Using A Neural Network to Approximate An
Ensemble of Classifiers

Xinchuan Zeng and Tony R. Martinez

Computer Science Department
Brigham Young University
Provo, Utah 84602

Abstract. Several methods (e.g., Bagging, Boosting) of constructing and combining
an ensemble of classifiers have recently been shown capable of improving accuracy of
a class of commonly used classifiers (e.g., decision trees, neural networks). The ac-
curacy gain achieved, however, is at the expense of a higher requirement for storage
and computation. This storage and computation overhead can decrease the utility
of these methods when applied to real-world situations. In this paper, we propose a
learning approach which allows a single neural network to approximate a given en-
semble of classifiers. Experiments on a large number of real-world data sets show that
this approach can substantially save storage and computation while still maintaining
accuracy similar to that of the entire ensemble.

Keywords: approximator, bagging, boosting, ensemble of classifiers, neural networks

1. Introduction

Several methods (e.g., Bagging, Boosting) of constructing and combining an ensemble
of classifiers have been proposed to improve the accuracy of learning algorithms. Over
the last several years they have drawn increased interest and research in the fields of
machine learning and neural networks.

The typical structure of this type of methods is an ensemble (group) of diverse
component classifiers. A diverse ensemble is created by assigning each component
classifier a different training set, which is usually derived from the original training
set by resampling or other techniques. To classify an input pattern, the predictions of
all component classifiers are combined, by weighted or unweighted voting, to make a
final classification decision.

Differences between these approaches center mainly on how to create a diverse
ensemble and how to combine the component classifiers. The most extensively studied
approaches are Bagging by Breiman [1] and Boosting by Freund and Schapire [2].

Effectiveness of these methods, especially Bagging and Boosting, has been demon-
strated empirically. Breiman [1] has shown that Bagging can increase accuracies of
CART decision trees on several real and artificial domains. Quinlan [3], Bauer and
Kohavi [4] demonstrated the capability of Bagging and Boosting to improve C4.5 de-
cision trees, based on a large number of data sets. Also, Maclin and Opitz [5] have
shown that Bagging and Boosting can improve the accuracy of neural networks.

Despite their obvious advantages, these methods have at least three weaknesses:
(1) increased storage, (2) increased computation, and (3) decreased comprehensibility.

The first weakness, increased storage, is a direct consequence of the requirement
that all component classifiers, instead of a single classifier, need to be stored after
training. The total storage depends on the size of each component classifier itself and
the size of the ensemble (number of classifiers in the ensemble). This concern was
particularly addressed by Dietterich [6].

The second weakness is increased computation: to classify an input query, all
component classifiers (instead of a single classifier) must be processed, and thus it
requires more execution time.

The last weakness is decreased comprehensibility, as stressed also by Dietterich [6].
With involvement of multiple classifiers in decision-making, it is more difficult for users
to perceive the underlying reasoning process leading to a decision.

The work by Margineantu and Dietterich [7] has addressed the issue of increased
storage by using a pruning technique. In this approach, they applied several pruning
algorithms to remove some decision trees from an ensemble constructed by boosting.
The empirical results show that the storage requirement can be reduced by 60% to
80% without seriously decreasing accuracy (maintaining about 80% of the accuracy
gain achieved by boosting).

Domingos [8] applied another approach to address this issue through generating a
base learner by providing it with a new training set composed of a large number of
examples generated and classified according to the ensemble. The empirical results
using C4.5 rules as the base learner and bagging as the ensemble method show that the
approach retains on average 60% of the accuracy gains obtained by bagging relative to
a single run of C4.5 rules. This type of methodology of transforming (approximating)
one form of hypothesis representation to another one has been previously studied by
Craven and Shavlik. In their studies, they extracted rules [9] and tree-structured
representations [10] from a trained neural network.

In this paper, we propose an improved approach to reduce the negative effects of the
weaknesses (with emphasis on the first two) of ensemble classifiers. Our basic strategy
is to approximate a given ensemble of classifiers by an alternative representation that
needs much less storage, while still maintaining the same or similar accuracy as the
ensemble. Specifically, we propose an approach to train a multilayer neural network
to approximate the behavior of the ensemble.

