
Advances in Instance-Based Learning Algorithms

A Dissertation

Presented to the

Department of Computer Science

Brigham Young University

In Partial Fulfillment

of the Requirement for the Degree

Doctor of Philosophy

by

D. Randall Wilson

August 1997

ii

This dissertation by D. Randall Wilson is accepted in its present form by the

Department of Computer Science of Brigham Young University as satisfying the

dissertation requirements for the degree of Doctor of Philosophy.

iii

Table of Contents

I. Background and Motivation .. 1
1. Introduction .. 2

1. Supervised Learning and Classification.. 2
2. Nearest Neighbor Algorithms... 3
3. Thesis Statement... 4
4. Overview of Dissertation .. 4
5. Publications .. 5

2. Related Work ... 8
1. Bias and Generalization .. 8
2. Artificial Neural Networks .. 8
3. Other Learning Models.. 9
4. Nearest Neighbor / Instance-Based Algorithms....................................... 10

4.1. Distance Functions.. 10
4.1.1. Value Difference Metric .. 10
4.1.2. Discretization... 11
4.1.3. Unknown Values.. 11

4.2. Speeding Classification.. 11
4.3. Reducing the Instance Set... 11

4.3.1. “Edited” Nearest Neighbor Classifiers............................... 11
4.3.2. “Instance-Based” Algorithms... 12
4.3.3. Prototypes and other modifications 12

4.4. Weighting Techniques ... 13
4.4.1. Vote Weighing... 13
4.4.2. Attribute Weighting... 13

5. Author’s Previous Work.. 14

3. Bias and the Probability of Generalization .. 20
1. Introduction... 20
2. Why One Bias Cannot be “Better” than Another..................................... 21
3. Why One Bias Can be “Better” than Another.. 23

3.1. Functions are Not Equally Important ... 23
3.2. Bias of simplicity.. 24
3.3. Additional Information ... 25

4. Characteristics of Algorithms and Applications... 26
4.1. Characteristics of Applications ... 27

4.1.1. Number of input attributes (dimensionality)........................ 27
4.1.2. Type of input attributes. .. 27
4.1.3. Type of output. ... 27
4.1.4. Noise. ... 27
4.1.5. Irrelevant attributes... 27
4.1.6. Shape of decision surface. ... 28
4.1.7. Data density... 28
4.1.8. Order of attribute-class correlations.................................... 28

4.2. Characteristics of Learning Algorithms.. 28
5. Conclusions .. 29

iv

II. Heterogeneous Distance Functions ... 32
4. Heterogeneous Radial Basis Function Networks.. 33

1. Introduction... 33
2. Radial Basis Function Network.. 34
3. Heterogeneous Distance Function ... 35
4. Empirical Results... 37
5. Conclusions & Future Research... 39

5. Improved Heterogeneous Distance Functions .. 41
1. Introduction... 41
2. Previous Distance Functions .. 43

2.1. Normalization... 44
2.2. Attribute Types.. 45
2.3. Heterogeneous Overlap-Euclidean Metric (HOEM).................... 45
2.4. Value Difference Metric (VDM)... 46
2.5. Discretization... 48

3. Heterogeneous Value Difference Metric (HVDM)................................... 48
3.1. Normalization... 49
3.2. Normalization Experiments... 50
3.3. Empirical Results of HVDM vs. Euclidean and HOEM................ 53

4. Interpolated Value Difference Metric (IVDM).. 55
4.1. IVDM Learning Algorithm .. 55
4.2. IVDM and DVDM Generalization ... 57

5. Windowed Value Difference Metric (WVDM).. 61
6. Empirical Comparisons and Analysis of Distance Functions 65

6.1. Effects of Sparse Data... 68
6.2. Efficiency Considerations .. 69

6.2.1. Storage ... 69
6.2.2. Learning Speed .. 70
6.2.3. Generalization Speed .. 70

7. Related Work ... 70
8. Conclusions & Future Research Areas.. 72
Appendix. Handling Skewed Class Distributions with HVDM................... 73

III. Instance Set Reduction.. 79
6. Improved Center Point Selection for Probabilistic Neural

Networks... 80
1. Introduction... 80
2. Reduction Algorithm .. 82
3. Empirical Results... 84
4. Conclusion .. 85

7. Reduction Techniques for Exemplar-Based Learning Algorithms. 87
1. Introduction... 87
2. Issues in Exemplar Set Reduction.. 89

2.1. Representation... 89
2.2. Direction of Search... 89

v

2.2.1. Incremental... 89
2.2.2. Decremental... 90
2.2.3. Batch... 90

2.3. Border points vs. central points .. 91
2.4. Distance Function.. 91
2.5. Voting ... 93
2.6. Evaluation Strategies .. 94

2.6.1. Storage reduction... 94
2.6.2. Speed increase... 94
2.6.3. Generalization accuracy .. 94
2.6.4. Noise tolerance.. 94
2.6.5. Learning speed... 95
2.6.6. Incremental... 95

3. Survey of Instance Reduction Algorithms .. 95
3.1. Nearest Neighbor Editing Rules... 96

3.1.1. Condensed Nearest Neighbor Rule...................................... 96
3.1.2. Selective Nearest Neighbor Rule ... 96
3.1.3. Reduced Nearest Neighbor Rule .. 97
3.1.4. Edited Nearest Neighbor Rule.. 97
3.1.5. All-kNN ... 98
3.1.6. Variable Similarity Metric... 98

3.2. “Instance-Based” Learning Algorithms.. 98
3.2.1. IB2 .. 98
3.2.2. Shrink (Subtractive) Algorithm... 99
3.2.3. IB3 .. 99
3.2.4. IB4 and IB5 .. 100
3.2.5. Model Class Selection... 100
3.2.6. Typical Instance-Based Learning... 100
3.2.7. Random Mutation Hill Climbing.. 101
3.2.8. Encoding Length .. 101

3.3. Prototypes and Other Modifications of the Instances 102
3.3.1. Prototypes.. 102
3.3.2. RISE ... 102
3.3.3. EACH... 102

4. New Reduction Algorithms: DROP1-5 and DEL 103
4.1. DROP1.. 103
4.2. DROP2: Using More Information and Ordering the Removal 104
4.3. DROP3: Filtering Noise. ... 105
4.4. DROP4: More Carefully Filtering Noise .. 105
4.5. DROP5: Smoothing the Decision Boundary................................... 105
4.6. Decremental Encoding Length .. 106

5. Experimental Results .. 106
5.1. Results.. 106
5.2. Effect of Noise.. 108

6. Conclusions and Future Research Directions.. 110

vi

IV. Attribute and Vote Weighting .. 115
8. Instance-Based Learning with Genetically Derived Attribute

Weights .. 116
1. Introduction... 116
2. Distance Function.. 117

2.1. Normalization... 117
2.2. Heterogeneous Distance Function ... 117
2.3. Irrelevant Attributes.. 119
2.4. Redundant Attributes .. 119

3. Evolutionary Algorithm.. 120
3.1. Genetic Operators.. 121
3.2. Parent Selection ... 121
3.3. Evaluation Function... 123

4. Experiments ... 124
4.1. Testing Irrelevant Attributes .. 125
4.2. Testing Redundant Attributes... 126

5. Conclusions & Future Research... 126

9. Distance-Weighting and Confidence in Instance-Based Learning 128
1. Introduction... 128
2. Fuzzy Instance-Based Learning (FIBL) Algorithm 130

2.1. Vote Weighting.. 130
2.2. Heterogeneous Distance Function ... 132

3. Cross-Validation and Confidence (CVC) .. 133
3.1. Cross-Validation ... 133
3.2. Confidence .. 134
3.3. Cross-Validation and Confidence (CVC) 134

4. FIBL Learning Algorithm .. 135
5. Experimental Results .. 137
6. Related Work ... 139
7. Conclusions and Future Research Directions.. 140

V. Conclusion... 142
10. Advances in Instance-Based Learning.. 143

1. Introduction... 143
2. Heterogeneous Distance Functions ... 144

2.1. Linear Distance Functions .. 145
2.2. Value Difference Metric for Nominal Attributes............................ 145
2.3. Interpolated Value Difference Metric ... 147

3. Instance Pruning Techniques... 149
3.1. Speeding Classification.. 149
3.2. Reduction Techniques.. 149
3.3. DROP4 Reduction Algorithm .. 150

4. Distance-Weighting and Confidence Levels.. 152
4.1. Distance-Weighted Voting... 153

vii

4.2. Cross-Validation and Confidence (CVC) 155
4.2.1. Cross-Validation... 155
4.2.2. Confidence.. 155
4.2.3. Cross-Validation and Confidence (CVC)............................ 156

4.3. Parameter Tuning... 157
5. IDIBL Learning Algorithm... 159
6. Empirical Results... 161
7. Conclusions and Future Research .. 164

11. Conclusions & Future Research Directions .. 169
1. Summary and Contributions .. 169
2. Future Research Directions .. 170

Abstract ... 172

viii

Acknowledgments

Thanks to my advisor Dr. Tony Martinez for his unending assistance in this work.
He taught me how to do quality research and how to publish new findings in refereed
conferences and journals. He has also been my advocate in obtaining funding that has
supported my family while I finished my graduate work.

Thanks also go to many other faculty members who contributed to my education
through their teaching efforts and individual guidance.

Several machine learning researchers have contributed significantly to my research
as well, including David Aha, who provided numerous helpful references and
suggestions; Mike Cameron-Jones, who recently provided guidance and source code
for algorithms related to my work; and several anonymous reviewers who gave useful
suggestions for several of my papers.

I would also like to thank Novell, Inc.; WordPerfect Corp.; and especially the
Brigham Young University Computer Science Department for financial support.

