
Using A Neural Network to Approximate AnEnsemble of Classi�ersXinchuan Zeng and Tony R. MartinezComputer Science DepartmentBrigham Young UniversityProvo, Utah 84602Abstract. Several methods (e.g., Bagging, Boosting) of constructing and combiningan ensemble of classi�ers have recently been shown capable of improving accuracy ofa class of commonly used classi�ers (e.g., decision trees, neural networks). The ac-curacy gain achieved, however, is at the expense of a higher requirement for storageand computation. This storage and computation overhead can decrease the utilityof these methods when applied to real-world situations. In this paper, we propose alearning approach which allows a single neural network to approximate a given en-semble of classi�ers. Experiments on a large number of real-world data sets show thatthis approach can substantially save storage and computation while still maintainingaccuracy similar to that of the entire ensemble.Keywords: approximator, bagging, boosting, ensemble of classi�ers, neural networks

1



1. IntroductionSeveral methods (e.g., Bagging, Boosting) of constructing and combining an ensembleof classi�ers have been proposed to improve the accuracy of learning algorithms. Overthe last several years they have drawn increased interest and research in the �elds ofmachine learning and neural networks.The typical structure of this type of methods is an ensemble (group) of diversecomponent classi�ers. A diverse ensemble is created by assigning each componentclassi�er a di�erent training set, which is usually derived from the original trainingset by resampling or other techniques. To classify an input pattern, the predictions ofall component classi�ers are combined, by weighted or unweighted voting, to make a�nal classi�cation decision.Di�erences between these approaches center mainly on how to create a diverseensemble and how to combine the component classi�ers. The most extensively studiedapproaches are Bagging by Breiman [1] and Boosting by Freund and Schapire [2].E�ectiveness of these methods, especially Bagging and Boosting, has been demon-strated empirically. Breiman [1] has shown that Bagging can increase accuracies ofCART decision trees on several real and arti�cial domains. Quinlan [3], Bauer andKohavi [4] demonstrated the capability of Bagging and Boosting to improve C4.5 de-cision trees, based on a large number of data sets. Also, Maclin and Opitz [5] haveshown that Bagging and Boosting can improve the accuracy of neural networks.Despite their obvious advantages, these methods have at least three weaknesses:(1) increased storage, (2) increased computation, and (3) decreased comprehensibility.The �rst weakness, increased storage, is a direct consequence of the requirementthat all component classi�ers, instead of a single classi�er, need to be stored aftertraining. The total storage depends on the size of each component classi�er itself andthe size of the ensemble (number of classi�ers in the ensemble). This concern wasparticularly addressed by Dietterich [6].The second weakness is increased computation: to classify an input query, allcomponent classi�ers (instead of a single classi�er) must be processed, and thus itrequires more execution time.The last weakness is decreased comprehensibility, as stressed also by Dietterich [6].With involvement of multiple classi�ers in decision-making, it is more di�cult for usersto perceive the underlying reasoning process leading to a decision.The work by Margineantu and Dietterich [7] has addressed the issue of increasedstorage by using a pruning technique. In this approach, they applied several pruningalgorithms to remove some decision trees from an ensemble constructed by boosting.The empirical results show that the storage requirement can be reduced by 60% to80% without seriously decreasing accuracy (maintaining about 80% of the accuracygain achieved by boosting).Domingos [8] applied another approach to address this issue through generating abase learner by providing it with a new training set composed of a large number ofexamples generated and classi�ed according to the ensemble. The empirical resultsusing C4:5 rules as the base learner and bagging as the ensemble method show that theapproach retains on average 60% of the accuracy gains obtained by bagging relative toa single run of C4:5 rules. This type of methodology of transforming (approximating)one form of hypothesis representation to another one has been previously studied byCraven and Shavlik. In their studies, they extracted rules [9] and tree-structuredrepresentations [10] from a trained neural network.In this paper, we propose an improved approach to reduce the negative e�ects of theweaknesses (with emphasis on the �rst two) of ensemble classi�ers. Our basic strategyis to approximate a given ensemble of classi�ers by an alternative representation thatneeds much less storage, while still maintaining the same or similar accuracy as theensemble. Speci�cally, we propose an approach to train a multilayer neural networkto approximate the behavior of the ensemble.We construct such an approximator by training a neural network to learn froma given ensemble. A pseudo training set is sampled based on the distribution of theoriginal training set and is labeled by querying the ensemble. The neural network is2