We construct such an approximator by training a neural network to learn from
a given ensemble. A pseudo training set is sampled based on the distribution of the
original training set and is labeled by querying the ensemble. The neural network is

then trained on this pseudo training set. One distinct feature of our approach is to use
a (probability) vector to label the class of each item in the pseudo training set. The
amplitude of the (probability) component for a class is proportional to the number
of votes received from the ensemble. In contrast, previous approaches by Craven and
Shavlik [9, 10] and by Domingos [8] used a scalar to label the class — the class that
receives the maximum votes from the ensemble. We suggest that a vector can capture
richer information about the decision making process of the ensemble, without losing
potentially important details of the distribution of the voting.

The feasibility of this approximation approach has been tested on 16 domains
using Bagging as the ensemble method. The results show that the constructed neural
network has the capability of saving a considerable amount of memory (81%) and
computation, while still keeping a high percentage of agreed predictions and a similar
accuracy (retains 94% accuracy gain) to the given ensemble. These results compare
favorably to those reported by Margineantu and Dietterich [7] and by Domingos [8].
We also compare the vector labeling against the scalar labeling for pseudo training
sets. The simulation results demonstrate significant advantages of vector labeling over
scalar labeling.

The rest of paper is organized as follows. Section 2 briefly reviews Bagging and
Boosting, with emphasis on Bagging. Section 3 describes our approach of approx-
imating an ensemble by a neural network. Section 4 presents experimental results
on several domains. Section 5 summarizes the work and outlines the plan for future
research.

2. Ensembles of Classifiers

In the following discussion we use the following conventions for the purpose of con-
venience and clarity. An individual classifier in an ensemble is called a component
classifier. The form of the representation for component classifiers, such as decision
tree and neural network, is called the base representation. The learning algorithm that
outputs a component classifier based on a training set, such as C4.5, CART, and Back-
propagation, is called the base learning algorithm. A composite classifier that bases
its decision on the voting of the component classifiers is called a wvoting classifier. A
method that constructs and combines an ensemble of component classifiers, such as
Bagging and Boosting, is called a ensemble method. A classifier that approximates a
voting classifier is called an approzimator.

Although there are numerous existing methods of constructing and combining an
ensemble of classifiers, we only describe here the two most popular ones — Bagging and
Boosting. We will put more emphasis on the description of Bagging since it will be
used in the experiments.

Bagging [1] uses a resampling technique, bootstrap [11], to generate multiple diverse
data sets from the original training set, and then uses them as training sets to construct
an ensemble of diverse component classifiers.

The Bootstrap method works in the following ways to generate a new training
set (bootstrap replicate). In each iteration, it randomly (with uniform probability
distribution) draws an example from the original training set and puts it into a new
training set. But after each drawing, a copy of the drawn example is put back into the
original training set (i.e., with replacement) the original training set thus remains
intact after each drawning. This process repeats until the new training set contains
the same number of examples as the original training set. In a new training set, some
examples in the original training set may appear multiple times while some may not
appear at all.

With an ensemble of resampled training sets, Bagging then applies a base learning
algorithm to construct an ensemble of component classifiers. To classify an unla-
beled pattern, it uses simple (unweighted) voting to combine the predictions of the
component classifiers and assigns the output of the pattern to the class receiving the
maximum votes. If two or more classes have same maximum vote, then one is randomly
chosen one.

Boosting [2] assigns each example an adjustable weight which is proportional to the
probability of being drawn as a training example. Classifiers constructed by Boosting

are order-dependent: how to construct a new classifier depends on the accuracies of
previous ones. This dependence is reflected by adjusting the weights of all examples
(increasing the weights of misclassified examples) after each classifier is constructed.
After each round of weight adjusting, the training of a new classifier will focus more on
those examples misclassified by previous classifiers. Unlike Bagging, Boosting applies
a weighted voting to combine classifiers, assigning a larger voting weight to classifiers
with higher accuracy.

3. Using a Neural Network as an Approximator

The objective of an approximator for an ensemble of classifiers is to have the capability
of classifying future input examples in the same way the ensemble does. Ideally, we
hope that an approximator can form the same hypothesis as that of the ensemble in
the feature space.

