CS 252 - Hidden Markov Models
Additional Reading 2
and
Homework problems

2 Hidden Markov Models (HMMs)

Markov chains are a simple way to model uncertainty in our computations. One thing
that makes them simple is the fact that given a string, we know everything about how the
model processes (or generates) it. In particular, we know which states the machine passes
through, in what order, and what symbol come from what state. What if things were more
complicated? What if we didn’t know which state the model was in? In other words, what if
the state information was hidden from us? This idea is captured in Hidden Markov Models
(HMMs). Like Markov chains, these models are simple in the sense that they have very
limited memory—state transitions are governed only by the identity of the current state
and not by any earlier state history; but they are more complex (i.e., more powerful) than
Markov chains because the states are hidden. What we mean by hidden is that we are
not told what states the machine passes through to generate (or discriminate) a particular
string. At each computational step, the machine transitions probabilistically to a state, just
as in the case of Markov chains, but we don’t get to observe what state. In each state, the
machine probabilistically generates (or consumes) a character, which we do get to observe.
A classic example of this can be seen in music. When we listen to a musical melody, we
are hearing a sequence of pitches. Behind those pitches are a sequence of chords from which
the notes are generated. For certain kinds of music, it is not difficult to determine the chord
progression behind the melody, but in the general case, this can be quite difficult (and there
is usually not even one “right” answer). One way to model this is with an HMM. The hidden
states correspond to different chords, and the generated observations are the pitches.
Another example of this occurs in natural language. Consider a sequence of words that
form a sentence, where the words are atomic “alphabet” symbols and the sentence is the
“string”. Many words in the English language have multiple parts of speech and it can be
tricky to determine what part of speech is intended for a particular word. Speech recognition
and text prediction are other examples of kinds of sequences that can be modeled with

HMMs.

2.1 Formal Definition of Hidden Markov Models
As you might guess, the formal definition of HMMs is quite similar to that of Markov chains.

Definition 0.0.1. A Hidden Markov Model is a 5-tuple (Q,>, 0,7, qo), where
1. @ is a finite set called the states

2. ¥ is a finite set called the alphabet

3. 0:QU{q} x Q —[0...1] is the state transition function
4. v:Q x X —[0...1] is the state emission function

5. qo ¢ @ is the start state

Note the only difference from our definition for Markov chains is in the definition of ~.
Now, instead of each state being associated with exactly one alphabet symbol, each state
has an associated probability distribution over all the alphabet symbols. When a state is
visited, it probabilistically selects one alphabet symbol to emit, based on the distribution ~.
This is what makes the states unobservable. For example, in Figure 1, notice that the pitch
G can be emitted in both the C state and the G state. In other words, when you hear the
G note, you can not be certain with which chord it is associated—the state is hidden from
direct observation.

Revisiting the Markov chain M of Figure 1, the formal definition of M is (Q, %, d,, q),
where

1. Q={1,V,VII}
2. ¥ ={C,C* D, D¥ E F F* G,G* A, A* B}
3. 0 is given as

I vV VI

0.5 0.5 0
0.3 0.5 0.2

start
1

v 0.3 0.3 0.4
VII 0.75 0.25 0
0.3
0.3
[9 ct
IR AN 38 TR I ERC e To JoJe 1o e 1o Jola Lo Lo |
i ’ i 03 0.5 0.2
0.25
cTe Do Lorle I 1o Jo Tola la 1o |

0.2 03 05

Figure 1: An HMM M that models chord progression and generates a melody in the key of
C

4. v is given as

|c ¢* D D¥ E F F¥ G G*¥ A A* B

T |05 0.2 0.3
1% 0.3 0.5 0.2
Vil 0.2 0.3 05
5. qo = start

2.2 Computing with Hidden Markov Models

HMDMs can be used in the same ways that Markov chains can be, though they are a bit more
complicated, and they raise additional questions. We can still ask questions like “Can string
w be generated by model M with probability greater than 7" (discrimination) or ”Given
model M, what is the most probable string w is will generate?” (generation). But we also
might ask the question, ”Given that model M generates string w, what is the most likely
sequence of states it went through to do so?”. Because the states are hidden, the answer is
not immediately obvious. But, since we already have the string, you might wonder why we
care what sequence of states was used to generate it. However, it turns out that the answer
to this question is where much of the power of the HMM lies—answering this question is the
key to many applications like speech recognition, speech-to-text, predictive text and spell
correction, spam filtering and so on. HMMSs are also used to model processes in other fields
as diverse as music, physics and chemistry.

2.2.1 The Viterbi algorithm

So, how do we find the most likely sequence of states for a given string? A simple, algorithm
called the Viterbi algorithm is the answer. Given a machine M and a string w, the Viterbi
algorithm uses an example of a process called dynamic programming that finds the most
likely state sequence by iteratively finding the most likely next state in a greedy fashion.

Consider the machine M of Figure 1 and the pitch sequence GBGC. What sequence of
state (chord progression) most likely produced these pitches? The Viterbi algorithm iterates
between computing all probabilities between states given the next observation and then
greedily chooses the max path to that point. When the iteration is complete, it returns the
highest probability path by backtracking from the most likely final state.

