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Abstract. Reliable evaluation for the performance of classifiers depends on the quality of the data sets on which they are
tested. During the collecting and recording of a data set, however, some noise may be introduced into the data, especially in
various real-world environments, which can degrade the quality of the data set. In this paper, we present a novel approach,
called ADE (automatic data enhancement), to correct mislabeled data in a data set. In addition to using multi-layer neural
networks trained by backpropagation as the basic framework, ADE assigns each training pattern a class probability vector as its
class label, in which each component represents the probability of the corresponding class. During training, ADE constantly
updates the probability vector based on its difference from the output of the network. With this updating rule, the probability
of a mislabeled class gradually becomes smaller while that of the correct class becomes larger, which eventually causes the
correction of mislabeled data after a number of training epochs. We have tested ADE on a number of data sets drawn from the
UCI data repository for nearest neighbor classifiers. The results show that for most data sets, when there exists mislabeled data,
a classifier constructed using a training set corrected by ADE can achieve significantly higher accuracy than that without using
ADE.
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1. Introduction

In the field of machine learning, neural networks and pattern recognition, a typical approach to evaluate
the performance of classifiers is to test them on some real-word data sets (such as those from the UCI
machine learning data repository). Clearly, the quality of data sets affects the reliability of the evaluations.
In the process of collecting and recording data in the real-word, however, some noise may be introduced
into data sets, due to various sources of error. The inclusion of noise in data sets would, as a consequence,
affect the quality of evaluation of the classifiers being tested.

This issue has been addressed previously using various approaches in several research areas, especially
in instance-based learning whose performance is particularly sensitive to noise in training data. To
eliminate noise in a training set, Wilson used a 3-NN (Nearest Neighbor) classifier as a filter (or pre-
processor) to eliminate those instances that are misclassified by the 3-NN, and then applied 1-NN on
the filtered data as the classifier [7]. Several versions of edited nearest neighbor algorithms [5–7,9] save
only selected instances for generalization in order to reduce storage while still maintaining a similar
accuracy. The algorithm proposed by Aha et al. [1,2] removed noise and reduced storage by retaining
only those instances that have good classification records when applied as nearest neighbors. Wilson
and Martinez [18,19] proposed several instance-pruning techniques which are capable of removing noise
and reducing the requirement of storage.
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The idea of using selected instances in training data has also been applied to other classifiers. In an
approach proposed by John [12], training data is first filtered by removing those instances pruned by a
C4.5 tree [15], and a new tree is then constructed using filtered data. Gamberger et al. [8] proposed a
noise detection and elimination method based on compression measures and theMinimum Description
Length principle. Brodley and Friedl [4] applied an ensemble of classifiers as a filter to identify and
eliminate mislabeled training data. Teng [16,17] applied a procedure to identify and correct noise in
class and attributes, based on the predictions of c4.5 decision trees.

In this work we present a novel approach, called ADE (automatic data enhancement), to correct
mislabeled instances in a data set. This approach is based on the mechanisms of neural networks trained
by backpropagation. However, a distinct feature of this approach, in contrast to those of standard
backpropagation, is that each pattern in the data set is assigned a class probability vector which is
constantly updated (instead of being fixed) during training. The class label for each pattern is determined
by its class probability vector and thus is also updated during training. Using this new mechanism, an
initially mislabeled class could be corrected through gradually changing its class probability vector.

The class probability vector is updated in such a way that it becomes closer to the output of the network.
The output of the network is, however, determined by the architecture and weight settings of the network,
which is the result of previous training using all patterns in the whole data set. If the initial mislabeled
percentage is reasonably small (e.g.,< 30%), the network will be predominantly determined by those
correctly labeled patterns. During training, the outputs of the network become more consistent with
the class probability vectors of correctly labeled patterns while less consistent with those of incorrectly
labeled patterns. The updating rule modifies the class probability vectors of mislabeled patterns by a
larger amount due to their higher inconsistences with the outputs than those of correctly labeled patterns.
For a mislabeled pattern, the probability component of the mislabeled class becomes smaller while that
of the correct class becomes larger. After a number of training epochs, the component of the correct
class gradually increases to a level larger than that of the mislabeled class (which is initially the largest).
At that point, the mislabeled class is modified to the correct class.

