot be conditioned on any prior event, this initial probability
P(heads|start) is sometimes written as the unconditional probability P(heads); here, we write all prob-
abilities as conditional and use a special start state that does not have an associated event and whose
unconditional probability P(start) = 1.

2Note that this is actually only true when x and y are independent events. In general, P(xy) < P(z)P(y),
but for our discussion, we will only be concerned with the independent case, as, in particular, it is the defining
characteristic of Markov chains.
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Figure 2: A partial tree showing computation paths for the Markov chain C' of Figure 1.

them together. In this case, because the coin is fair, each path will have the same probability
and the total probability of seeing exactly two heads is

P(exactly 2 heads) = P(HHT) + P(HTH) + P(THH) = 0.125 + 0.125 + 0.125 = 0.375

1.1 Formal Definition of Markov Chains

Like in previous readings, we have started with some informal discussion. We will now give
a formal definition of Markov chains, similar to those we’ve seen in the past.

Definition 0.0.1. A Markov Chain is a 5-tuple (Q, %, 9,7, qo), where
1. @ is a finite set called the states
2. X is a finite set called the alphabet
3. 0:QU{q} x Q —[0...1] is the state transition function
4. v: @ — X is the state emission function
5. qo ¢ Q is the start state

Note the similarities to our definitions for DFAs and NFAs, but also note some important
differences. Like previous models, Markov chains have a set of states, a set of alphabet
symbols, a transition function and a start state. However, unlike earlier models, the start
state is a special kind of state that is not included in the set of states (). Also, the transition
function is (as you might expect) again different from what we’ve seen in the past. This
time, it maps a pair of states to a real number between 0 and 1, which we will interpret as
a probability. That is, the transition function ¢ is now interpreted as the probability that



the Markov chain will transition from one state to another. Note that this function takes as
input only two states: the state from which the transition occurs and the state to which it
goes. Another way to think about this is to realize that the probability of transition does not
depend on any states occupied prior to the current state—history beyond the current state
does not matter in determining the transition probability. This property is called Markouvian,
after Andrey Markov, a Russian mathematician interested in stochastic processes, and it is
this property that gives this model its name. In addition to the now familiar transition
function §, we now have an entirely new function v, called the emission function. Because
we now associate a probability with transitions, we will associate alphabet symbols with
states instead. The emission function tells us how symbols are associated with states—it
maps a symbol from ¥ to each state in (). Each time the Markov chain visits a state, it
consumes (or emits) its associated alphabet symbol. Finally, note that Markov chains do
not have a set of accept states; every state in the model is a valid ending state.

Revisiting the Markov chain C' of Figure 1, the formal definition of C' is (Q, %, d, 7, q),
where

1. Q = {heads, tails}
2. X ={H,T}

3. 0 is given as

‘ heads  tails

start 0.5 0.5
heads 0.5 0.5
tails 0.5 0.5
4. ~ is given as
q v(@)
heads H
tails T

5. qo = start

1.2 Computing with Markov Chains

Similar to DFAs, Markov chains can be thought of as language recognizers or as machines
that accept some strings and reject others. However, similar to regular expressions, Markov
chains can also be thought of as generators of strings, and, in fact, it is the latter that is
perhaps the more common case. When used as acceptors, we say that the Markov chain is
a discriminative model, and when used as a generator, we say that the Markov chain is a
generative model.



1.2.1 Discriminative models

When used discriminatively, Markov chains have a formal definition of computation that
is similar to those we've seen for DFAs and NFAs. Let C' = (Q,%,,7,q9) be a Markov
chain and w be a string over the alphabet . Then we say that C' accepts w if we can

write w = y1ys - - - Ym, Where each y; € ¥, and one or more sequences of states rj,ri,...,r}
rard At e exist in Q U {qo} with three conditions:
L. To = 4o
n m—1 )
1
2. Z I1 5(7"]77"j+1) >602>0

3. y(r)) =y, fori=1,...,nand j=1,...,m

Condition 1 says that the machine starts out in the start state. Condition 2 says that
the total probability over all sequences of states is greater than some positive threshold 6
(which can be chosen in many ways, and might, for example, be a function of the length of the
string). Condition 3 says that for each sequence, each state in the sequence is associated with
the appropriate alphabet letter in the string w—in other words, it says that each sequence
of states can generate the string w.

1.2.2 Generative models

When used generatively, Markov chains give us the ability to compute the probability
of various sequences (or subsequences) occurring. Let C' = (Q,%,6,7,q0) be a Markov
chain, w = y1y2---ym, Where each y; € X, be a string over the alphabet > and R =
{(r1,...orm)|ri € Q,v(r;) = vi, 1 <@ < m} be the set of state sequences that can generate
w. Then, we can compute the probability of C' generating w as

m

P(w) =Y d(qo,r1) [[6(rj. 1)

reER j=1

The total probability is computed by summing over all generating sequences, and, for each
sequence, computing the probability of the entire sequence as a product of conditional prob-
abilities, each transition to a new state conditioned on the previous state.

1.3 Exercises

Exercise 1.1. Consider the transition diagram for C in Figure 1.

a. Draw a modified transition diagram for C} to represent a coin that is biased to land
on heads 75% of the time.

b. Compute the probability of flipping the coin three times and seeing the sequence tails,
heads, tails.

c. Compute the probability of flipping the coin three times and seeing an odd number of
tails.



Exercise 1.2. Given the following formal description of a Markov model, C' = (Q, %, 4,7, qo)
1. Q=1{0,1}
2. ¥ =4{0,1}

3. 0 is given as

0 1
start | 0.25  0.75
0 0.25 0.75
1 1.0 0.0

4. « is given as

q | (2

0

1] 1
5. qo = start

a. Draw a transition diagram for C'.

b. Considering C as a generative model, what string of length 4 is most likely to be
generated?

c. What string is least likely to be generated?

d. Considering C' as a discriminative model, let 6 = (0.5)™, where m is the length of the
string in question. Will the the string 1001 be accepted by C? Why or why not?

e. Will the string 0010 be accepted by C'? Why or why not?

f. List all strings of length 4 or less that are in L(C)?

g. What happens to L(C) if we make 6 a constant?