then trained on this pseudo training set. One distinct feature of our approach is to usea (probability) vector to label the class of each item in the pseudo training set. Theamplitude of the (probability) component for a class is proportional to the numberof votes received from the ensemble. In contrast, previous approaches by Craven andShavlik [9, 10] and by Domingos [8] used a scalar to label the class { the class thatreceives the maximum votes from the ensemble. We suggest that a vector can capturericher information about the decision making process of the ensemble, without losingpotentially important details of the distribution of the voting.The feasibility of this approximation approach has been tested on 16 domainsusing Bagging as the ensemble method. The results show that the constructed neuralnetwork has the capability of saving a considerable amount of memory (81%) andcomputation, while still keeping a high percentage of agreed predictions and a similaraccuracy (retains 94% accuracy gain) to the given ensemble. These results comparefavorably to those reported by Margineantu and Dietterich [7] and by Domingos [8].We also compare the vector labeling against the scalar labeling for pseudo trainingsets. The simulation results demonstrate signi�cant advantages of vector labeling overscalar labeling.The rest of paper is organized as follows. Section 2 brie
y reviews Bagging andBoosting, with emphasis on Bagging. Section 3 describes our approach of approx-imating an ensemble by a neural network. Section 4 presents experimental resultson several domains. Section 5 summarizes the work and outlines the plan for futureresearch.2. Ensembles of Classi�ersIn the following discussion we use the following conventions for the purpose of con-venience and clarity. An individual classi�er in an ensemble is called a componentclassi�er. The form of the representation for component classi�ers, such as decisiontree and neural network, is called the base representation. The learning algorithm thatoutputs a component classi�er based on a training set, such as C4.5, CART, and Back-propagation, is called the base learning algorithm. A composite classi�er that basesits decision on the voting of the component classi�ers is called a voting classi�er. Amethod that constructs and combines an ensemble of component classi�ers, such asBagging and Boosting, is called a ensemble method. A classi�er that approximates avoting classi�er is called an approximator.Although there are numerous existing methods of constructing and combining anensemble of classi�ers, we only describe here the two most popular ones { Bagging andBoosting. We will put more emphasis on the description of Bagging since it will beused in the experiments.Bagging [1] uses a resampling technique, bootstrap [11], to generate multiple diversedata sets from the original training set, and then uses them as training sets to constructan ensemble of diverse component classi�ers.The Bootstrap method works in the following ways to generate a new trainingset (bootstrap replicate). In each iteration, it randomly (with uniform probabilitydistribution) draws an example from the original training set and puts it into a newtraining set. But after each drawing, a copy of the drawn example is put back into theoriginal training set (i.e., with replacement) { the original training set thus remainsintact after each drawning. This process repeats until the new training set containsthe same number of examples as the original training set. In a new training set, someexamples in the original training set may appear multiple times while some may notappear at all.With an ensemble of resampled training sets, Bagging then applies a base learningalgorithm to construct an ensemble of component classi�ers. To classify an unla-beled pattern, it uses simple (unweighted) voting to combine the predictions of thecomponent classi�ers and assigns the output of the pattern to the class receiving themaximum votes. If two or more classes have same maximum vote, then one is randomlychosen one.Boosting [2] assigns each example an adjustable weight which is proportional to theprobability of being drawn as a training example. Classi�ers constructed by Boosting3



are order-dependent: how to construct a new classi�er depends on the accuracies ofprevious ones. This dependence is re