We formulate the task of constructing an approximator in the following form:

Given: (1) a training set S = {(xi,9;)|¢ = 1,2,...IN} as a base for training component
classifiers, where x;=(zi1, Ti2, ...zim) iS an input vector (M is the number of
features), and y; € {g1, g2, ...9gc} (C is the number of classes) is the labeled class
for x;; (2) a voting classifier n based on an ensemble of component classifiers
{njl7 =1,2,..K} obtained from training sets derived from S.

Task: Construct an approximator £ that approximates 7 so that {(x;) = n(xi) (i =
1,2,...N) with a high probability.

To complete this task, we use the following three steps: (1) sample a pseudo
training set based on the distribution of the original training set, (2) label the pseudo
training set by querying the given voting classifier, and (3) train a neural network
using the labeled pseudo training set.

3.1 Sampling a Pseudo Training Set

A pseudo training set, unlike the original training set, is an artificial training set
generated by sampling and labeling based on the original training set. A generated
pseudo training set needs to reflect major characteristics of the original training set.
The main reason for using a pseudo training set (instead of the original training set)
is its unlimited size — we can sample as many examples as we need. In contrast,
the size of the original training set S is fixed and sometimes could be very small.
A large training set is often necessary for approximating a voting classifier; which
typically forms a more complex hypothesis than each component classifier [6]. To learn
a more complex hypothesis, more training examples are needed to probe the decision
boundaries defined by a voting classifier, thus making it easier for an approximator to
form a similar hypothesis.

We assume that the test set will be drawn from the same underlying distribution as
that in the original training set. Therefore, we require that a sampled pseudo training
set must reflect the input distribution of the original training set (thus it is also able
to reflect that of the test set). To satisfy this requirement, the following method was
applied to sample the pseudo training set based on the statistics of the original training
set. Sampling for nominal and continuous features are handled separately.

For a mominal feature, the marginal distribution for each nominal value is first
computed from the original training set. Sampling for this feature is then based on
this marginal distribution.

For a continuous feature, its value is first discretized into p (p = 10 in our exper-
iments) equally-sized intervals between the minimum and the maximum value, and
the marginal distribution for each interval is then computed from the original training
set. When sampling this feature, a random number is generated to determine which
interval it falls into according to this marginal distribution. Then it interpolates its
value within this interval according to the difference between the random number and
the probabilities at the two ends of this interval a sampled feature thus remains in
a continuous spectrum.

3.2 Labeling a Pseudo Training Set

The Labeling process assigns a class label to each example in a pseudo training set
sampled by the method described above. Since our goal is to let a neural network
learn from a voting classifier such that it will behave similarly to the voting classifier,
we can use the voting classifier as an oracle to answer a query and assign a class label
to each example in the pseudo training set.

When a voting classifier is applied as an oracle to label an example, a returned class
label may take one of two formats: a scalar, representing the class with the maximum
votes, or a wvector, representing the class probability vector whose components are
proportional to the received votes.

Craven and Shavlik [9, 10] used a scalar to represent a returned class label from an
oracle when they extracted rules and tree-structured representations from a trained
neural network. This labeling format was also used by Domingos [8].

In contrast, we choose a vector as the class label for a sampled pseudo training set.
The reason for this choice is that a class probability vector is able to capture more
information about decisions made by a voting classifier, while a scalar only keeps the
class with the maximum vote and, as a result, loses certain voting information. The
performances of the two labeling formats are compared experimentally in the next
section.

When a vector is used as a class label; a labeled pseudo training set can be expressed
as (* represents pseudo):

§" ={(xi,pi)li=1,2,..N"} (1)

where x; = (z};,%}s,...x])) is the feature vector and p; = (pj;, pia, ...pjc) is the class
probability vector. p;; is the probability for class j for example i and is proportional
to the number of votes Vj; received from the K component classifiers:

pij = Vij/ K (2)

Obviously, the probabilities are normalized: Zle pi; = 1, because the total number

of votes received by example i is K: Zle Vi = K.

3.3 Class Distribution in Sampling

An additional requirement is that a sampled pseudo training set must have the same
class distribution as that in the original training set. To obtain the information about
the class distribution in the original training set, we first applied the voting classifier to
relabel the original training set, and then used the new labels (instead of the original
labels) to calculate the class distribution. The reason for the relabeling is to allow
a constructed approximator to perceive a class distribution in the same way as the
voting classifier, so that it can have more similar behavior to the voting classifier.