The following step-by-step example illustrates. The first step, shown in Figure 2, is to
compute the probability of moving from the start to each state and emitting a G from that
state.

Next, we find the highest probability path to each state using all the paths available so
far. In this first iteration, there are no choices since we for sure started in the start state, so
this step is trivial the first time through the iteration. The second iteration next finds the
probability of of moving from each state to every other state and emitting a B (see Figure 3).

Next, we find the highest probability path to each state using all the paths available so
far, shown in black in Figure 4. For example, all paths to state I at the second iteration
have 0 probability (all greyed out in the figure). There are two paths to state V with equal

(0.5)(0.3)

P(next|start)P(G|next)

Figure 2: Viterbi step 1

G B G

Figure 3: Viterbi step 2

probability of 0.015 (through states I and V, respectively) and one path to state V with 0
probability (through state VII, greyed out). There is one path to state VII with probability
0 (through state VII, greyed out), one path to state VII with probability 0.015 (through
state I, greyed out) and one path to state VII with probability 0.05 (through state V).

G B G o
0.15 0

(0.5)(0.3)

max[P(next|current)P(B|next)*P(current)]
Figure 4: Viterbi step 3

Now, another interation begins and we again compute all paths from states to state, this
time including the probability of emitting a G (see Figure 5).

Then, we again compute the max step (see Figure 6).

And, the process is repeated one more time, for the last pitch, C, shown in Figures 7-8.

After this last step, we see that after emitting the final C note, the model can only
be in state I, and that the most probable path through the model for emitting the pitch
sequence GBGC has a probability of 0.0016875. We can find the sequence of hidden states
that corresponds to this probability by tracing the black arrows (which correspond to our
max choices at each iteration) backwards to the start state, and this is shown in Figure 9. In
this example, the most probable sequence of hidden states for producing the melody GBGC
is (V,VII, I,1I). If you are a musician, that means you should probably look at the chords
G, Bym, C and C, in order to find a good harmonization for the melody'. To mention
some other examples, If the observations were words and the hidden states were parts-of-
speech, the hidden state sequence would tell us the most probable grammatical structure of

L Assuming we are working in the key of C, which is what the emission matrices are designed to model.
Note that changing just the emission matrices will effect transposition to another key.

(0.5)(0.3)

0.0
P(next|current)P(B|next)

Figure 5: Viterbi step 4

G B G o

(0.5)(0.3)

0.00625

0.0
max|[P(next|current)P(B|next)*P(current)]

Figure 6: Viterbi step 5

G B G o
0.15 0 0.01125

(0.3)(0.5

(0.5)(0.3)

(0.3)(0.5§
0.0062
D

P(next|current)P(B|next)

Figure 7: Viterbi step 6

G B G o

0.15 0 0.01125 0.0016875
(0.3)(0.5

(0.5)(0.3)

)
| max[P(next|current)P(B|next)*P(current)]

Figure 8: Viterbi step 7

a sentence. If the observations were phonemes and the hidden states were words, the hidden
state sequence would tell us the most probable speech sequence.

Note that for even simple models like this one, sequences of even modest length will
quickly result in probabilities so small that underflow becomes a serious concern. To ame-
liorate this, it is common to compute log probabilities instead. Because we are usually
interested in comparative statistics, the log function will not change the outcome, and it will
result in much larger numbers. In addition, because log(zy) = log(z) + log(y), we get the
benefit of faster computations because the multiplication of probabilities can be replaced by
the addition of log probabilities?.

(0.5)(0.3)

0.25)(0.5 0
oo
0

Figure 9: Viterbi step 8

0.0

2.3 Learning

Another important question, for both Markov chains and HMMs, is how to determine what
the probabilistic parameters should be, and even in many cases what the states should
be as well. This is an active area of research in Machine Learning that is beyond the
scope of this discussion, but in the simplest cases, this parameter learning can be done by
collecting statistics over example data. For instance, if you wanted to build a Markov chain
for predictive text for a cell phone keyboard application, you could collect data from people
typing and use that data to count occurrences of various combinations of letters. Those
counts can then be converted into probabilities. If you wanted to use an HMM for speech

2Since log(z) < 0 for 0 < z < 1, it is not uncommon to use the -log() of the probability.

recognition, you could collect recordings of various people talking under various conditions
and use that data for counting statistics. The musical model above could be learned from a
corpus of musical examples, from which pitch co-occurrence counts could be collected.

2.4 Exercises

Exercise 2.1. Given the following formal description of a Markov model, M = (Q, 3,6, , qo)
1. Q=1{1,2}
2. ¥ ={a,b,c,d}

3. ¢ is given as

| 1 2
start | 0.6 0.4
1 0.5 0.5
2 0.3 0.7

4. v is given as

‘ a b c d
1104 03 02 0.1
2103 02 03 02

5. qo = start

a. Draw a transition diagram for M.
b. Use the Viterbi algorithm to compute the most probable state sequence for the string
bad. Show your work, and report both the state sequence and its probability.