I am especially grateful to my wife and best friend, Linette, who has been a
wonderful strength to me throughout my graduate work. Her love and support have
made life wonderful for me. I am also grateful for my cute kids who bring such joy to
my life.

Finally, I am ever in debt to my Heavenly Father, who has blessed me beyond
explanation. I give Him credit for any truly valuable ideas presented in this
dissertation. I hope that I can use the knowledge and experience gained through this
education to serve Him and bless the lives of others.

1

Part I

Background and Motivation
“In the beginning....”—Genesis 1:1

Part I provides the background information and motivation for the remainder of the
dissertation.

Chapter 1 provides an introduction to the research contained in this dissertation.
It introduces inductive learning, generalization, and the nearest neighbor rule,
including its advantages and disadvantages. It then outlines the remainder of the
dissertation.

Chapter 2 presents related work. It discusses theoretical work relating to
generalization and bias and lists a variety of models that have been used for inductive
learning, including neural networks, genetic algorithms, and machine learning
algorithms. It then describes previous research in instance-based learning, including
distance metrics, reduction techniques, hybrid models, and weighting schemes.

Chapter 3 discusses arguments that have been made regarding the impossibility of
any learning algorithm or bias achieving higher generalization accuracy than any other.
It shows that it is possible to improve generalization accuracy in practice, and gives
several suggestions on how this can be done. Chapter 3 has been submitted for
review and may be referenced as follows.

Wilson, D. Randall, and Tony R. Martinez, (1997). “Bias and the Probability of
Generalization,” submitted to International Conference on Intelligent
Information Systems (IIS’97).

2

Chapter 1

Introduction

“Hey— ‘Y’ starts with ‘W’. . . and ‘W’ starts with ‘D’!”
—Adam Wilson, age 3, upon seeing “Y” Mountain.

Much research has been directed at finding better ways of helping machines learn
from examples. When domain knowledge in a particular area is weak, solutions can
be expensive, time consuming and even impossible to derive using traditional
programming techniques. Machine learning methods attempt to give machines the
ability to learn from examples so that they can attain high accuracy at a low cost.

Humans are able to solve a wide variety of problems well, even in the face of
incomplete domain knowledge. Humans use trial-and-error, past experience,
heuristic rules and common sense to adapt to new situations. A computer program is
typically much more rigid, because a programmer must determine in advance how the
program should respond to any given set of inputs. However, unless the domain
knowledge is sufficiently developed, it may be impossible or impractical for a
programmer to know beforehand what rules to use in deciding upon an appropriate
response to each possible situation.

In such cases, machine learning algorithms can be used as a tool to make
reasonable solutions possible or good solutions more economical. A machine learning
solution is often more accurate than a hard-coded program because it learns from
actual data instead of making assumptions about the problem. It can often adapt as
the domain changes and may take less time to find a good solution than would a
programmer. In addition, machine learning solutions can typically work well even in
the face of unforeseen circumstances.

1. Supervised Learning and Classification

Machine learning algorithms can use either supervised or unsupervised learning.
This dissertation will focus on supervised learning systems and especially on
classification.

In supervised learning, a system receives feedback to help it learn. The most
common form of feedback used by a supervised learning system is a training set,
which is a set of examples (or instances) that have both an input vector and an output
value. In classification, the output value is a discrete class. During the learning
phase, the machine internalizes the examples and attempts to learn how to map input
vectors into the correct output class.

During execution, the machine is given new input vectors, most of which it has
never encountered before. It must predict the correct class based on the preclassified
examples it has already seen. This process is called generalization. Generalization
accuracy is typically measured by using a test set, which contains instances with
known output classes but which the algorithm does not see during the learning phase.
The algorithm attempts to classify each instance in the test set, and its prediction is
compared with the actual class of each instance to see if it generalized correctly.

3

A wide variety of learning models are available for application to supervised
learning problems such as neural networks, decision trees, rule-based systems, and
genetic algorithms. Each of these models has its own strengths and weaknesses.
For example, many neural network learning models require a large number of
iterations through the training set, which can make them impractical for use on some
large or difficult problems. Learning algorithms also may have system parameters
that must be selected by the user, which prevents the system from being fully
automatic. Such parameters can have a large effect on the performance of each model,
and often there is little guidance as to how these parameters should be selected.
Some algorithms can also get permanently stuck in local minima without reaching a
reasonable solution and must be restarted in such cases.

2. Nearest Neighbor Algorithms

The Nearest Neighbor algorithm [Cover & Hart, 1967] is a supervised learning
algorithm that simply retains the entire training set during learning. During execution,
the new input vector is compared to each instance in the training set. The class of the
instance that is most similar to the new vector (using some distance function) is used
as the predicted output class.

The nearest neighbor algorithm has several strengths when compared to most
other learning models:

• It learns very quickly (O(n) for a training set of n instances).

• It is guaranteed to learn a consistent training set (i.e., one in which there are
no instances with the same input vector and different outputs) and will not get
stuck in local minima.

• It is intuitive and easy to understand, which facilitates implementation and
modification.

• It provides good generalization accuracy on many applications. For example,
see [Fogarty, 1992].

However, in its basic form the nearest neighbor algorithm has several drawbacks:

• Its distance functions are typically inappropriate for applications with both
linear and nominal attributes.

• It has large storage requirements, because it stores all of the available training
data in the model.

• It is slow during execution, because all of the training instances must be
searched in order to classify each new input vector.

• Its accuracy degrades with the introduction of noise.

• Its accuracy degrades with the introduction of irrelevant attributes.

• It has no means of adjusting its decision boundaries after storing the data.

Many researchers have developed extensions of the nearest neighbor algorithm,
which are commonly called instance-based [Aha, Kibler & Albert, 1991] learning

4

algorithms. However, previous models have remained weak in at least some of the
above areas.

We recognized the power of the basic nearest neighbor rule and saw potential for
even better performance. The research reported in this dissertation has thus been
directed at extending existing approaches in order to overcome each of the
weaknesses listed above. It introduces new heterogeneous distance functions that
significantly improve generalization accuracy for applications that have both linear and
nominal attributes. It presents new techniques for reducing the number of instances
stored in the classification system, which also speeds up classification and can make
the system less sensitive to noise. It also introduces an attribute-weighting scheme
that reduces sensitivity to irrelevant attributes. In addition, it proposes methods for
using weighting schemes and confidence levels to fine-tune the classifier in order to
improve generalization accuracy in practice.

3. Thesis Statement

Instance-based learning algorithms have had success on many applications, and
yet they often suffer from large storage requirements, slow classification, sensitivity
to noise and irrelevant attributes, inflexibility, and a lack of appropriate distance
functions. This dissertation introduces new instance-based learning algorithms which
improve on existing nearest neighbor techniques in each of these areas. Improved
heterogeneous distance functions are introduced, instance reduction techniques are
proposed, and weighting schemes are used to provide a flexible model capable of
adapting to individual problems. The Integrated Decremental Instance-Based
Learning Algorithm combines the advantages of each of these improvements into a
comprehensive system.

4. Overview of Dissertation

Part I of this dissertation consists of three introductory chapters, including this
one. Chapter 2 presents a discussion of related work in the area of inductive learning
systems in general and instance-based learning in particular, as well as in distance
functions and weighting schemes for instance-based learning algorithms. A list of
instance reduction techniques is also given, but the details for related work in this
area is deferred to Chapter 7 where an in-depth survey is presented.

The remainder of this dissertation (with the exception of the final chapter) consists
of a collection of papers that have been either published or submitted for publication in
journals or conference proceedings. The references for these papers are listed in the
following section of this introduction and also appear at the beginning of the chapter to
which each applies.

Chapter 3 serves an introductory role by discussing the ability of learning
algorithms to generalize. In particular, arguments have been made in recent years to
suggest that no learning algorithm can be “better” than any other in terms of
generalization accuracy. Chapter 3 gives examples illustrating these arguments in the
theoretical case but also shows how one algorithm can be considered better than
another in practice and indicates how average generalization accuracy can be improved
in practice.

5

With this established, Part II presents two chapters that introduce distance
functions which result in improved generalization (on average) for applications with
both nominal and linear attributes. Chapter 4 presents the Heterogeneous Radial
Basis Function (HRBF) neural network, which is a probabilistic neural network
[Specht, 1992] using a heterogeneous distance function. The heterogeneous distance
function uses Euclidean distance for linear attributes and a derivative of the Value
Difference Metric (VDM) [Stanfill & Waltz, 1986] for nominal attributes. Chapter 5
extends the distance function presented in chapter 4 and presents two extensions of
the VDM that allow it to be used directly on both nominal and linear attributes. These
distance functions are compared with each other and shown to result in significantly
higher average generalization accuracy than previously used distance functions.

Part III presents two chapters that introduce algorithms for reducing storage and
improving classification speed while maintaining good generalization accuracy and
reducing sensitivity to noise. Chapter 6 presents the Reduced Probabilistic Neural
Network (RPNN) that removes nodes from a traditional PNN and also uses the
heterogeneous distance function first used by the HRBF presented in Chapter 4.
Chapter 7 presents a survey of many instance reduction techniques used in
conjunction with nearest neighbor classifiers and their derivatives. Several new
algorithms are also presented that show improved generalization accuracy over the
other methods surveyed and show better reduction than many of them.

Part IV presents two chapters on using various weighting schemes and fine-
tuning parameters of the system. Chapter 8 introduces the Genetic Instance-Based
Learning (GIBL) algorithm, which uses a genetic algorithm to find attribute weights
on a basic nearest neighbor algorithm in order to reduce the sensitivity of the system
to irrelevant attributes.