Before creating a pseudo training set S* with size N* (number of examples in S™),
we assign a quota N = D;N™ to class j (j = 1,2,...C) where D; is the percentage
of examples with class j in the relabeled original training set. S™ is initially empty,
and the sampled examples are added into it using the following procedure until its
size reaches N*. For each sampled (unlabeled) example z* using the sampling method
described previously, it is first labeled by the voting classifier and is assigned a vector
label p(z*); then the class label with maximum vote g(z*) is determined from p(z”):
q(z*) = argmaz;{p;(z*)|(j = 1,2,...C)}. If the number of already sampled examples
with class label g(z*) in S™ is smaller than N, (i.e., the quota for class g is not yet
filled), then z” is added to S™; otherwise, 2™ is not added to S™. This process continues
until all quotas N} (j = 1,2,...C) are filled up. Thus, S” includes exactly N; examples
with class label j for each class j.

After sampling and labeling a pseudo training set S™ by the methods described
above, we construct an approximator by training a neural network using the backprop-
agation learning algorithm. There is a major difference between our training approach
and standard backpropagation: we use the class probability distribution (a vector) as
the training target while the standard approach uses a class label (a scalar) as the
training target. For this reason, we have adapted the standard procedure to a form

suitable for using a vector as the training target, and details of the new procedure are
discussed in the next section.

4. Experiments

We have tested the approximation approach introduced in the last section on 16 data
sets drawn from the UCI machine learning repository [12]. We applied stratified 10-
fold cross-validation [13, 14] to estimate the accuracies of classifiers in the experiments.
We conduct 5 cross-validations for each data set and average the accuracy over the
5 cross-validations. The data sets chosen for testing reflect a wide range of different
types of domains. The sizes of the data sets tested are in the range from small to
medium (those with very large sizes were not tested due to the length of computing
multiple 10-fold cross-validations).

4.1 Training Component Classifiers

Each component classifier is a single-hidden-layer neural network trained by standard
backpropagation learning algorithm. In the experiments, each ensemble includes 10
component classifiers. Then Bagging is applied to combine them onto a voting classi-
fier.

A well-known problem for backpropagation is that a trained neural network is
prone to over-fitting the training data. To reduce the effect of this problem, we use a
validation set to monitor training progress.

Before training, we partition the training set S into two subsets: sub-training set St
(2/3 of S) and sub-validation set Sz (1/3 of S). Sz serves to monitor the performance
of the trained network on S; for avoiding over-fitting and selecting the number of
hidden nodes. The partition of S is stratified — both S1 and S2 have approximately
the same class distributions as S so that monitoring the error on S2 can make a
better esitmation to the performance of the network trained on data set Si. The
training procedure includes the following two phases.

In the first phase, we use S; as the training set and Sz as the validation set.
The network has a single hidden layer and the initial number of hidden nodes is 5.
All initial weights are randomly chosen from -0.5 to 0.5 and are stored for future
possible retrievals. The learning rate is 0.2 and the momentum is 0.5. We used the
validation set Sz to determine the network configuration (number of hidden nodes) in
the following manner. After training the neural network with the initial number (5) of
hidden nodes, we increment the number of hidden nodes by 5. After training a network
with a fixed number of hidden nodes is finished, its error rate (using squared error as
the error function) on the validation set will be compared with that of previously saved
best configuration. If the error rate is improved (smaller), we then assume that the
current number of hidden nodes (network configuration) is better that the previously
saved best one, and save the current configuration as the best one.

In the second phase of training, the whole training set S (S1 plus Sz2) is used to
train a network with the optimal number of hidden nodes determined above.

4.2 Training Approximator
The training procedure and parameter setting for a neural network approximator are
the same as those for training the component neural networks but with the following
two differences.

First, the target is a vector (p;) for an approximator while it is a scalar (y;) for
a component neural network. We have adapted the standard backpropagation to the
following form so that a vector can be used as the training target. For training example
(xi,pi), we set the target value of output node j to be the component p;; of vector
p;, and then use the standard procedure to propagate the error (0;; — p;;) (where oy
is the output value of the jth output node when example i is fed into the network).