ected by adjusting the weights of all examples(increasing the weights of misclassi�ed examples) after each classi�er is constructed.After each round of weight adjusting, the training of a new classi�er will focus more onthose examples misclassi�ed by previous classi�ers. Unlike Bagging, Boosting appliesa weighted voting to combine classi�ers, assigning a larger voting weight to classi�erswith higher accuracy.3. Using a Neural Network as an ApproximatorThe objective of an approximator for an ensemble of classi�ers is to have the capabilityof classifying future input examples in the same way the ensemble does. Ideally, wehope that an approximator can form the same hypothesis as that of the ensemble inthe feature space.We formulate the task of constructing an approximator in the following form:Given: (1) a training set S = f(xi; yi)ji = 1; 2; :::Ng as a base for training componentclassi�ers, where xi=(xi1, xi2, ...xiM ) is an input vector (M is the number offeatures), and yi 2 fg1; g2; :::gCg (C is the number of classes) is the labeled classfor xi; (2) a voting classi�er � based on an ensemble of component classi�ersf�j jj = 1; 2; :::Kg obtained from training sets derived from S.Task: Construct an approximator � that approximates � so that �(xi) = �(xi) (i =1; 2; :::N) with a high probability.To complete this task, we use the following three steps: (1) sample a pseudotraining set based on the distribution of the original training set, (2) label the pseudotraining set by querying the given voting classi�er, and (3) train a neural networkusing the labeled pseudo training set.3.1 Sampling a Pseudo Training SetA pseudo training set, unlike the original training set, is an arti�cial training setgenerated by sampling and labeling based on the original training set. A generatedpseudo training set needs to re
ect major characteristics of the original training set.The main reason for using a pseudo training set (instead of the original training set)is its unlimited size { we can sample as many examples as we need. In contrast,the size of the original training set S is �xed and sometimes could be very small.A large training set is often necessary for approximating a voting classi�er, whichtypically forms a more complex hypothesis than each component classi�er [6]. To learna more complex hypothesis, more training examples are needed to probe the decisionboundaries de�ned by a voting classi�er, thus making it easier for an approximator toform a similar hypothesis.We assume that the test set will be drawn from the same underlying distribution asthat in the original training set. Therefore, we require that a sampled pseudo trainingset must re
ect the input distribution of the original training set (thus it is also ableto re
ect that of the test set). To satisfy this requirement, the following method wasapplied to sample the pseudo training set based on the statistics of the original trainingset. Sampling for nominal and continuous features are handled separately.For a nominal feature, the marginal distribution for each nominal value is �rstcomputed from the original training set. Sampling for this feature is then based onthis marginal distribution.For a continuous feature, its value is �rst discretized into p (p = 10 in our exper-iments) equally-sized intervals between the minimum and the maximum value, andthe marginal distribution for each interval is then computed from the original trainingset. When sampling this feature, a random number is generated to determine whichinterval it falls into according to this marginal distribution. Then it interpolates itsvalue within this interval according to the di�erence between the random number andthe probabilities at the two ends of this interval { a sampled feature thus remains ina continuous spectrum.
4



3.2 Labeling a Pseudo Training SetThe Labeling process assigns a class label to each example in a pseudo training setsampled by the method described above. Since our goal is to let a neural networklearn from a voting classi�er such that it will behave similarly to the voting classi�er,we can use the voting classi�er as an oracle to answer a query and assign a class labelto each example in the pseudo training set.When a voting classi�er is applied as an oracle to label an example, a returned classlabel may take one of two formats: a scalar, representing the class with the maximumvotes, or a vector, representing the class probability vector whose components areproportional to the received votes.Craven and Shavlik [9, 10] used a scalar to represent a returned class label from anoracle when they extracted rules and tree-structured representations from a trainedneural network. This labeling format was also used by Domingos [8].In contrast, we choose a vector as the class label for a sampled pseudo training set.The reason for this choice