Chapter 9 introduces a distance-weighted instance-based learning system called
the Fuzzy Instance-Based Learning (FIBL) algorithm that uses confidence levels in
conjunction with cross-validation to choose good parameter settings in order to more
accurately generalize.

Part V presents two chapters that conclude the dissertation. Chapter 10 presents
a comprehensive system called the Integrated Decremental Instance-Based Learning
(IDIBL) algorithm that combines the successful elements of previous chapters. It
gives empirical results that indicate that IDIBL yields improved accuracy over any of
the previous systems presented in this dissertation. IDIBL is also compared with
results reported for a variety of well-known machine learning and neural network
models. In these comparisons IDIBL achieves the highest average generalization
accuracy of any of the models considered. The final chapter presents conclusions and
directions for future research.

5. Publications

Chapters 3-10 are based on a collection of papers that have been either published
or submitted for publication in refereed journals or conferences. Following is a list of
references for these publications in the order in which they appear in this dissertation.

6

I. Background and Motivation

Wilson, D. Randall, and Tony R. Martinez, (1997). “Bias and the Probability of
Generalization”, submitted to International Conference on Intelligent
Information Systems (IIS’97). (Chapter 3).

II. Heterogeneous Distance Functions

Wilson, D. Randall, and Tony R. Martinez, (1996). “Heterogeneous Radial Basis
Functions,” Proceedings of the International Conference on Neural Networks
(ICNN’96), vol. 2, pp. 1263-1267, June 1996. (Chapter 4).

Wilson, D. Randall, and Tony R. Martinez, (1996). “Value Difference Metrics for
Continuously Valued Attributes,” International Conference on Artificial
Intelligence, Expert Systems and Neural Networks (AIE’96), pp. 74-78.
(Chapter 5).

Wilson, D. Randall, and Tony R. Martinez, (1997). “Heterogeneous Distance
Functions for Instance-Based Learning,” Journal of Artificial Intelligence
Research (JAIR), vol. 6, no. 1, pp. 1-34. (Chapter 5).

III. Instance Set Reduction

Wilson, D. Randall, and Tony R. Martinez, (1997). “Improved Center Point
Selection for Radial Basis Function Networks,” In Proceedings of the
International Conference on Artificial Neural Networks and Genetic Algorithms
(ICANNGA’97). (Chapter 6).

Wilson, D. Randall, and Tony R. Martinez, (1997). “Instance Pruning Techniques,”
To appear in Fisher, D., ed., Machine Learning: Proceedings of the Fourteenth
International Conference (ICML’97), Morgan Kaufmann Publishers, San
Francisco, CA. (Chapter 7).

Wilson, D. Randall, and Tony R. Martinez, (1997). “Reduction Techniques for
Exemplar-Based Learning Algorithms,” submitted to Machine Learning
Journal. (Chapter 7).

IV. Attribute and Vote Weighting

Wilson, D. Randall, and Tony R. Martinez, (1996). “Instance-Based Learning with
Genetically Derived Attribute Weights,” International Conference on Artificial
Intelligence, Expert Systems and Neural Networks (AIE’96), pp. 11-14.
(Chapter 8).

Wilson, D. Randall, and Tony R. Martinez, (1997). “Distance-Weighting and
Confidence in Instance-Based Learning,” submitted to Computational
Intelligence. (Chapter 9).

7

V. Conclusion

Wilson, D. Randall, and Tony R. Martinez, (1997). “Advances in Instance-Based
Learning,” submitted to Machine Learning Journal. (Chapter 10).

The reference for each of these publications appears at the beginning of the chapter
that includes the publication. In addition, the list of other publications mentioned or
referenced within each chapter appears at the end of each chapter. Following are the
papers referenced in Chapter 1.

References

Aha, David W., Dennis Kibler, Marc K. Albert, (1991). “Instance-Based Learning Algorithms,”
Machine Learning, vol. 6, pp. 37-66.

Cover, T. M., and P. E. Hart, (1967). “Nearest Neighbor Pattern Classification,” Institute of
Electrical and Electronics Engineers Transactions on Information Theory, vol. 13, no. 1, January
1967, pp. 21-27.

Fogarty, Terence C., (1992). “First Nearest Neighbor Classification on Frey and Slate’s Letter
Recognition Problem,” Machine Learning, vol. 9, no. 4, pp. 387-388.

Rumelhart, D. E., and J. L. McClelland, Parallel Distributed Processing, MIT Press, 1986.

Specht, Donald F., (1992). “Enhancements to Probabilistic Neural Networks,” in Proceedings
International Joint Conference on Neural Networks (IJCNN ’92), vol. 1, pp. 761-768.

Stanfill, C., and D. Waltz, (1986). “Toward memory-based reasoning,” Communications of the
ACM, vol. 29, December 1986, pp. 1213-1228.

8

Chapter 2

Related Work

“Well, he was humming this hum to himself, wondering what everybody else was
doing, and what it felt like, being somebody else...”

—A. A. Milne, Pooh Goes Visiting.

The research presented in this dissertation would not have been possible without
the groundwork laid by previous researchers in a variety of fields. This chapter briefly
surveys work previously done in the areas addressed by this dissertation. It starts
with a discussion of theoretical work regarding bias and generalization. It then lists
several models that have been used for inductive learning. Finally, it discusses in
more detail previous research on nearest neighbor algorithms, including work done on
distance functions, pruning techniques, weighting methods, and alternate distance-
based learning models. A more detailed treatment of related work is presented
throughout the chapters of this dissertation.

1. Bias and Generalization

In order to generalize to previously unseen input vectors, an inductive learning
algorithm must have a bias, which Mitchell [1980] defined as “any basis for choosing
one generalization over another other than strict consistency with the observed
training instances.” Schaffer [1994] presented a Conservation Law for Generalization
Performance, which argued that no bias could result in higher generalization accuracy
than any other (including random guessing) when summed over all possible problems.
He also showed that even using cross-validation to choose the apparently best
learning algorithm for a problem does no better than random (over all problems), since
it is itself simply another bias [Schaffer, 1993].

Wolpert [1993] provided proofs that Schaffer’s Conservation Law findings are true
but cautioned that the results must be interpreted with caution because learning
algorithms can differ in their performance when the probability of some functions
occurring is greater than others (which, in practice, is the case).

Aha [1992] made a strong case for the importance of determining under what
conditions one algorithm outperforms another so that appropriate learning algorithms
can be applied to solve problems.

2. Artificial Neural Networks

A variety of inductive learning algorithms exist to perform generalization. Artificial
neural networks [Lippmann, 1987; Martinez, 1989; Wasserman, 1993; Widrow &
Winter, 1988; Windrow & Lehr, 1990] use learning models inspired at least partially
by our understanding of the operation of biological neural networks in brains. They
typically use highly interconnected simple processing nodes.

9

The backpropagation neural network [Rumelhart & McClelland, 1986] is one of the
most popular and successful neural network models. It uses a gradient descent
method to learn weight settings that reduce error on the training set and has had much
empirical success on a variety of real-world applications. However, it requires
several user-defined parameters that can have a dramatic impact on its ability to
solve the problem. It learns very slowly and can sometimes get stuck in local minima
that keep it from ever reaching a good solution, which often requires the algorithm to
start over. Recent advances in neural networks have helped to automate selection of
some of the parameters and speed training [Fahlman, 1988, 1990; Buntine &
Weigend, 1993; Møller, 1993].

Radial Basis Function (RBF) Networks [Broomhead & Lowe, 1988; Chen, 1991;
Renals & Rohwer, 1989; Wong, 1991] are similar to the nearest neighbor classifier in
that they have nodes with center points similar to prototypes in nearest neighbor
systems. Distance functions are used to determine the activation at each node, and
RBF’s can be used to perform classification, as is done by a particular class of RBF
networks called Probabilistic Neural Networks (PNN) [Specht, 1992]. Two chapters
in this dissertation (Chapters 4 and 6) use PNN’s rather than a nearest neighbor
model to demonstrate the usefulness of advances in distance-based learning.

Other neural network (or connectionist) models include Adaptive Resonance
Theory (ART) [Carpenter & Grossberg, 1987], counterpropagation networks [Hecht-
Nielsen, 1987], the self-organizing map [Kohonen, 1990], and ASOCS [Martinez, 1986,
1990; Martinez & Vidal, 1988; Martinez & Campbell, 1991a, 1991b; Martinez,
Campbell & Hughes, 1994; Rudolph & Martinez, 1991].

For more information on artificial neural networks in general, the reader is referred
to the introductory article by Lippman [1987], or to the text by Wasserman [1993].

3. Other Learning Models

A variety of approaches to inductive learning have also been developed in the
machine learning and artificial intelligence communities. Decision tree methods such
as ID3 [Quinlan, 1986] and C4.5 [Quinlan, 1993] have had success in many domains.
These models use information gain to determine which attribute to perform a split on
(and where to split) and continue splitting until most of the instances can be classified
correctly. Often this process is followed by a pruning step in which leaf nodes are
pruned in order to avoid noise and to prevent overfitting, i.e., to avoid going beyond
the underlying function and learning the sampling distribution.

Rule-based learning algorithms have also been developed, including AQ
[Michalski, 1969], CN2 [Clark & Niblett, 1989] and RISE [Domingos, 1995].

For a more detailed information on machine learning in general, the reader is
referred to [Mitchell, 1997].

Genetic Algorithms [Kelly & Davis, 1991; Spears et al., 1993] are search
heuristics based on genetic operators such as crossover and mutation. They are
sometimes used in conjunction with neural networks or machine learning algorithms to
optimize parameters, and are sometimes used to attack problems directly. In this
dissertation genetic algorithms are used to find attribute weights in the Genetic
Instance-Based Learning (GIBL) algorithm in Chapter 8.