We have tested the performance of ADE on 24 data sets drawn from the UCI data repository using a
nearest neighbor classifier. For each data set, we first mislabel a fraction of the training set, and then apply
ADE to correct mislabeled training data. We compare the test set accuracies of two nearest neighbor
classifiers – one using the training set with mislabeling and the other using the training set corrected
by ADE. The stratified 10-fold cross-validation method is applied for estimating the accuracies. We
conducted 20 stratified 10-fold cross-validations for each data set in order to achieve a reliable estimation.
The results show that for most data sets, the classifiers using ADE for correction are capable of achieving
significantly higher accuracies than those without using ADE. Even when there is no mislabeled data,
a classifier using ADE can achieve a higher accuracy for some data sets, showing the general utility of
ADE as a data correcting algorithm.

2. Related work

Some approaches have been previously proposed to handle mislabeled data. Most of them focused
on identifying mislabeled instances and then applying a filtering mechanism to remove them from the
training set.

Several early works on nearest neighbor classifiers [5–7,9] applied various methods to remove noise
or combine some instances, forming an edited or condensed data set. The edited set was then applied for
building classifiers for generalization. The main benefit of the approaches is the reduction for storage
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requirement, while still maintaining accuracies similar to or only slightly lower than those using the
original data sets.

The algorithm IB3, one version of IBL (instance-based learning) proposed by Aha et al. [1,2], keeps
track of the record of classification accuracy for each instance in the original data set, and then retains
only those instances whose record is better than a certain threshold. The retained data is then applied to
construct classifiers. They showed that IBL has the capability of removing noise and reducing storage
as well.

Wilson and Martinez [18,19] proposed several instance-pruning techniques which are noise-tolerant
and capable of reducing the number of instances retained in memory while maintaining (and sometimes
improving) generalization accuracy.

Gamberger et al. [8] presented a noise detection and elimination method for inductive learning. This
method is based on compression measures and theMinimum Description Length principle, and eliminates
noisy instances by finding a minimal example set. The method was applied to the CN2 rule induction
algorithm on a diseases diagnosis domain. The results showed increased accuracy after applying the
noise elimination algorithm.

Brodley and Friedl [4] applied an ensemble of classifiers as a filter to identify and eliminate mislabeled
training data. An ensemble of three classifiers, a 1-NN, a linear machine and a univariate decision tree,
is applied to classify each data instance. An instance is identified as misclassified and is removed if
all three classifiers output the same class and that class is different from the original labeling. They
evaluated their algorithm by an empirical study using a real-world data set consisting of land-cover maps
of the Earth’s surface. The results demonstrated that the classifiers constructed using the filtered data
can achieve a higher accuracy than those using the original set, in which certain controlled fractions of
mislabeling are introduced.

Teng [16,17] introduced a procedure, calledpolishing, to identify and correct noise both in classes
and in attributes. In the first phase (prediction phase), 10-fold cross-validation was applied for data
partitioning of the training set and test set. For each test set, a c4.5 decision tree classifier [15] was
constructed based on the training set. It was then applied to classify each instance in the test set, and
its output was considered as a predicted value and was used as a reference for correction. To deal with
noise for an attribute, the class was treated as an input and the attribute as the output. In the second phase
(adjustment phase), each misclassified instance’s attributes were adjusted (replaced with the predicted
values from the first phase) so that they can be correctly classified. If no combination of attribute
value replacement was capable of correcting the classification, then its class value was replaced with the
predicted one (from the first phase). The procedure was tested on 12 data sets from the UCI machine
learning data repository, showing capability of identifying and correcting noise, and the capability of
improving the accuracy of classifiers through using corrected training data.

The ADE procedure presented in this work has the following distinct features compared to previous
approaches for similar tasks. (i) In previous work [4,16,17], a data set was first divided into two disjoint
subsets: a training set and a test set. The noise in the test set was identified through the use of predictions
made by a classifier or an ensemble of classifiers constructed from the training set. However, the training
set itself consists the same percentage of noise as the test set. A classifier constructed in such a way
may not have good quality (especially when a high level of noise exists in the data set) and thus it may
not be able to make accurate predictions about the noise. In contrast, ADE includes all instances in the
process and allows every instance to change its class, without relying on a pre-constructed classifier.
(ii) By using a class probability instead of a binary class label, ADE allows a large number of hypotheses
about class labelings to interact and compete with each other simultaneously, and let them smoothly and
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incrementally converge to an optimal or near-optimal solution. This type of strategy has been shown
efficient in searching a large solution-space for NP-class optimization problems using relaxation-type
neural networks [10]. (iii) Compared to using other types of classifiers, using multi-layer feed-forward
networks can take advantage of their high capacity for fitting the target function. It has been shown that
a network with one hidden layer has the capacity of approximating any function [11]. (iv) Both nominal
and numerical attributes can be easily handled using the ADE procedure, in contrast to the limitation
to the type of attributes when using other procedures (for example, each attribute needs to be nominal
when using thepolishing procedure). (v) Compared to the strategy of removing noise [4,8], correcting
mislabeled data is particularly useful for small-size data sets (for which data is sparse or data collection
is costly) because every instance can be used as the training data. In comparison, removing part of the
data from an already sparse data set could significantly reduce the performance of a classifier which was
trained using this data set.