Second, the error calculation on the validation set is different. For a component
neural network, the output values of all output nodes are set to either 0 or 1 (with
the output node with highest output value being 1 and the rest of them being 0),
and then compared to the target values (also either 1 or 0). For a given pattern,
the classification result is either correct or incorrect, which corresponds to an error of

either 0 or 1. So the error is discrete (0/N2, 1/Na,..., N2/N>) where N» is number of
examples in the validation set.

However, for a neural network approximator, the error for example ¢ and output
node j is (0i;; — pj;), and thus the error rate is continuous. This type of error often
continuously drops slowly even though the network has already reached a minima,
while a discrete error rate usually does not vary in this case.

To deal with this difference and avoid unnecessary training, we empirically set a
non-zero error reduction threshold (0.001/epoch in our experiments) to decide if the
training is in progress when monitoring the error on the validation set. Only when the
average error reduction between two monitorings is larger than the threshold, does the
training be considered to be in progress. (In contrast, the corresponding threshold is
0.0/epoch when training the component neural networks; that is, training is considered
to be in progress as long as there is any amount of error decrease.)

4.3 Experimental Results
Table 1 shows the test-set accuracies and percentage of agreed predictions of different
classifiers on 16 data sets drawn from the UCI data repository [12].

Table 1: Test-set accuracy and percentage of agreed predictions !

Accuracy(%) Agreed (%)
Data Set || Std | Appr® | Appr¥ | Bag || Std Apprs | Appr?
Bupa 68.6 69.1 70.5 | 71.2 || 83.2 88.1 91.2
Flag 62.2 62.5 63.5 | 634 | 80.9 83.6 89.1
German 73.4 74.2 75.0 | 75.3 || 85.1 86.4 88.9
Glass 62.1 62.1 64.6 | 66.2 || 82.1 83.7 89.8
Hayes 79.8 80.6 81.1 | 81.3 || 93.5 98.9 99.8

Heart(c) || 82.7 | 838 | 840 840 930 | 956 | 96.0
Heart(h) || 805 | 82.7| 814 | 812 | 91.1 | 93.3| 927
Heart(s) | 83.3 | 83.7| 844 839 921 | 952 959

Horse 65.3 65.6 66.2 | 68.5 || 78.6 81.3 84.6
Iris 92.9 95.9 96.0 | 95.7 || 94.3 98.5 99.2
Led?7 71.3 72.6 73.0 | 73.0 || 89.9 98.1 98.8
Led17 65.6 66.5 69.0 | 68.6 || 78.4 81.5 87.5
Pima 75.8 76.3 76.9 | 76.5 | 90.9 95.1 95.4

Voting 95.5 95.9 96.0 | 95.7 || 98.3 98.9 98.9
Wave21 81.5 82.6 84.2 | 83.1 || 87.7 89.5 92.6
Zoo 93.6 94.7 94.7 | 94.7 || 97.3 98.0 98.2
Average | 77.1 78.1 78.8 | 78.9 || 88.5 91.6 93.7

In the table, Std is the standard classifier that uses a single neural network
trained on the original training set. Appr is the approximator that is a single
neural network trained on a pseudo training set of size 500. Appr® represents
the scalar target format used by Craven and Shavlik [9, 10] and by Domingos [§],
while Appr? represents the vector target format proposed in this work. Bayg is
the bagging classifier based on voting from an ensemble of 10 component neural
networks, trained on the data sets resampled from the original training set.

The results show that Bagging improves all of the 16 data sets. Appr?
approximates Bag better than Std and Appr®. The average accuracy difference
between Bag and Appr® (78.9% — 78.8% = 0.1%) is much smaller than that
between Bag and Std (78.9% — 77.1% = 1.8%) and that between Bag and
Appr® (78.9% — 78.1% = 0.8%).

!Notations: heart(c) — heart (cleveland); heart(h) — heart (hungarian); heart(s) — heart
(statlog).

Aside from accuracy, another parameter to measure the quality of an approx-
imator is percentage of agreed predictions. The percentage of agreed predictions
of classifier A to classifier B is defined as the percentage of test examples to
which A predicts exactly the same class (whether correct or not) as B. It re-
flects the similarity of classifier A to classifier B with regard to classification
behavior.

The last three columns in Table 1 show the percentages of agreed predictions
of Std, Appr® and Appr? with respect to Bag. They show a similar trend as the
accuracies.