10

4. Nearest Neighbor / Instance-Based Algorithms

Cover & Hart [1967] formally introduced the nearest-neighbor rule and showed
that its error rate is bounded by twice the Bayes optimum in the limit. Their original
paper also mentions the kNN rule, in which the majority class of the k closest
neighbors is used for classification. This reduces susceptibility to noise in some cases
but can also result in lower accuracy in others. Also, the user often has to pick the
value of k.

Salzberg et al. [1995] found upper and lower bounds on the number of examples it
would take to learn a concept if the instances were chosen in the best way possible.
They showed that some problems need exponential numbers of examples and are thus
inherently difficult for the nearest-neighbor algorithm. They also identified some
geometric properties that make some problems inherently easy.

Dasarathy [1991] surveys much of the early work done in the nearest-neighbor
arena, and the reader is referred there for many of the original papers in this area.

4.1. Distance Functions

The original nearest neighbor paper [Cover & Hart, 1967] states that any distance
function can be used to determine how “close” one instance is to another, but only
Euclidean distance was used in their experiments. Euclidean distance is by far the
most widely used distance function in instance-based learning systems. However, a
variety of other distance functions are also available, including the Minkowskian
distance metric [Batchelor, 1978; Duda & Hart, 1973] (which includes Euclidean
distance as a special case), Mahalanobis distance [Nadler & Smith, 1993], context-
similarity distance [Biberman, 1994], and many others [Diday, 1974; Michalski, Stepp
& Diday, 1981].

One problem with most of these distance functions is that they are not designed
for nominal attributes, i.e., those with discrete, unordered input values (such as
color={red, green, blue, brown}). In such cases using linear distance makes little
sense. Giraud-Carrier & Martinez [1995] introduced a heterogeneous distance
function that uses linear distance on linear attributes and the overlap metric on
nominal attributes (where the overlap metric gives a distance of zero if the two values
are equal and a distance of one otherwise). A similar function is used by many of
Aha’s instance-based learning algorithms [Aha, Kibler & Albert, 1991; Aha, 1992].

4.1.1. VALUE DIFFERENCE METRIC

Stanfill & Waltz [1986] introduced the Value Difference Metric (VDM), which
finds a real-valued distance between nominal attribute values based on statistics
gathered from the training set. This improves classification over the simple overlap
metric on applications with nominal attributes. Cost & Salzberg [1993] modify this
metric and Rachlin et al. [1994] report on using this Modified VDM (MVDM) in a
classification system called PEBLS.

This dissertation presents several heterogeneous distance functions that extend
the VDM to handle linear attributes as well as nominal attributes.

11

4.1.2. DISCRETIZATION

Some systems, such as PEBLS [Rachlin et al., 1994], ID3 [Quinlan, 1986], and
ASOCS [Martinez, 1990] cannot directly use continuously valued input attributes, but
must first preprocess such attributes into discrete values, a process called
discretization. Several researchers have looked at how best to perform discretization
[Ventura & Martinez, 1995; Ventura, 1995; Lebowitz, 1985]. Ting [1994, 1996] found
discretization to improve performance in some cases, though the reasons for this may
have more to do with skewed class distributions than discretization (see Chapter 5,
Section 7 for discussion on this point).

The algorithms presented in this dissertation to not use discretization but
comparisons are made with systems that do, especially in Chapter 5.

4.1.3. UNKNOWN VALUES

Many datasets contain unknown attribute values (i.e., “?” instead of a real value)
that must be handled by a practical system. Dixon [1979] gives six methods of
handling unknown values, Quinlan [1989] presents several more, and Aha [1991] and
Giraud-Carrier & Martinez [1995] both assume that the distance to an unknown
value is maximal.

4.2. Speeding Classification

As mentioned in the introduction in Chapter 1, one of the disadvantages to the
nearest neighbor algorithm is the time required to classify new input vectors. The
basic algorithm works by finding the distance between the new input vector and every
instance in the training set in order to find the nearest neighbor(s).

It is possible to use k -dimensional trees (“k -d trees”) [Wess, Althoff &
Derwand, 1994; Sproull, 1991; Deng & Moore, 1995] to find the nearest neighbor in
O(logn) time in the best case. However, as the dimensionality grows, the search time
can degrade to that of the basic nearest neighbor rule.

Another technique used to speed the search is projection [Papadimitriou &
Bentley, 1980], where instances are sorted once by each dimension, and new
instances are classified by searching outward along each dimension until it can be sure
the nearest neighbor has been found.

4.3. Reducing the Instance Set

One of the most straightforward ways to speed classification in a nearest-
neighbor system is by removing some of the instances from the instance set. This
also addresses another of the main disadvantages of nearest-neighbor classifiers—
their large storage requirements. In addition, it is sometimes possible to remove
noisy instances from the instance set and actually improve generalization accuracy.

Several techniques for reducing storage are listed here, but more details are
provided in Chapter 7, where an in-depth survey is presented.

4.3.1. “EDITED” NEAREST NEIGHBOR CLASSIFIERS

Hart [1968] made one of the first attempts to reduce the size of the training set
with his Condensed Nearest Neighbor Rule (CNN), and Ritter et al. [1975] extended
the CNN in their Selective Nearest Neighbor Rule (SNN). These algorithms are both
extremely sensitive to noise.

12

Gates [1972] modified the CNN algorithm in his Reduced Nearest Neighbor Rule
(RNN), which is able to remove noisy instances and internal instances while retaining
border points. Swonger [1972] presented the Iterative Condensation Algorithm
(ICA) that allows both addition and deletion of instances from the instance set.

Wilson [1972] developed an algorithm which removes instances that do not agree
with the majority of their k nearest neighbors (with k=3, typically). This edits out
noisy instances as well as close border cases, leaving smoother decision boundaries,
but it also retains all internal points, which keeps it from reducing the storage
requirements as much as most other algorithms. Tomek [1976] extended Wilson’s
algorithm with his All k-NN method of editing by calling Wilson’s algorithm repeatedly
with k=1..k, though this still retains internal points.

4.3.2. “INSTANCE-BASED” ALGORITHMS

Aha et. al. [1991] presented a series of instance-based learning algorithms that
reduce storage. IB2 is quite similar to the Condensed Nearest Neighbor (CNN) rule
[Hart, 1968] and suffers from the same sensitivity to noise. IB3 [Aha et al. 1991]
addresses IB2’s problem of keeping noisy instances by using a statistical test to
retain only acceptable misclassified instances. In their experiments, IB3—due to its
reduced sensitivity to noise—was able to achieve greater reduction in the number of
instances stored and also achieved higher accuracy than IB2 on the applications on
which it was tested.

Zhang [1992] used a different approach called the Typical Instance Based
Learning (TIBL) algorithm, which attempted to save instances near the center of
clusters rather than on the border.

Cameron-Jones [1995] used an encoding length heuristic to determine how good a
particular subset is in modeling the entire training set. After a growing phase similar
to IB3, a random mutation hill climbing method called Explore is used to search for a
better subset of instances using the encoding length heuristic as a guide. It achieves
by far the greatest reduction in storage of all of the above methods as well as
providing reasonable accuracy.

4.3.3. PROTOTYPES AND OTHER MODIFICATIONS

Instead of just deciding which instances in the original training set to keep, some
algorithms seek to reduce storage requirements and speed up classification by
modifying the instances themselves.

Chang [1974] introduced an algorithm in which each instance in the original
training set is initially treated as a prototype. The nearest two instances that have
the same class are merged into a single prototype that is located somewhere between
the two prototypes. This process is repeated until classification accuracy starts to
suffer.

Domingos [1995] introduced the RISE 2.0 system which treats each instance in
the training set as a rule, and then makes rules more general until classification
accuracy starts to suffer.

Salzberg [1991] introduced the Nested Generalized Exemplar (NGE) theory,
implemented in a system called EACH, in which hyperrectangles are used to take the
place of one or more instances, thus reducing storage requirements. Wettschereck &
Dietterich, [1995; Dietterich, 1994] introduced a hybrid nearest-neighbor and nearest-
hyperrectangle algorithm that uses hyperrectangles to classify input vectors if they fall

13

inside a hyperrectangle and kNN to classify inputs that are not covered by any
hyperrectangle.

Dasarathy & Sheela [1979] introduced a composite classifier system consisting of
a linear classifier similar to the perceptron [Rosenblatt, 1959] to quickly classify
inputs that have a simple linear separation and a nearest neighbor rule to classify
inputs that fall in the non-linearly separable portion of the input space. It uses less
storage and is faster than the nearest neighbor algorithm but is more accurate than the
perceptron.

A more in-depth survey of instance pruning techniques is presented in Chapter 7,
where new reduction methods are also presented.

4.4. Weighting Techniques

One of the disadvantages of the basic nearest neighbor rule is its static nature.
Once it has read in the training set, its learning is complete, and though it often
generalizes well, it cannot perform adjustments to improve performance. This is in
stark contrast to the operation of neural networks such as backpropagation networks
that iterate and adjust weights to fit the problem.

There are several kinds of weights that can be used with nearest-neighbor
models, including vote weighting and attribute weighting.

4.4.1. VOTE WEIGHING

Vote weighting determines how much each neighbor is allowed to contribute to the
decision as to what class should be assigned to an input vector. Dudani [1976]
introduced a distance-weighted k-nearest neighbor rule in which nearer neighbors get
more voting weight than further ones. The weight drops linearly from 1 at the distance
of the first nearest neighbor to 0 at the distance of the kth neighbor. Keller, Gray &
Givens [1985] developed a Fuzzy k-NN algorithm that also uses a distance-weighted
voting scheme. However, instead of a linear drop-off, this algorithm uses an
exponentially decreasing amount of weight as the distance increases. Also, it uses
the voting weight for each class to provide an estimate of the confidence with which
the classification is being made.