3. Algorithm

LetS be an input data set in which some instances have been mislabeled, Our task is to find a procedure
to correct those mislabeled instances and then output a corrected data setŜ.

There are various domains in which pattern recognition techniques can be applied. Most of the domains
which we are interested in possess the following two properties: (i) a data set contains some degree of
regularity (instead of being totally random), which can be discovered and be used to build a classifier
which has capability of making predictions that are better than random guessing; (ii) when a reasonably
small fraction of the data set is mislabeled, those regularities will still be maintained to a certain degree,
although they may be weakened by the mislabeling.

Let α be the non-mislabeled fraction andβ (= 1 − α) the mislabeled fraction of input data setS.
Let S

(c)
sub be the correctly labeled subset andS

(m)
sub the mislabeled subset (S

(c)
sub + S

(m)
sub = S). The

instances inS(c)
sub have a tendency of strengthening the regularities possessed inS, while those inS (m)

sub
have a tendency of weakening the regularities due to the random nature of mislabeling. However, if the
mislabeled fraction is small (i.e.,β << α), the trend of maintaining the regularities due toS

(c)
sub will be

dominant. The strategy of ADE is to apply the discovered regularities inS
(c)
sub to correct those mislabeled

instances inS(m)
sub .

We use a multi-layer perceptron as the underlying classifier to capture the regularities contained
in S. The reason for this choice is that neural networks have demonstrated capability of detecting
and representing regularities (features) in a data set. Neural networks with one hidden-layer have the
capability of approximating any function [11]. We use backpropagation as the training procedure for the
network.

The format and procedure adopted in our approach is the same as those of standard backpropagation
networks except for the following differences.

In standard procedure, each instancev in S has the following format:

v = (x, y) (1)

wherex = (x1, x2, . . . , xf ) is the feature vector ofv, andf is the number of features;y is the class
(category) label ofv.
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In our approach, however, we attach aclass probability vector to each instancev in S:

v = (x, y,p) (2)

wherep = (p1, p2, . . . , pc) is the class probability vector ofv, andc is the number of class labels. For
each class i, its probabilitypi is proportional to the outputVi of the corresponding output node in the
network, which is determined by the inputUi of that node through thesigmoid activation function:

Vi =
1
2
(1 + tanh(

Ui

u0
)) (3)

whereu0 = 0.02 is the amplification parameter that reflects the steepness of the activation function. The
sigmoid function is in the range of [0.0, 1.0].

In addition to updating weights in the network using standard backpropagation procedure, we also
update the class probability vectorp during training. The updating ofp depends on the difference
between the currentp value and the values of the output nodes in the network. For each classi, we first
update its inputUi, and then map the updated input to its outputVi (which is proportional topi) through
thesigmoid function. After each update,p gets closer to the output node value. Because the regularities
remain inS for a small fraction of mislabeling, the network will gradually become capable of reflecting
the regularities after sufficing training.

During this process, the correctly labeled subsetS
(c)
sub plays a more important role than the mislabeled

subsetS(m)
sub in shaping the weight configuration of the network. The reason is thatS

(c)
sub contains

more instances thanS (m)
sub and thus, according to the updating rule of backpropagation, it has more

opportunities to update the weights. In this way, the weight configuration will be gradually changed
to reflect the regularities of the data set. Thus ifv is a correctly labeled instance, its output vector
O = (O1, O2, . . . , Oc) (whereOi is the value of output nodei) will become more consistent with
the class probability vectorp = (p1, p2, . . . , pc) after a certain amount of training. In contrast, ifv
is a mislabeled instance,O will be less consistent withp since mislabeled instances do not follow the
regularities. However, by updatingp so that it becomes closer toO using ADE, we can cause a mislabeled
instance to gradually change its class probability vectorp and eventually correct the mislabeled class.