The results in Table 1 show advantages of Appr? over Appr® in terms of
both accuracy and percentage of agreed predictions. This confirms our analysis
in the last section: using a vector as the target format can capture more voting
information than using a scalar, and thus enable a trained approximator be
more accurate in approximating a voting classifier.

One measurement for the quality of an approximator is the relative perfor-
mance (RP) with respect to the ensemble [7] (or retaining rate of accuracy gain
obtained by the ensemble [8]), defined as the ratio of the accuracy gain obtained
by the approximator and the accuracy gain obtained by the ensemble:

(ACCAP" — ACCS™)

RP = (ACOEsem _ ACOStd) (3)

where ACCSt ACCF*™ and ACCAPP" are accuracies achieved by standard,
ensemble (bagging or boosting), and approximator classifiers respectively.

The RP value obtained by Margineantu and Dietterich [7] (tested on 10 data
sets) is about 80%, and that by Domingos [8] (tested on 26 data sets) is about
60%. From Table. 1, the average RP value for Appr? is 94%, which compares
favorably to those obtained by Margineantu and Dietterich and by Domingos.

We also studied the hypothesis complexities of different classifiers in the
experiment. When a hypothesis is represented in the framework of a single-
hidden-layer neural network, its complexity can be measured by the number of
hidden nodes. Table 2 compares the average number of hidden nodes for Std,
BagC, BagFE and ApprY. BagC is the average number of hidden nodes for one
component classifier, and BagFE is the average number of hidden nodes for the
whole ensemble (including 10 component classifiers).

Each value in the table is obtained by first averaging over 10 different folds
for each 10-fold cross-validation (BagC needs an extra average over 10 different
component classifiers for each fold), and then averaging over 5 different 10-fold
cross-validations.

The results show that Appr? has a more complex hypothesis (more hidden
nodes) than Std and BagC. They are expected results because a voting classifier
can form a more flexible hypothesis than any of individual component classifiers,
as analyzed previously.

Another important issue is how much storage can be saved by using an ap-
proximator to replace a bagging classifier. The last column in Table 2 shows the
storage ratio of an approximator to the whole ensemble (i.e., Appr/BagE). The
results show a significant reduction in storage: an approximator only requires
a small fraction (19% on average) of the storage for the whole ensemble, and
hence is capable of saving a substantially large amount of storage space (81%
on average).

The technique by Margineantu and Dietterich [7] pruned 60% to 80% of the
decision trees in an ensemble. The approach proposed here can attain higher
savings in storage, because it only needs to store a single network while the
pruning approach needs to store multiple decision trees (potentially it may still

need a large number of trees, since the number is proportional to the size of the
original ensemble).

Table 2: Number of hidden nodes & Storage
Data Set || Std | BagC | BagE | Appr"” | Stor

Bupa 9.3 | 85 85 9.6 11%
Flag 7.9 |9.0 90 16.4 18%
German 7.1 9.8 98 10.3 11%
Glass 85 |89 89 17.2 19%
Hayes 56 | 5.8 58 16.3 28%

Heart(c) || 7.2 | 7.0 |71 | 132 | 19%
Heart(h) || 63 | 7.0 |70 | 12.8 | 18%
Heart(s) || 6.8 | 7.0 70 12.0 17%

Horse 89 |89 89 10.9 12%
Iris 53 |53 53 11.3 21%
Led7 9.2 9.6 96 25.8 27%
Ledl7 11.1 | 11.0 110 21.9 20%
Pima 7.3 8.1 81 8.7 11%

Voting 6.2 5.9 99 13.1 22%
Wave2l 7.3 7.5 75 13.6 18%
Zoo 87 | 7.3 73 20.8 28%
Average || 7.7 | 7.9 79 14.6 19%

Domingos [8] measured the capability of memory saving using the ratio of the
storage required by the approximator over the storage required by the standard
classifier (smaller ratio means more memory saving). The value of the ratio
ranges from 2 to 6 for the result of Domingos [8]. From Table 2, the average
ratio in our experiment is 1.9, which is smaller than that reported by Domingos
[8].

In the experiment, only 10 component classifiers were included in an ensem-
ble. We would expect a larger storage reduction if there are more component
classifiers in an ensemble. The reason is that only a single neural network ap-
proximator is needed regardless of the number of classifiers in an ensemble, while
the storage of the pruning approach depends on the number of classifiers.