is that a class probability vector is able to capture moreinformation about decisions made by a voting classi�er, while a scalar only keeps theclass with the maximum vote and, as a result, loses certain voting information. Theperformances of the two labeling formats are compared experimentally in the nextsection.When a vector is used as a class label, a labeled pseudo training set can be expressedas (* represents pseudo): S� = f(x�i ;p�i )ji = 1; 2; :::N�g (1)where x�i = (x�i1; x�i2; :::x�iM ) is the feature vector and p�i = (p�i1; p�i2; :::p�iC) is the classprobability vector. p�ij is the probability for class j for example i and is proportionalto the number of votes Vij received from the K component classi�ers:p�ij = Vij=K (2)Obviously, the probabilities are normalized: PCj=1 p�ij = 1, because the total numberof votes received by example i is K:PCj=1 Vij = K.3.3 Class Distribution in SamplingAn additional requirement is that a sampled pseudo training set must have the sameclass distribution as that in the original training set. To obtain the information aboutthe class distribution in the original training set, we �rst applied the voting classi�er torelabel the original training set, and then used the new labels (instead of the originallabels) to calculate the class distribution. The reason for the relabeling is to allowa constructed approximator to perceive a class distribution in the same way as thevoting classi�er, so that it can have more similar behavior to the voting classi�er.Before creating a pseudo training set S� with size N� (number of examples in S�),we assign a quota N�j = DjN� to class j (j = 1; 2; :::C) where Dj is the percentageof examples with class j in the relabeled original training set. S� is initially empty,and the sampled examples are added into it using the following procedure until itssize reaches N�. For each sampled (unlabeled) example x� using the sampling methoddescribed previously, it is �rst labeled by the voting classi�er and is assigned a vectorlabel p(x�); then the class label with maximum vote q(x�) is determined from p(x�):q(x�) = argmaxjfpj(x�)j(j = 1; 2; :::C)g. If the number of already sampled exampleswith class label q(x�) in S� is smaller than N�q (i.e., the quota for class q is not yet�lled), then x� is added to S�; otherwise, x� is not added to S�. This process continuesuntil all quotas N�j (j = 1; 2; :::C) are �lled up. Thus, S� includes exactly N�j exampleswith class label j for each class j.After sampling and labeling a pseudo training set S� by the methods describedabove, we construct an approximator by training a neural network using the backprop-agation learning algorithm. There is a major di�erence between our training approachand standard backpropagation: we use the class probability distribution (a vector) asthe training target while the standard approach uses a class label (a scalar) as thetraining target. For this reason, we have adapted the standard procedure to a form5



suitable for using a vector as the training target, and details of the new procedure arediscussed in the next section.4. ExperimentsWe have tested the approximation approach introduced in the last section on 16 datasets drawn from the UCI machine learning repository [12]. We applied strati�ed 10-fold cross-validation [13, 14] to estimate the accuracies of classi�ers in the experiments.We conduct 5 cross-validations for each data set and average the accuracy over the5 cross-validations. The data sets chosen for testing re
ect a wide range of di�erenttypes of domains. The sizes of the data sets tested are in the range from small tomedium (those with very large sizes were not tested due to the length of computingmultiple 10-fold cross-validations).4.1 Training Component Classi�ersEach component classi�er is a single-hidden-layer neural network trained by standardbackpropagation learning algorithm. In the experiments, each ensemble includes 10component classi�ers. Then Bagging is applied to combine them onto a voting classi-�er.A well-known problem for backpropagation is that a trained neural network isprone to over-�tting the training data. To reduce the e�ect of this problem, we use avalidation set to monitor training progress.Before training, we partition the training set S into two subsets: sub-training set S1(2/3 of S) and sub-validation set S2 (1/3 of S). S2 serves to monitor the performanceof the trained network on S1 for avoiding over-�tting and selecting the number ofhidden nodes. The partition of S is strati�ed { both S1 and S2 have approximatelythe same class distributions as S { so that monitoring the error on S2 can make abetter esitmation to the performance of the network trained on data set S1. Thetraining procedure includes the following two phases.In the �rst phase, we use S1 as the training set and S2 as the validation