Radial Basis Function (RBF) networks [Broomhead & Lowe, 1988; Chen, 1991;
Renals & Rohwer, 1989; Wong, 1991] also perform distance-weighted voting. Nodes
in RBF networks output an activation that depends on the distance of an input vector
to the node’s center point. The activation typically drops off with distance according to
a gaussian or exponential function. In probabilistic neural networks [Specht, 1992],
the activation for each class is summed, which in essence allows each node to
contribute some amount of voting weight for its desired output class.

Similar distance-weighted methods are used in Chapter 9, but several vote-
weighting functions are provided, including those with linear, exponential and gaussian
shapes. Confidence levels similar to those used in the Fuzzy k-NN method are also
used, but they are combined with cross-validation accuracy estimates in such a way
as to make them useful for tuning system parameters.

4.4.2. ATTRIBUTE WEIGHTING

Attribute weights can be used to avoid the detrimental effects of irrelevant and
redundant input attributes. They can also be used to increase the influence of more
important input attributes.

14

Wettschereck, Aha and Mohri [1995] provide an excellent survey of many
attribute-weighting techniques. The most successful methods are the so-called
wrapper models, which are those that use performance feedback (such as
classification accuracy estimates) in making decisions on what weights to choose.
These models include incremental hill-climbing methods such as EACH [Salzberg,
1991], which tunes attribute weights by a fixed amount after the presentation of each
instance, and IB4 [Aha, 1992], which finds a different set of attribute weights for each
class.

Kelly & Davis [1991] used a genetic algorithm to find continuously valued feature
weights, and Skalak [1994] used random mutation hill-climbing (a simplified genetic
algorithm) to select binary feature weights.

Lowe [1995] used a distance-weighted variable kernel similarity metric (VSM)
that used a conjugate gradient approach to minimize leave-one-out cross-validation
classification error of the training set. The derivative of this error with respect to each
attribute weight was used to guide the search for good attribute weights.

Two common methods for doing attribute selection (i.e., finding binary attribute
weights) are forward selection and backward elimination [Miller, 1990]. Moore &
Lee [1993] present a method using a schemata search that allows feature sets to be
found even when there are correlations between attributes that can only be detected
when certain attributes are combined.

It is possible to use more local weighting schemes. Aha & Goldstone [1990;
1992] developed a model called Generalized Concept Model with Instance-Specific
Weights (GCM-ISW) that in addition to global attribute weights uses a different set
of attribute weights for each instance. The weight used in computing distances is
interpolated between the global and local weight for each instance depending on the
distance for that attribute so that more local weights are used in parts of the input
space nearby an instance. This has the effect of warping the input space and makes it
possible for attributes to vary in their relevance throughout the input space.

This dissertation presents models that use a variety of vote-weighting schemes
and also uses a real-valued schemata search to determine effective attribute weights
that help to avoid the effects of irrelevant and redundant attributes.

5. Author’s Previous Work

Some of the work presented in this dissertation is built upon a foundation of work
done previously by the author. A paper entitled “The Importance of Using Multiple
Styles of Generalization” [Wilson & Martinez, 1993a] empirically supported the
theoretical work done by Schaffer [1993] and others showing that no single bias or
learning algorithm can solve all problems well. It explored how having multiple
algorithms to choose from may yield improved accuracy.

In addition, distance functions, discretization, voting schemes, weighting methods,
inductive rules and confidence levels were explored in [Wilson & Martinez, 1993b]
and in a Master’s Thesis entitled Prototype Styles of Generalization [Wilson, 1994].

The work in this dissertation extends far beyond that presented in the thesis or
earlier papers, but some of the background and intuition into instance-based learning
algorithms comes from this previous work.

15

References

Aha, David W., (1992). “Generalizing from Case Studies: A Case Study,” In Proceedings of the
Ninth International Conference on Machine Learning (MLC-92), Aberdeen, Scotland: Morgan
Kaufmann, pp. 1-10.

Aha, David W., (1992). “Tolerating noisy, irrelevant and novel attributes in instance-based learning
algorithms,” International Journal of Man-Machine Studies, vol. 36, pp. 267-287.

Aha, David W., and Robert L. Goldstone, (1990). “Learning Attribute Relevance in Context in
Instance-Based Learning Algorithms,” in Proceedings of the Twelfth Annual Conference of the
Cognitive Science Society, Cambridge, MA: Lawrence Erlbaum, pp. 141-148.

Aha, David W., and Robert L. Goldstone, (1992). “Concept Learning and Flexible Weighting,” in
Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society,
Bloomington, IN: Lawrence Erlbaum, pp. 534-539.

Aha, David W., Dennis Kibler, Marc K. Albert, (1991). “Instance-Based Learning Algorithms,”
Machine Learning, vol. 6, pp. 37-66.

Batchelor, Bruce G., (1978). Pattern Recognition: Ideas in Practice. New York: Plenum Press, pp.
71-72.

Biberman, Yoram, (1994). A Context Similarity Measure. In Proceedings of the European
Conference on Machine Learning (ECML-94). Catalina, Italy: Springer Verlag, pp. 49-63.

Broomhead, D. S., and D. Lowe (1988). Multi-variable functional interpolation and adaptive
networks. Complex Systems, vol. 2, pp. 321-355.

Buntine, Wray L., and Andreas S. Weigend, (1993). “Computing Second Derivatives in Feed-Forward
Networks: a Review,” IEEE Transactions on Neural Networks.

Cameron-Jones, R. M., (1995). Instance Selection by Encoding Length Heuristic with Random
Mutation Hill Climbing. In Proceedings of the Eighth Australian Joint Conference on Artificial
Intelligence, pp. 99-106.

Carpenter, Gail A., and Stephen Grossberg, (1987). “A Massively Parallel Architecture for a Self-
Organizing Neural Pattern Recognition Machine,” Computer Vision, Graphics, and Image
Processing, vol. 37, pp. 54-115.

Chang, Chin-Liang, (1974). “Finding Prototypes for Nearest Neighbor Classifiers,” I E E E
Transactions on Computers, vol. 23, no. 11, November 1974, pp. 1179-1184.

Chen, S., C. R. N. Cowen, and P. M. Grant, (1991). “Orthogonal Least Squares Learning Algorithm
for Radial Basis Function Networks,” IEEE Transactions on Neural Networks, vol. 2, no. 2, pp.
302-309.

Clark, Peter, and Tim Niblett, (1989). “The CN2 Induction Algorithm,” Machine Learning, vol. 3,
pp. 261-283.

Cost, Scott, and Steven Salzberg, (1993). “A Weighted Nearest Neighbor Algorithm for Learning
with Symbolic Features,” Machine Learning, vol. 10, pp. 57-78.

Cover, T. M., and P. E. Hart, (1967). “Nearest Neighbor Pattern Classification,” Institute of
Electrical and Electronics Engineers Transactions on Information Theory, vol. 13, no. 1, January
1967, pp. 21-27.

Dasarathy, Belur V., (1991). Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques,
Los Alamitos, CA: IEEE Computer Society Press.

Dasarathy, Belur V., and Belur V. Sheela, (1979). “A Composite Classifier System Design: Concepts
and Methodology,” Proceedings of the IEEE, vol. 67, no. 5, May 1979, pp. 708-713.

Deng, Kan, and Andrew W. Moore, (1995). “Multiresolution Instance-Based Learning,” to appear in
The Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’95).

16

Diday, Edwin, (1974). Recent Progress in Distance and Similarity Measures in Pattern Recognition.
Second International Joint Conference on Pattern Recognition, pp. 534-539.

Dixon, John K., (1979). “Pattern Recognition with Partly Missing Data,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. 9, no. 10, October 1979, pp. 617-621.

Domingos, Pedro, (1995). “Rule Induction and Instance-Based Learning: A Unified Approach,” to
appear in The 1995 International Joint Conference on Artificial Intelligence (IJCAI-95).

Duda, R. O., and P. E. Hart (1973). Pattern Classification and Scene Analysis. New York, NY:
Wiley.

Dudani, Sahibsingh A., (1976). “The Distance-Weighted k-Nearest-Neighbor Rule,” I E E E
Transactions on Systems, Man and Cybernetics, vol. 6, no. 4, April 1976, pp. 325-327.

Fahlman, Scott E., (1988). “Faster-Learning Variations on Back-Propagation: An Empirical Study,”
in D. S. Touretzky et al. (eds.), Proceedings of the 1988 Connectionist Models Summer School,
Morgan Kaufmann.

Fahlman, Scott E., (1990). “The Cascade-Correlation Learning Architecture,” in D. S. Touretzky
(ed.), Advances in Neural Information Processing Systems 2, Morgan Kaufmann.

Gates, G. W. (1972). “The Reduced Nearest Neighbor Rule,” IEEE Transactions on Information
Theory, vol. IT-18, no. 3, pp. 431-433.

Giraud-Carrier, Christophe, and Tony Martinez, (1995). “An Efficient Metric for Heterogeneous
Inductive Learning Applications in the Attribute-Value Language,” Intelligent Systems, pp. 341-
350.

Hart, P. E., (1968). “The Condensed Nearest Neighbor Rule,” Institute of Electrical and Electronics
Engineers Transactions on Information Theory, vol. 14, pp. 515-516.

Hecht-Nielsen, R., (1987). Counterpropagation Networks. Applied Optics, vol. 26, no. 23, pp.
4979-4984.