This approach can also substantially reduce the requirement for computa-
tion. To classify an example, it only needs to run a single neural network ap-
proximator in stead of running multiple component classifiers in an ensemble.
The amount of reduction in computation is proportional to that for storage.

We have also studied how the size of a pseudo training set can affect the
quality of a trained approximator. The results show that this approximating
approach typically only needs a pseudo training set with a relatively small size
to achieve a high degree of agreed predictions and thus is quite efficient The
results shown in above tables are based on pseudo training sets with only 500
examples.

5. Summary

In summary, we have presented an approach to construct a neural network as an
approximator for a voting classifier. We have also carried out the experiments
to test this approach on 16 data sets.

The experimental results demonstrate that the proposed approach is effi-
cient in constructing an accurate approximator of a bagging classifier. The con-
structed neural network is capable of saving 81% memory while still maintaining

94% of the accuracy gain by the ensemble. These results compare favorably to
those using other methods [7, 8].

One important factor for the observed good performance by this approach is
the adoption of the scheme using a vector as the target format for class labeling.
The simulation results show that using a vector as the target format performs
significantly better than that using a scalar [8, 9, 10] for the particular task of
learning from an ensemble.

Although we have only tested this approach using bagging as the ensemble
method and using neural networks as the component classifiers, it is straight-
forward to extend this approach to fit other ensemble methods and component
classifiers. For ensemble methods using simple (unweighted) voting, regardless
of the type of component classifier, this approach can be applied directly without
modifications.

For a ensemble method using a weighted voting (e.g., boosting), this ap-
proach needs to be modified. The only required modification is to use a differ-
ent method to label the class probability vector in a pseudo training set; more
specifically, Vi; in Eq. (2) needs to take into account the voting weights of
component classifiers when calculating the votes received for class j.

References

[1] L. Breiman, Bagging predictors, Machine Learning, Vol. 24, pp. 123-140,
1996.

[2] Y. Freund and R. Schapire, Experiments with a new boosting algorithm,
in Proc. of the Thirteenth National Conference on Machine Learning, pp.
148-156, Morgan Kaufmann, 1996.

[3] J. R. Quinlan, Bagging, boosting, and c4.5, in Proc. of the Thirteenth
National Conference on Artificial Intelligence, pp. 725-730, AAAI/MIT
Press, 1996.

[4] E. Bauer, and R. Kohavi, An empirical comparison of voting classification
algorithms: bagging, boosting and variants, Machine Learning, Vol 36, pp.
105-139, 1999.

[5] R. Maclin, and D. Opitz, An empirical evaluation of bagging and boosting,
in Proc. of the Fourteenth National Conference on Artificial Intelligence,
pp. 546-551, AAAT/MIT Press, 1997.

[6] T. G. Dietterich, Machine-learning research - four current directions, Al
Magazine, Winter: pp. 97-136, 1997.

[7] D. D. Margineantu and T. G. Dietterich, Pruning adaptive boosting, in
Proc. of the Fourteenth International Conference on Machine Learning,
pp. 98-106, 1997.

[8] P. Dominggos, Knowledge acquisition from examples vis multiple models, in

Proc. of the Fourteenth International Conference on Machine Learning,
pp. 211-218, 1997.

[9] M. W. Craven and J. W. Shavlik, Learning symbolic rules using artificial
neural networks, in Proc. of the 10th International Conference on Machine
Learning, pp. 73-80, Amherst, MA. Kaufmann, 1993.

[10] M. W. Craven and J. W. Shavlik, Extracting tree-structured representation
from trained networks, in D. S. Touretzky, M. C. Mozer and M. Hasselmo
(ed.) Advances in Neural Information Processing System 8, pp. 24-30,
MIT Press, 1996.

[11] B. Efron and R. Tibshirani, An Introduction to the Bootstrap, New York:
Chapman and Hall, 1993.

[12] C.J.Merz and P. M. Murphy, UCI repository of machine learning databases,
http://www.ics.uci.edu/~mlearn/MLRepository.html, 1996.

10

[13] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees, Wadsworth International Group, 1984.

[14] R. Kohavi, A study of cross-validation and bootstrap for accuracy estima-
tion and model selection, in Proc. of the International Joint Conference
on Artificial Intelligence, pp. 1137-1143, 1995.

11