set.The network has a single hidden layer and the initial number of hidden nodes is 5.All initial weights are randomly chosen from -0.5 to 0.5 and are stored for futurepossible retrievals. The learning rate is 0.2 and the momentum is 0.5. We used thevalidation set S2 to determine the network con�guration (number of hidden nodes) inthe following manner. After training the neural network with the initial number (5) ofhidden nodes, we increment the number of hidden nodes by 5. After training a networkwith a �xed number of hidden nodes is �nished, its error rate (using squared error asthe error function) on the validation set will be compared with that of previously savedbest con�guration. If the error rate is improved (smaller), we then assume that thecurrent number of hidden nodes (network con�guration) is better that the previouslysaved best one, and save the current con�guration as the best one.In the second phase of training, the whole training set S (S1 plus S2) is used totrain a network with the optimal number of hidden nodes determined above.4.2 Training ApproximatorThe training procedure and parameter setting for a neural network approximator arethe same as those for training the component neural networks but with the followingtwo di�erences.First, the target is a vector (p�i ) for an approximator while it is a scalar (yi) fora component neural network. We have adapted the standard backpropagation to thefollowing form so that a vector can be used as the training target. For training example(x�i ;p�i ), we set the target value of output node j to be the component p�ij of vectorp�i , and then use the standard procedure to propagate the error (oij � p�ij) (where oijis the output value of the jth output node when example i is fed into the network).Second, the error calculation on the validation set is di�erent. For a componentneural network, the output values of all output nodes are set to either 0 or 1 (withthe output node with highest output value being 1 and the rest of them being 0),and then compared to the target values (also either 1 or 0). For a given pattern,the classi�cation result is either correct or incorrect, which corresponds to an error of6



either 0 or 1. So the error is discrete (0=N2, 1=N2,..., N2=N2) where N2 is number ofexamples in the validation set.However, for a neural network approximator, the error for example i and outputnode j is (oij � p�ij), and thus the error rate is continuous. This type of error oftencontinuously drops slowly even though the network has already reached a minima,while a discrete error rate usually does not vary in this case.To deal with this di�erence and avoid unnecessary training, we empirically set anon-zero error reduction threshold (0:001=epoch in our experiments) to decide if thetraining is in progress when monitoring the error on the validation set. Only when theaverage error reduction between two monitorings is larger than the threshold, does thetraining be considered to be in progress. (In contrast, the corresponding threshold is0:0=epoch when training the component neural networks; that is, training is consideredto be in progress as long as there is any amount of error decrease.)4.3 Experimental ResultsTable 1 shows the test-set accuracies and percentage of agreed predictions of di�erentclassi�ers on 16 data sets drawn from the UCI data repository [12].Table 1: Test-set accuracy and percentage of agreed predictions 1Accuracy(%) Agreed (%)Data Set Std Apprs Apprv Bag Std Apprs ApprvBupa 68.6 69.1 70.5 71.2 83.2 88.1 91.2Flag 62.2 62.5 63.5 63.4 80.9 83.6 89.1German 73.4 74.2 75.0 75.3 85.1 86.4 88.9Glass 62.1 62.1 64.6 66.2 82.1 83.7 89.8Hayes 79.8 80.6 81.1 81.3 93.5 98.9 99.8Heart(c) 82.7 83.8 84.0 84.0 93.0 95.6 96.0Heart(h) 80.5 82.7 81.4 81.2 91.1 93.3 92.7Heart(s) 83.3 83.7 84.4 83.9 92.1 95.2 95.9Horse 65.3 65.6 66.2 68.5 78.6 81.3 84.6Iris 92.9 95.9 96.0 95.7 94.3 98.5 99.2Led7 71.3 72.6 73.0 73.0 89.9 98.1 98.8Led17 65.6 66.5 69.0 68.6 78.4 81.5 87.5Pima 75.8 76.3 76.9 76.5 90.9 95.1 95.4Voting 95.5 95.9 96.0 95.7 98.3 98.9 98.9Wave21 81.5 82.6 84.2 83.1 87.7 89.5 92.6Zoo 93.6 94.7 94.7 94.7 97.3 98.0 98.2Average 77.1 78.1 78.8 78.9 88.5 91.6 93.7In the table, Std is the standard classi�er that uses a single neural networktrained on the original training set. Appr is the approximator that is a singleneural network trained on a pseudo training set of size 500. Apprs representsthe scalar target format used by Craven and Shavlik [9, 10] and by Domingos [8],while Apprv represents the vector target format proposed in this work. Bag isthe bagging classi�er based on voting from an ensemble of 10 component neuralnetworks, trained on the data sets resampled from the original training set.The results show that Bagging improves all of the 16 data sets. Apprvapproximates Bag better than Std and Apprs. The average accuracy di�erencebetween Bag and Apprv (78:9% � 78:8% = 0:1%) is much smaller than thatbetween Bag and Std (78:9% � 77:1% = 1:8%) and that between Bag andApprs (78:9%� 78:1% = 0:8%).1Notations: heart(c) { heart (cleveland); heart(h) { heart (hungarian); heart(s) { heart(statlog). 7