The following explains the basic steps of ADE.

– The weights of the network are initially set randomly with uniform distribution in the range
[−0.05, 0.05].

– For each instancev = (x, y,p) (wherey is the initial class label), its output vectorV (proportional
to its probability vectorp) is initially set as follows. Vy (the output probability for classy) is
set to be a large fractionD (0.5 < D < 1.0), and then (1-D) is divided equally into the other
(C − 1) output components. We have tested differentD values in the experiment. The results are
similar whenD is in the range(0.8, 1.0) and dropp slowly whenD decreases from0.8 to 0.5. In

our experiment we choseD = 0.95. If C = 3 andy = 1, for example, thenp(O)
1 = 0.95, and

p
(O)
2 = p

(O)
3 = 0.05

2 = 0.025. The inputUi is then determined from the corresponding output using
the inversesigmoid function.

– The initial number of hidden nodes is set to be 1.
– For each training instancev, the weights in the network and the probability vectorp for v are updated

using the following procedure:

(i) Update the network weights using standard backpropagation algorithm, with the learning rate
Ln and momentumMn for thenet.
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(ii) For each classi, update the output class probability using formula:

Ui = Ui + Lp(Oi − Vi) (4)

whereOi is the value of output nodei for instancev, andLp (different fromLn) is the learning
rate forprobability vector. We treatOi as the target for updating the probability vector. The
outputVi is updated based on the inputUi using thesigmoid function (Eq. (3)). After each
training epoch, the values ofVi for all i (i = 1, 2 . . . C) are normalized so that their sum is1,
and then the probability vectorp is set to be equal toV (i.e. pi = Vi for i = 1, 2 . . . C).

(iii) The class labely for instancev (= (x, y,p)) is also updated, using the following formula:

y = arg max
i

{pi|(i = 1, 2, . . . C)} (5)

that is,y is relabeled to be the class with the maximum probability. Ifv is a mislabeled instance,
for example, its class label could be corrected using this mechanism after a certain number of
training epochs, which gradually update the class probabilities.

– After everyNe epochs, the sum of squared errors (SSE) over all instances in the data set is calculated
to monitor the progress of the training. IfNe is too small, more computation is needed; but ifNe is
too large, it is not able to accurately modinor the training progress. We have tried different values
for Ne and found that the range for good performance is5 < Ne < 50. We choseNe = 20 in our
experiment because it was slightly better than the other choices. Instead of usingSSE directly, we
use anadjusted version:SSE (adj), which is calculated using the formula:

SSE(adj) = SSE(std) + SSE(hn) + SSE(dist) (6)

whereSSE(std) is thestandard SSE. SSE(hn) is an additional term taking into account the effects
of the number of hidden nodes. More hidden nodes can usually lead to a smallerSSE (std), but with
a higher possibility of overfitting. To reduce this effect, we add an additional error termSSE (hn)

that increases with the number ofhidden nodes.
We adopt the following empirical formula in ADE:

SSE(hn) = A1(H − 1)N(C − 1)/C (H � I)
(7)

= (A1(I − 1) + A2(H − I))N(C − 1)/C (H > I)

whereH is the number of hidden nodes,I is the number of input nodes,N is the number of instances
in the data set, andC is the number of classes.A1 andA2 are two empirical parameters with the
constraintA2 > A1. We tried different values forA1 andA2 and found that performance is good (and
similar) when0.01 < A1 < 0.1 and< 0.1 < A2 < 0.5. In our experiment, we choseA1 = 0.05
andA2 = 0.2. From the formula, we see that whenH � I, the errorSSE (hn) is relatively small
(A1 is small); but whenH > I, SSE(hn) starts to increase more rapidly (A2 >> A1).

SSE(dist) is another additional term taking into account the deviation of current classdistribution
from the initial (original) one. We assume that mislabelings have a random nature – each instance has
an equal chance to be mislabeled. Based on this assumption, we can infer that the class distribution
for a data set with mislabeling should reflect the one without mislabeling. Thus, we expect that if a
procedure can accurately correct mislabeled data, the class distribution should be about same before
and after the correcting procedure and the difference should be very small. That is why we introduce
an error termSSE(dist) that increases with the difference.
The class distribution vectorq is defined as

q = (q1, q2, . . . , qC) = (
N1

N
,
N2

N
, . . .