Keller, James M., Michael R. Gray, and James A. Givens, Jr., (1985). “A Fuzzy K-Nearest Neighbor
Algorithm,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 15, no. 4, July/August
1985, pp. 580-585.

Kelly, J. D., Jr., and L. Davis, (1991). “A hybrid genetic algorithm for classification,” in
Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, Sydney,
Australia: Morgan Kaufmann, pp. 645-650.

Kibler, D., and David W. Aha, (1987). “Learning representative exemplars of concepts: An initial
case study.” Proceedings of the Fourth International Workshop on Machine Learning, Irvine,
CA: Morgan Kaufmann, pp. 24-30.

Kohonen, Teuvo, (1990). The Self-Organizing Map. In Proceedings of the IEEE, vol. 78, no. 9, pp.
1464-1480.

Lebowitz, Michael, (1985). “Categorizing Numeric Information for Generalization,” Cognitive
Science, vol. 9, pp. 285-308.

Lippmann, Richard P., “An Introduction to Computing with Neural Nets,” IEEE ASSP Magazine, 3,
no. 4, pp. 4-22, April 1987.

Lowe, David G., (1995). “Similarity Metric Learning for a Variable-Kernel Classifier,” Neural
Computation., vol. 7, no. 1, pp. 72-85.

Macleod, James E. S., Andrew Luk, and D. Michael Titterington, (1987). “A Re-Examination of the
Distance-Weighted k-Nearest Neighbor Classification Rule,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 17, no. 4, July/August 1987, pp. 689-696.

Martinez, Tony R., (1986). “Adaptive Self-Organizing Logic Networks,” Ph.D. Dissertation,
University of California Los Angeles Technical Report - CSD 860093, (274 pp.).

Martinez, Tony R., (1990). “Adaptive Self-Organizing Concurrent Systems,” Progress in Neural
Networks, 1, Ch. 5, pp. 105-126, O. Omidvar (Ed), Ablex Publishing.

17

Martinez, Tony R., and Douglas M. Campbell, (1991a). “A Self-Adjusting Dynamic Logic Module,”
Journal of Parallel and Distributed Computing, vol. 11, no. 4, pp. 303-313.

Martinez, Tony R., and Douglas M. Campbell, (1991b). “A Self-Organizing Binary Decision Tree for
Incrementally Defined Rule Based Systems,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 21, no. 5, pp. 1231-1238, 1991.

Martinez, Tony R., and J. J. Vidal, (1988). “Adaptive Parallel Logic Networks,” Journal of Parallel
and Distributed Computing, vol. 5, no. 1, pp. 26-58.

Martinez, Tony R., Douglas M. Campbell, Brent W. Hughes, (1994). “Priority ASOCS,” Journal of
Artificial Neural Networks, vol. 1, no. 3, pp. 403-429.

Martinez, Tony, (1989). “Neural Network Applicability: Classifying the Problem Space,”
Proceedings of the IASTED International Symposium on Expert Systems and Neural Networks, pp.
12-15.

Møller, Martin F., (1993). “A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning,”
Neural Networks, vol. 6, pp. 525-533.

Michalski, Ryszard S., (1969). “On the quasi-minimal solution of the general covering problem,”
Proceedings of the Fifth International Symposium on Information Processing, Bled, Yugoslavia,
pp. 12-128.

Michalski, Ryszard S., Robert E. Stepp, and Edwin Diday, (1981). A Recent Advance in Data
Analysis: Clustering Objects into Classes Characterized by Conjunctive Concepts. Progress in
Pattern Recognition, vol. 1, Laveen N. Kanal and Azriel Rosenfeld (Eds.). New York: North-
Holland, pp. 33-56.

Miller, A. J., (1990). Subset selection in Regression, Chapman and Hall, 1990.

Mitchell, Tom M., (1980). “The Need for Biases in Learning Generalizations,” in J. W. Shavlik & T.
G. Dietterich (Eds.), Readings in Machine Learning, San Mateo, CA: Morgan Kaufmann, 1990,
pp. 184-191.

Mitchell, Tom M., (1997). Machine Learning, McGraw Hill.

Mohri, Takao, and Hidehiko Tanaka, “An Optimal Weighting Criterion of Case Indexing for Both
Numeric and Symbolic Attributes. In D. W. Aha (Ed.), Case-Based Reasoning: Papers from the
1994 Workshop, Technical Report WS-94-01. Menlo Park, CA: AIII Press, pp. 123-127.

Moore, Andrew W., and Mary S. Lee, (1993). “Efficient Algorithms for Minimizing Cross
Validation Error,” In Machine Learning: Proceedings of the Eleventh International Conference,
Morgan Kaufmann.

Nadler, Morton, and Eric P. Smith, (1993). Pattern Recognition Engineering. New York: Wiley, pp.
293-294.

Papadimitriou, Christos H., and Jon Louis Bentley, (1980). “A Worst-Case Analysis of Nearest
Neighbor Searching by Projection,” Lecture Notes in Computer Science, vol. 85, Automata
Languages and Programming, pp. 470-482.

Quinlan, J. R., (1986). “Induction of Decision Trees”, Machine Learning, vol. 1, pp. 81-106.

Quinlan, J. R., (1989). “Unknown Attribute Values in Induction,” Proceedings of the 6th
International Workshop on Machine Learning, San Mateo, CA: Morgan Kaufmann, pp. 164-168.

Quinlan, J. R., (1993). C4.5: Programs for Machine Learning, San Mateo, CA: Morgan Kaufmann.

Rachlin, John, Simon Kasif, Steven Salzberg, David W. Aha, (1994). “Towards a Better
Understanding of Memory-Based and Bayesian Classifiers,” in Proceedings of the Eleventh
International Machine Learning Conference, New Brunswick, NJ: Morgan Kaufmann, pp. 242-
250.

Renals, Steve, and Richard Rohwer, (1989). “Phoneme Classification Experiments Using Radial Basis
Functions,” Proceedings of the IEEE International Joint Conference on Neural Networks
(IJCNN’89), vol. 1, pp. 461-467.

18

Ritter, G. L., H. B. Woodruff, S. R. Lowry, and T. L. Isenhour, (1975). “An Algorithm for a
Selective Nearest Neighbor Decision Rule,” IEEE Transactions on Information Theory, vol. 21,
no. 6, November 1975, pp. 665-669.

Rosenblatt, Frank, (1959). Principles of Neurodynamics, New York, Spartan Books.

Rudolph, George L., and Tony R. Martinez, “An Efficient Static Topology For Modeling ASOCS,”
International Conference on Artificial Neural Networks, Helsinki, Finland. In Artificial Neural
Networks, Kohonen, et. al. (Eds.), Elsevier Science Publishers, North Holland, pp. 729-734,
1991.

Rumelhart, D. E., and J. L. McClelland, Parallel Distributed Processing, MIT Press, 1986.

Salzberg, Steven, (1991). “A Nearest Hyperrectangle Learning Method,” Machine Learning, vol. 6,
pp. 277-309.

Salzberg, Steven, Arthur Delcher, David Heath, and Simon Kasif, (1995). “Best-Case Results for
Nearest Neighbor Learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 17, no. 6, June 1995, pp. 599-608.

Schaffer, Cullen, (1993). “Selecting a Classification Method by Cross-Validation,” Machine
Learning, vol. 13, no. 1.

Schaffer, Cullen, (1994). “A Conservation Law for Generalization Performance,” In Proceedings of
the Eleventh International Conference on Machine Learning (ML’94), Morgan Kaufmann, 1994.

Skalak, David B., (1994). “Prototype and Feature Selection by Sampling and Random Mutation Hill
Climbing Algorithms,” Proceedings of the Eleventh International Conference on Machine
Learning (ML’94).

Spears, William M., Kenneth A. De Jong, Thomas Bäck, David B. Fogel, and Hugo de Garis, (1993).
“An Overview of Evolutionary Computation,” Proceedings of the European Conference on
Machine Learning, vol. 667, pp. 442-459.

Specht, Donald F., (1992). “Enhancements to Probabilistic Neural Networks,” in Proceedings
International Joint Conference on Neural Networks (IJCNN ’92), vol. 1, pp. 761-768.

Sproull, Robert F., (1991). “Refinements to Nearest-Neighbor Searching in k-Dimensional Trees,”
Algorithmica, vol. 6, pp. 579-589.

Stanfill, C., and D. Waltz, (1986). “Toward memory-based reasoning,” Communications of the
ACM, vol. 29, December 1986, pp. 1213-1228.

Swonger, C. W., (1972). “Sample Set Condensation for a Condensed Nearest Neighbor Decision Rule
for Patter Recognition,” Frontiers of Pattern Recognition, edited by S. Watanabe, Academic
Press, pp. 511-519.

Ting, Kai Ming, (1994). “Discretization of Continuous-Valued Attributes and Instance-Based
Learning,” Technical Report no. 491, Basser Department of Computer Science, The University of
Sydney, Australia.

Ting, Kai Ming, (1996). “Discretisation in Lazy Learning Algorithms,” to appear in the special issue
on Lazy Learning in Artificial Intelligence Review.

Tomek, Ivan, (1976). “An Experiment with the Edited Nearest-Neighbor Rule,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 6, no. 6, June 1976, pp. 448-452.

Turney, Peter, (1994). Theoretical Analyses of Cross-Validation Error and Voting in Instance-Based
Learning. Journal of Experimental and Theoretical Artificial Intelligence (JETAI), pp. 331-360.

Ventura, Dan, (1995). On Discretization as a Preprocessing Step for Supervised Learning Models,
Master’s Thesis, Brigham Young University, 1995.