Aside from accuracy, another parameter to measure the quality of an approx-imator is percentage of agreed predictions. The percentage of agreed predictionsof classi�er A to classi�er B is de�ned as the percentage of test examples towhich A predicts exactly the same class (whether correct or not) as B. It re-
ects the similarity of classi�er A to classi�er B with regard to classi�cationbehavior.The last three columns in Table 1 show the percentages of agreed predictionsof Std, Apprs and Apprv with respect to Bag. They show a similar trend as theaccuracies.The results in Table 1 show advantages of Apprv over Apprs in terms ofboth accuracy and percentage of agreed predictions. This con�rms our analysisin the last section: using a vector as the target format can capture more votinginformation than using a scalar, and thus enable a trained approximator bemore accurate in approximating a voting classi�er.One measurement for the quality of an approximator is the relative perfor-mance (RP ) with respect to the ensemble [7] (or retaining rate of accuracy gainobtained by the ensemble [8]), de�ned as the ratio of the accuracy gain obtainedby the approximator and the accuracy gain obtained by the ensemble:RP = (ACCAppr �ACCStd)(ACCEsem �ACCStd) (3)where ACCStd, ACCEsem, and ACCAppr are accuracies achieved by standard,ensemble (bagging or boosting), and approximator classi�ers respectively.The RP value obtained by Margineantu and Dietterich [7] (tested on 10 datasets) is about 80%, and that by Domingos [8] (tested on 26 data sets) is about60%. From Table. 1, the average RP value for Apprv is 94%, which comparesfavorably to those obtained by Margineantu and Dietterich and by Domingos.We also studied the hypothesis complexities of di�erent classi�ers in theexperiment. When a hypothesis is represented in the framework of a single-hidden-layer neural network, its complexity can be measured by the number ofhidden nodes. Table 2 compares the average number of hidden nodes for Std,BagC, BagE and Apprv . BagC is the average number of hidden nodes for onecomponent classi�er, and BagE is the average number of hidden nodes for thewhole ensemble (including 10 component classi�ers).Each value in the table is obtained by �rst averaging over 10 di�erent foldsfor each 10-fold cross-validation (BagC needs an extra average over 10 di�erentcomponent classi�ers for each fold), and then averaging over 5 di�erent 10-foldcross-validations.The results show that Apprv has a more complex hypothesis (more hiddennodes) than Std and BagC. They are expected results because a voting classi�ercan form a more 
exible hypothesis than any of individual component classi�ers,as analyzed previously.Another important issue is how much storage can be saved by using an ap-proximator to replace a bagging classi�er. The last column in Table 2 shows thestorage ratio of an approximator to the whole ensemble (i.e., Appr=BagE ). Theresults show a signi�cant reduction in storage: an approximator only requiresa small fraction (19% on average) of the storage for the whole ensemble, andhence is capable of saving a substantially large amount of storage space (81%on average).The technique by Margineantu and Dietterich [7] pruned 60% to 80% of thedecision trees in an ensemble. The approach proposed here can attain highersavings in storage, because it only needs to store a single network while thepruning approach needs to store multiple decision trees (potentially it may still8



need a large number of trees, since the number is proportional to the size of theoriginal ensemble).Table 2: Number of hidden nodes & StorageData Set Std BagC BagE Apprv StorBupa 9.3 8.5 85 9.6 11%Flag 7.9 9.0 90 16.4 18%German 7.1 9.8 98 10.3 11%Glass 8.5 8.9 89 17.2 19%Hayes 5.6 5.8 58 16.3 28%Heart(c) 7.2 7.1 71 13.2 19%Heart(h) 6.3 7.0 70 12.8 18%Heart(s) 6.8 7.0 70 12.0 17%Horse 8.9 8.9 89 10.9 12%Iris 5.3 5.3 53 11.3 21%Led7 9.2 9.6 96 25.8 27%Led17 11.1 11.0 110 21.9 20%Pima 7.3 8.1 81 8.7 11%Voting 6.2 5.9 59 13.1 22%Wave21 7.3 7.5 75 13.6 18%Zoo 8.7 7.3 73 20.8 28%Average 7.7 7.9 79 14.6 19%Domingos [8] measured the capability of memory saving using the ratio of thestorage required by the approximator over the storage required by the standardclassi�er (smaller ratio means more memory saving). The value of the ratioranges from 2 to 6 for the result of Domingos [8]. From Table 2, the averageratio in our experiment is 1.9, which is smaller than that reported by Domingos[8]. In the experiment, only 10 component classi�ers were included in an