NC

N
) (8)
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whereN is the total number of instances in the data set, andNi is the number of instances labeled
with classi (i = 1, 2, . . . , C). Note that an instanceu labeled with classi means thati is the class
with the maximum magnitude amongC components in itscurrent probability vectorp.
Let q(init) = (q(init)

1 , q
(init)
2 , . . . q

(init)
C ) andq(curr) = (q(curr)

1 , q
(curr)
2 , . . . q

(curr)
C ) be the initial

and current class distribution vector respectively. ThenSSE (dist) is calculated using the formula

SSE(dist) =
N(C − 1)

C
∗

C∑

i=1

BiDi ∗ max(q(curr)
i , q

(init)
i ) (9)

whereDi = |q(curr)
i − q

(init)
i |/q(init)

i is the difference fraction betweenq(curr)
i andq

(init)
i . Bi is

an empirical parameter which varies whenDi is in different ranges. We have experimented with
various parameter settings forBi and performance is good through a wide range0.05 < Bi < 1.5.
In our experiment, we setBi in the following way (since it performed slightly better than other
settings):Bi = 0.1 whenDi < 0.05, andBi = 1.0 whenDi � 0.05. We can see from Eq. (9)
that the errorSSE(dist) increases when the difference betweenq

(curr)
i andq

(init)
i becomes larger.

SSE(dist) increases slowly whenDi is small, and it increases more rapidly whenDi surpasses a
threshold (0.05).

– For a fixed number of hidden nodesH (starting fromH = 1 in our experiment), the calculated error
SSE(adj) is compared with the stored best (minimum) of the previousSSE (adj) after eachNe (= 20)
epochs. If it is smaller, then it will replace the previous one as the new bestSSE (adj) and be stored
for future comparison and retrieval, along with the current network configuration (weight settings
and number of hidden nodes) and class probability vectors. If no betterSSE (adj) is found afterNm

of Ne epochs (equivalent toNe ∗ Nm = 20 ∗ Nm epochs), we assume that the best configuration
for fixedH hidden nodes has been found and then we begin the training withH + 1 hidden nodes
in an effort to discover an optimal configuration. DifferentNm values have been evaluated in our
experiment. IfNm is too small (< 5), the performance drops because of the incapability of finding
the optimal configuration. But ifNm is too large (> 50), the computation increases greatly without
any performance gain. The performance is about same as long asNm � 10. In our experiment we
choseNm = 10 to save computation cost while maintaining performance.

– If two consecutive additions of hidden nodes do not yield a better result, we assume that the best
configuration has been found for the data set (For example, if 4 and 5 hidden nodes do not yield a
better result than 3 hidden nodes, we use 3 hidden nodes as the optimal choice). Using the optimal
setting, we relabel the data set using the corresponding class probability vectors.

4. Experiments

We have tested ADE on 24 data sets drawn from the UCI machine learning data repository [14], and
evaluated its performance using the nearest neighbor classifier [7]. For each tested data set, we first
artificially mislabel a fraction of the training data, and then apply ADE to correct mislabeled data. We
then compare the test set accuracies of two versions of nearest neighbor classifiers: one trained with the
mislabeled training set without correction and the other trained with the training set corrected by ADE.
We applied stratified 10-fold cross-validation [3,13] for estimating the accuracies. For each data set,
we conducted 20 stratified 10-fold cross-validations and averaged the results to achieve a more reliable
estimation.
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Table 1
Description of 24 UCI data sets

Data Set size #attr #num #symb #class Data Set size #attr #num #symb #class
australian 690 14 6 8 2 led17 200 24 0 24 10
balance 625 4 0 4 3 lense 24 4 0 4 3
crx 690 15 6 9 2 lymph 148 18 0 18 4
echoc 131 9 7 2 2 monk1 556 6 0 6 2
ecoli 336 7 7 0 8 monk2 601 6 0 6 2
hayes 93 4 0 4 3 monk3 554 6 0 6 2
heartc 303 13 5 8 2 pima 768 8 8 0 2
hearth 294 13 5 8 2 postop 90 8 1 7 3
horse 366 26 12 14 3 voting 435 16 0 16 2
iono 351 34 34 0 2 wave21 300 21 21 0 3
iris 150 4 4 0 3 wave40 300 40 40 0 3
led7 200 7 0 7 10 zoo 90 16 0 16 7

In each of 10 iterations for one stratified 10-fold cross-validation, 9 folds of data are used as the
the training setS and the other fold as the testing setT . We obtain a mislabeled training setSm by
mislabelingβ fraction of output classes inS using the following process. For each classi (i=1,2,. . . ,C),
βNi instances (Ni is the number of instances of classi) are randomly mislabeled to one of the other (C-1)
classes (i.e., classes 1, 2,. . . i-1, i+1,. . .C). Among theβN i instances, the number of instances labeled to
classj is proportional to the population of classj (same asqj defined in Eq. (8)). Using this procedure,
the mislabeled setSm keeps the same class distribution as the original setS, which is consistent with the
assumption of random mislabeling.