Ventura, Dan, and Tony R. Martinez (1995). “An Empirical Comparison of Discretization
Methods.” In Proceedings of the Tenth International Symposium on Computer and Information
Sciences, pp. 443-450.

19

Wasserman, Philip D., (1993). Advanced Methods in Neural Computing, New York, NY: Van
Nostrand Reinhold, pp. 147-176.

Wess, Stefan, Klaus-Dieter Althoff and Guido Derwand, (1994). “Using k-d Trees to Improve the
Retrieval Step in Case-Based Reasoning,” Stefan Wess, Klaus-Dieter Althoff, & M. M. Richter
(Eds.), Topics in Case-Based Reasoning. Berlin: Springer-Verlag, pp. 167-181.

Wettschereck, Dietrich, (1994). “A Hybrid Nearest-Neighbor and Nearest-Hyperrectangle
Algorithm”, To appear in the Proceedings of the 7th European Conference on Machine
Learning.

Wettschereck, Dietrich, and Thomas G. Dietterich, (1995). “An Experimental Comparison of Nearest-
Neighbor and Nearest-Hyperrectangle Algorithms,” Machine Learning, vol. 19, no. 1, pp. 5-28.

Wettschereck, Dietrich, David W. Aha, and Takao Mohri, (1995). “A Review and Comparative
Evaluation of Feature Weighting Methods for Lazy Learning Algorithms,” Technical Report
AIC-95-012, Washington, D.C.: Naval Research Laboratory, Navy Center for Applied Research
in Artificial Intelligence.

Widrow, Bernard, and Michael A. Lehr, “30 Years of Adaptive Neural Networks: Perceptron,
Madaline, and Backpropagation,” Proceedings of the IEEE, 78, no. 9, pp. 1415-1441, September
1990.

Widrow, Bernard, Rodney Winter, “Neural Nets for Adaptive Filtering and Adaptive Pattern
Recognition,” IEEE Computer Magazine, pp. 25-39, March 1988.

Wilson, D. Randall, and Tony R. Martinez, (1993a). “The Importance of Using Multiple Styles of
Generalization,” Proceedings of the First New Zealand International Conference on Artificial
Neural Networks and Expert Systems (ANNES) , pp. 54-57.

Wilson, D. Randall, and Tony R. Martinez, (1993b). “The Potential of Prototype Styles of
Generalization,” The Sixth Australian Joint Conference on Artificial Intelligence (AI ’93), pp.
356-361.

Wilson, D. Randall, (1994). Prototype Styles of Generalization, Master’s Thesis, Brigham Young
University, August 1994.

Wilson, Dennis L., (1972). “Asymptotic Properties of Nearest Neighbor Rules Using Edited Data,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 2, no. 3, July 1972, pp. 408-421.

Wolpert, David H., (1993). “On Overfitting Avoidance as Bias,” Technical Report SFI TR 92-03-
5 0 0 1 , S a n t a F e , N M : T h e S a n t a F e I n s t i t u t e . I n t e r n e t :
ftp://ftp.santafe.edu/pub/dhw_ftp/overfitting.avoidance.ps.Z.

Wong, Yiu-fai, (1991). “How Gaussian Radial Basis Functions Work,” Proceedings of the IEEE
International Joint Conference on Neural Networks (IJCNN’91), vol. 2, pp. 133-138.

Zarndt, Frederick, (1995). A Comprehensive Case Study: An Examination of Connectionist and
Machine Learning Algorithms, Master’s Thesis, Brigham Young University.

Zhang, Jianping, (1992). “Selecting Typical Instances in Instance-Based Learning,” Proceedings of the
Ninth International Conference on Machine Learning.

20

Chapter 3

Bias and the Probability of Generalization

“In theory, there is no difference between theory and practice,
but in practice, there is.”

Submitted to
International Conference on Intelligent Information Systems (IIS’97), 1997.

Abstract

In order to be useful, a learning algorithm must be able to generalize well when faced with
inputs not previously presented to the system. A bias is necessary for any generalization, and
as shown by several researchers in recent years, no bias can lead to strictly better
generalization than any other when summed over all possible functions or applications. This
paper provides examples to illustrate this fact, but also explains how a bias or learning
algorithm can be “better” than another in practice when the probability of the occurrence of
functions is taken into account. It shows how domain knowledge and an understanding of the
conditions under which each learning algorithm performs well can be used to increase the
probability of accurate generalization, and identifies several of the conditions that should be
considered when attempting to select an appropriate bias for a particular problem.

1. Introduction

An inductive learning algorithm learns from a collection of examples, and then must
try to decide what the output of the system should be when a new input is received
that was not seen before. This ability is called generalization, and without this ability,
a learning algorithm would be of no more use than a simple look-up table.

For the purpose of this paper, we assume that we have a training set, T ,
consisting of n instances. Each instance has an input vector consisting of one value for
each of m input attributes, and an output value. The output value can be a continuous
value, in the case of regression, or a discrete class, in the case of classification. Most
of the examples in this paper will use classification for simplicity, but the discussion
applies to regression as well.

In order to generalize, an algorithm must have a bias, which Mitchell [1980]
defined as “a rule or method that causes an algorithm to choose one generalized
output over another.” Without a bias, an algorithm can only provide a correct output
value in response to an input vector it has seen during learning (and even that
assumes a consistent, correct training set). For other input vectors it would simply
have to admit that it does not know what the output value should be. A bias is
therefore crucial to a learning algorithm’s ability to generalize.

However, selecting a good bias is not trivial, and in fact may be considered to be
one of the main areas of research in the fields of machine learning, neural networks,
artificial intelligence, and other related fields.

21

Table 1. Truth table
for 2-input 1-output
boolean functions.

0 0 1 1
0 1 0 1

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

X:
Y:

ZERO
AND

X ^ ~Y
X

Y ^ ~X
Y

XOR
OR

NOR
EQUAL

~Y
X | ~Y

~X
~X | Y
NAND
ONE

Table 2. Example
of a training set.

 0 0 -> 0
 0 1 -> 1
 1 0 -> 1
 1 1 -> ?

Biases are usually not explicitly defined, but are typically inherent in a learning
algorithm that has some intuitive and/or theoretical basis for leading us to believe it
will be successful in providing accurate generalization in certain situations. It is in fact
difficult to give a precise definition of the bias of even a well-understood learning
model, except in terms of how the algorithm itself works. Parameters of an algorithm
also affect the bias.

Dietterich [1989], Wolpert [1993], Schaffer [1994], and others have shown that no
bias can achieve higher generalization accuracy than any other bias when summed
over all possible applications. This seems somewhat
disconcerting, as it casts an apparent blanket of hopelessness
over research focused on discovering new, “better” learning
algorithms. Section 2 presents arguments and examples
illustrating this Conservation Law for Generalization
Performance [Schaffer, 1993]. Section 3 discusses the bias of
simplicity, and illustrates how one bias can lead to better
generalization than another, both theoretically and empirically,
when functions are weighted according to their probability of
occurrence. This probability is related to how much regularity
a function contains and whether it is an important kind of
regularity that occurs often in real world problems.

The key to improved generalization is to first have a
powerful collection of biases available that generalize well on
many problems of interest, and then to use any knowledge of a
particular application domain we may have to choose a bias
(i.e., a learning algorithm and its parameters) that is
appropriate for that domain. Section 4 gives a list of conditions
to consider when trying to match an application domain with a
learning algorithm. It is important to understand how various
learning algorithms behave under these conditions [Aha, 1992b] so that applications
can be matched with an appropriate bias. Section 5 draws conclusions from the
discussion.

2. Why One Bias Cannot be “Better” than Another

The Conservation Law of Generalization [Schaffer, 1994] states that no bias (or
learning algorithm) can achieve higher generalization than any other when summed
over all possible learning problems.

In order to illustrate this law, consider all of the possible 2-
input 1-output binary problems, listed in Table 1.

A name for each function is given next to its output for each
input pattern. We refer to functions either by their name (e.g.,
“OR”), or their truth values (e.g., “0111”). Suppose that for a
particular problem our training set contains three out of the four
possible input patterns as shown in Table 2.

The last entry (1,1->?) is the only pattern that is not
preclassified in this example. We can think of the training set as
a template (“011?”) used to see which functions are consistent with it, where a
question mark indicates that the output is unknown for the corresponding input

22

pattern. Of the 16 possible 2-input binary functions, two are consistent with the
supplied training set, namely, XOR (“0110”) and OR (“0111”). Unfortunately, there
is no way to tell from the data which of these two functions is correct in this case.

Consider three simple biases that could be applied here:

1. Most Common (MC): select the most common output class.
2. Least Common (LC): select the least common output class.
3. Random: randomly choose an output class.

The first (MC) would choose an output of 1, and thus choose the “OR” function. The
second (LC) would choose an output of 0, and thus choose the “XOR” function. The
Random function could choose either one.

If the function is really “OR”, then MC would be correct, and LC would be wrong.
If the function is really “XOR”, then the opposite would be true. The average
generalization accuracy for MC, LC and Random over the two possible functions is the
same: 50%. Regardless of which output a bias chooses given the three known input
patterns, if it is correct for one function, it must be wrong on the other.

Cross-validation [Schaffer, 1993] is often used to help select among possible
biases, e.g., to select which parameters an algorithm should use (which affects the
bias), or to select which algorithm to use for a problem. However, cross-validation is
still a bias, and thus cannot achieve better-than-random generalization when summed
over all functions.