ensem-ble. We would expect a larger storage reduction if there are more componentclassi�ers in an ensemble. The reason is that only a single neural network ap-proximator is needed regardless of the number of classi�ers in an ensemble, whilethe storage of the pruning approach depends on the number of classi�ers.This approach can also substantially reduce the requirement for computa-tion. To classify an example, it only needs to run a single neural network ap-proximator in stead of running multiple component classi�ers in an ensemble.The amount of reduction in computation is proportional to that for storage.We have also studied how the size of a pseudo training set can a�ect thequality of a trained approximator. The results show that this approximatingapproach typically only needs a pseudo training set with a relatively small sizeto achieve a high degree of agreed predictions and thus is quite e�cient Theresults shown in above tables are based on pseudo training sets with only 500examples.5. SummaryIn summary, we have presented an approach to construct a neural network as anapproximator for a voting classi�er. We have also carried out the experimentsto test this approach on 16 data sets.The experimental results demonstrate that the proposed approach is e�-cient in constructing an accurate approximator of a bagging classi�er. The con-structed neural network is capable of saving 81% memory while still maintaining9



94% of the accuracy gain by the ensemble. These results compare favorably tothose using other methods [7, 8].One important factor for the observed good performance by this approach isthe adoption of the scheme using a vector as the target format for class labeling.The simulation results show that using a vector as the target format performssigni�cantly better than that using a scalar [8, 9, 10] for the particular task oflearning from an ensemble.Although we have only tested this approach using bagging as the ensemblemethod and using neural networks as the component classi�ers, it is straight-forward to extend this approach to �t other ensemble methods and componentclassi�ers. For ensemble methods using simple (unweighted) voting, regardlessof the type of component classi�er, this approach can be applied directly withoutmodi�cations.For a ensemble method using a weighted voting (e.g., boosting), this ap-proach needs to be modi�ed. The only required modi�cation is to use a di�er-ent method to label the class probability vector in a pseudo training set; morespeci�cally, Vij in Eq. (2) needs to take into account the voting weights ofcomponent classi�ers when calculating the votes received for class j.References[1] L. Breiman, Bagging predictors, Machine Learning, Vol. 24, pp. 123-140,1996.[2] Y. Freund and R. Schapire, Experiments with a new boosting algorithm,in Proc. of the Thirteenth National Conference on Machine Learning, pp.148-156, Morgan Kaufmann, 1996.[3] J. R. Quinlan, Bagging, boosting, and c4.5, in Proc. of the ThirteenthNational Conference on Arti�cial Intelligence, pp. 725-730, AAAI/MITPress, 1996.[4] E. Bauer, and R. Kohavi, An empirical comparison of voting classi�cationalgorithms: bagging, boosting and variants, Machine Learning, Vol 36, pp.105-139, 1999.[5] R. Maclin, and D. Opitz, An empirical evaluation of bagging and boosting,in Proc. of the Fourteenth National Conference on Arti�cial Intelligence,pp. 546-551, AAAI/MIT Press, 1997.[6] T. G. Dietterich, Machine-learning research - four current directions, AIMagazine, Winter: pp. 97-136, 1997.[7] D. D. Margineantu and T. G. Dietterich, Pruning adaptive boosting, inProc. of the Fourteenth International Conference on Machine Learning,pp. 98-106, 1997.[8] P. Dominggos, Knowledge acquisition from examples vis multiple models, inProc. of the Fourteenth International Conference on Machine Learning,pp. 211-218, 1997.[9] M. W. Craven and J. W. Shavlik, Learning symbolic rules using arti�cialneural networks, in Proc. of the 10th International Conference on MachineLearning, pp. 73-80, Amherst, MA. Kaufmann, 1993.[10] M. W. Craven and J. W. Shavlik, Extracting tree-structured representationfrom trained networks, in D. S. Touretzky, M. C. Mozer and M. Hasselmo(ed.) Advances in Neural Information Processing System 8, pp. 24-30,MIT Press, 1996.[11] B. Efron and R. Tibshirani, An Introduction to the Bootstrap, New York:Chapman and Hall, 1993.[12] C. J. Merz and P. M. Murphy, UCI repository of machine learning databases,http://www.ics.uci.edu/�mlearn/MLRepository.html, 1996.10



[13] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classi�cationand Regression Trees, Wadsworth International Group, 1984.[14] R. Kohavi, A study of cross-validation and bootstrap for accuracy estima-tion and model selection, in Proc. of the International Joint Conferenceon Arti�cial Intelligence, pp. 1137-1143, 1995.

11