We then run ADE onSm and output a corrected training setSc. The performance of ADE is evaluated
by comparing the test-set accuracies of the following two classifiers using the nearest neighbor rule:
NNRc based on the corrected training setSc andNNRm based on the mislabeled setSm without
correction (both using 1-nearest neighbor). BothNNRc andNNRm useT as the testing set for each
iteration.

The nearest neighbor rule (NNR) [7] works as follows. To classify an input instancev, NNR
comparesv with all instances in the training set and finds the most similar oneu, and then classifiesv as
the same class asu (which is also called1-NN ). One variation is to classifyv based on the topk most
similar instances (k-NN ) in the training set using a voting mechanism.

The accuracy for one stratified 10-fold cross-validation is the total number of correctly classified
instances in all the 10 iterations divided by the total number of instances in the data set (|S| + |T |). For
each data set, we conduct 20 such stratified 10-fold cross-validations and then average them.

Table 1 shows the size and other properties of the data sets;size is the number of instances;#attr is
the number of attributes (not including class);#num is the number of continuous attributes;#symb is
the number of nominal attributes;#class is the number of classes.

Figures 1 and 2 show simulation results on the 24 tested data sets. In each graph, the two curves
display the test-set accuracies of two nearest neighbor classifiers – one without using ADE and the other
using ADE to correct mislabeled training data. Each graph also displays how the accuracies vary with
different mislabeling levels (β). Each data point represents the accuracy averaged over 20 stratified
10-fold cross-validations, along with the corresponding error bar with a 95% confidence level.

The results show that for most of these data sets, the classifier using ADE performs significantly
better than that without using ADE, as long as the mislabeled level is less than 30%. In this mislabeled
range, the correctly labeled data is dominant and is capable of controlling the formation of the network
architecture. During this process, the formed network is able to gradually correct the class probability
vector of mislabeled data.
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Fig. 1. Simulation results on real-world domains which compare test-set accuracies of nearest neighbor classifiers without ADE
and with ADE to correct mislabeled training data.
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Fig. 2. Simulation results on real-world domains which compare test-set accuracies of nearest neighbor classifiers without ADE
and with ADE to correct mislabeled training data.
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One observation is that as the mislabeled level increases (> 30%), the performance of ADE starts
degrading. The reason is that the dominance of correctly labeled data becomes weaker with the increased
mislabeled level. As it approaches about50%, there is no obvious dominance from either correctly or
incorrectly labeled data. This explains why the performance drops dramatically (the accuracies using
ADE are still higher than that without using ADE in some cases) at this point. The performance of ADE
varies with different data sets. It is significantly better than that without using ADE for most tested data
sets and is still slightly better than or similar to for others.

Another observation is that even when the mislabeled level is 0 (i.e. without adding any artificially
mislabeled data), the accuracy using ADE is still significantly higher than that without using ADE for
some data sets (australian, crx, echoc, ecoli, hearth, led7, lense, pima, postop, andwave21). This
indicates that these data sets may include some noise or mislabelings already, and using ADE to correct
them allows neares neighbor classifiers to achieve higher test-set accuracies.

5. Summary

In summary, we have presented an approach – ADE – to correct mislabeled data. In this approach,
a class probability vector is attached to each instance its value evolves as training continues. ADE
combines the backpropagation network with a relaxation mechanism for the training. A learning
algorithm is proposed to update the class probability vector based on the difference of its current value
and the network output value. The architecture, weight settings and output values of the network are
determined predominantly by those correctly labeled instances when mislabeled percentage in a data set
is less than 30%. This mechanism enables class label correction by allowing gradual changes for the
class probability vectors of mislabeled instances during training.

We have tested the performance of ADE on 24 data sets drawn from the UCI data repository by
comparing the accuracies of two versions of nearest neighbor classifiers, one using the training set
corrected by ADE and the other using the training set without correction. The results show that the
classifiers based on corrected training set using ADE perform significantly better than those without
using ADE for most data sets.
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