As an example, suppose we hold out the first training pattern for evaluating our
available biases, similar to what is done in cross-validation. The second and third
input patterns yield a template of “?11?”, which is matched by four functions: “0110”,
“1110”, “0111”, and “1111”. MC would choose the function “1111” as its estimated
function, while LC would choose the function “0110”. In this case, LC looks like the
better bias, since it generalized from the subset to the training set more correctly than
MC did.

If the true underlying function is “0110”, then cross-validation will have chosen
the correct bias. However, the fact remains that if the true function is “0111”, MC
rather than LC would be the correct choice of bias to use. Again, the average
generalization accuracy over the possible functions is 50%.

This example also illustrates that though it might be tempting to think so, even the
addition of “fresh data” to our original training set does not help in determining which
learning algorithm will generalize more accurately on unseen data for a particular
application. If this were not true, then part of the original training set could be held out
and called “fresh.” Of course, when more data is available a larger percentage of
input vectors can be memorized and thus guaranteed to be correct (assuming
consistent, correct training data), but this still does not help generalization on unseen
input patterns when considering all the possible functions that are consistent with the
observed data.

Given an m-input 1-output binary problem, there are 2m possible input patterns

and 22m
 possible functions to describe the mapping from input vector to output class.

Given n training instances, there will be (22m
/2n)=2^(2m-n) possible functions to

describe the mapping. For example, a 10-input binary training set with 1000 (of the
possible 1024) unique training instances specified would still be consistent with
2^(1024-1000)=224≈4 million different functions, even though almost all of the

23

possible instances were specified. Every training instance added to the training set
cuts the number of possible functions by half, but this also implies that every possible
input pattern not in the training set doubles the number of possible functions
consistent with the data.

For functions with more than two possible values for each input variable and
output value, the problem becomes worse, and when continuous values are involved,
there are an infinite number of functions to choose from.

Some bias is needed to choose which of all possible functions to use, and some
guidance is needed to decide which bias to use for a particular problem, since no bias
can be better than any other for all possible problems.

3. Why One Bias Can be “Better” than Another

Section 2 illustrated how every bias has the same average generalization
accuracy, regardless of which function it chooses to explain a set of training instances.
This seems somewhat disconcerting, as it casts an apparent blanket of hopelessness
over research focused on discovering new, “better” learning algorithms. This section
explains why some algorithms can have higher generalization accuracy than others in
practice.

Let F be the set of functions consistent with a training set, and |F| be the number
of such functions in F. Then the theoretical average accuracy (i.e., that discussed in
Section 2) is given by:

ta(b) =
g(b, f)

f ∈ F
∑

|F|
= C (1)

where g(b,f) is the average generalization accuracy of a bias b on a function f, and C is
some constant (0.5 for functions with boolean outputs), indicating that the theoretical
average accuracy is the same for all biases.

3.1. Functions are Not Equally Important

The theoretical average accuracy treats all functions as equally important. In
practice, however, some functions are much more important that others. Functions
have different amounts of regularity, and also have different kinds of regularity (as
discussed in more detail in following sections). Only a vanishingly small fraction of all
functions have large amounts of regularity, and yet most of the problems we are
interested in solving have strong regularities in their underlying functions (assuming a
good set of input attributes is used to describe the problem). Such functions are
therefore much more important in practice than the remaining ones.

If one bias achieves higher average generalization accuracy than another on these
important functions, then it is “better” (in practice) than the other, even though it
must do correspondingly worse on some problems that are unimportant to us.

The importance of a function is related closely to its likelihood [Wolpert, 1993] of
occurring in practice. If a particular kind of regularity occurs often in problems of
interest in the real world, then functions that contain this kind of regularity will have a
higher probability of occurring in practice than others.

24

If the generalization accuracy of each function is weighted by the probability of its
occurrence (and thus indirectly by its importance), the practical average accuracy is
given as:

pa(b) =
p(f)g(b, f)

f ∈ F
∑

p(f)
f ∈ F
∑

(2)

Where p(f) is the probability of each function f in F occurring in practice. Using this
measure, a bias that generalizes well on common functions and poorly on uncommon
functions will have a higher practical average accuracy than a bias with the opposite
generalization behavior, even though both have the same theoretical average
accuracy.

Since there are an infinite number of functions, the above functions are not
computed explicitly, but they do help to explain why many learning algorithms—such
as C4.5 [Quinlan, 1993], k -nearest neighbor [Cover & Hart, 1967], and
backpropagation neural networks [Rumelhart & McClelland, 1986]—have empirically
been able to generalize much better than random on applications of interest. These
and other learning models have a bias that is appropriate for many applications that
occur in practice, and thus achieve good accuracy in such situations.

3.2. Bias of simplicity

One bias that is in wide use in a variety of learning algorithms is the bias of
simplicity (Occam’s Razor). When there are multiple possible explanations for the
same data, this bias tends to choose the simplest one. The bias of simplicity has been
employed in many different learning algorithms, and with good success. We as
humans use the bias of simplicity quite often in trying to make sense of complex data.

The success of the bias of simplicity suggests that many of the problems that we
try to solve with learning algorithms have underlying regularities that these
algorithms are able to discover. Put another way, the probability of simple functions is
higher than that of more complex functions, so a bias that favors simplicity will have a
higher probability of generalizing correctly than one that does not.

One problem with the bias of simplicity is that there is no fixed definition of what is
“simple.” For example, the XOR problem can be described in English quite simply,
i.e., “odd number of 1’s in the input vector.” However, describing this in a logic
equation is much more complex (when the number of inputs is large) than some
functions which would be more lengthy to describe in English.

Often the representation language can have a great impact on the simplicity of a
concept description. In fact, this is one way in which learning algorithms differ. Many
algorithms seek to choose the simplest concept description that is (approximately)
consistent with the training set, but do so according to their own representational
language, which in turn influences what bias is used in choosing a concept description.

Thus, even when using the bias of simplicity, one must decide upon an algorithm
that will choose the simplest concept description in its own representational language
that will provide higher generalization accuracy than the other algorithms. Put another
way, each algorithm is good at identifying only certain kinds of regularity.

If we have an a priori knowledge of the problem’s underlying function, we may be
able to decide which algorithm is most likely to be suitable for it. Of course, knowing

25

the underlying function makes the learning algorithm unnecessary in most cases.
More likely, we will have some intuition as to what the problem’s underlying function
probably looks like, or what it approximately looks like, in which case we can choose
an algorithm that appears to be well suited for such a problem.

3.3. Additional Information

Schaffer [1994] mentioned that the only way to choose one algorithm over another
for a particular problem and expect it to generalize more accurately is if we have
additional information about the problem besides the raw training data. This
additional information cannot be in the form of additional training instances, for these
tell us only what the output should be at the additional specific points. Rather, the
additional information should be general knowledge, intuition, or even reasonable
assumptions regarding the underlying problem and the mapping from its inputs to
outputs.

For example, knowing whether the input values are linear or nominal may be
important. Knowing that “values nearer to each other are more likely to correspond to
similar output classes than values far from each other” would indicate a geometrically
based problem that a variety of learning algorithms are well suited for. Knowing that
the problem is somewhat similar to one that was solved successfully by a particular
learning algorithm might be helpful.

Such intuition or knowledge does more than just specify what the output should be
at additional points in the input space. Rather, it gives a hint (i.e., an indication or
bias) of how the function behaves across the entire input space, thus providing
information and guidance in areas of the input space that are not explicitly mapped to
output values.

In essence, such knowledge increases the probability that a learning algorithm will
be applied to a problem that it is appropriate for, and thus raises the average practical
generalization accuracy of that algorithm.

Thus general knowledge about a problem can be used to select an appropriate
bias, and has the potential to improve generalization accuracy, even if a strict
examination of the data cannot.

To see how the practical average accuracy is affected by the use of additional
knowledge, consider a meta-bias M that works as follows.

Learn as much as possible about a problem domain, and use this
knowledge to select a bias bi (from a set B of available biases) that
appears to be most appropriate for the problem.

The average accuracy of the bias M for a given function f is given as:

g(M, f) = p(bi |K, f)g(bi , f)
i=1

|B|

∑ (3)

where K is the domain knowledge and knowledge of the characteristics of the biases
in B; p(bi|K ,f) is the probability (averaged over all possible training sets for f) of
choosing bias bi given an underlying function f and our knowledge K; |B| is the number
of available biases; and g(bi,f) is the average accuracy for a particular bias bi for the
function f. The set B is limited in a practical setting by what biases are available to

26

those who are trying to solve real problems (i.e., what algorithms they are aware of
and can implement and/or use).

The average accuracy g(bi,f) for each bias is fixed for a given function f, but the
probability p(bi|K,f) of choosing the bias depends on our understanding of a particular
application domain and of the various available biases.

Thus, there are two ways to increase practical generalization accuracy using this
meta-bias M. The first is to find additional algorithms and/or parameters to add to B
that yield high values of g(bi,f) for important classes of functions, especially those not
handled well by other algorithms already in B, and to learn enough about the new
biases to apply them appropriately. This can be done by introducing new learning
algorithms and modifying existing algorithms to achieve higher generalization accuracy
on at least a subset of real-world learning problems, and by identifying characteristics
of problems for which the new bias is successful.

The second way to increase practical generalization accuracy using this meta-bias
is to increase our understanding of the capabilities of each bias and increase our ability
to identify characteristics of applications. This allows us to increase the probability
p(bi|K,f) of selecting biases that are likely to achieve high generalization accuracy
g(bi,f) while decreasing the probability of choosing inappropriate biases that would
result in lower accuracy.

It is therefore very important to know under what conditions each algorithm
generalizes well, and how to determine whether a particular problem exhibits such
conditions. Section 4 gives a list of conditions to consider when trying to match an
application domain with a learning algorithm.

4. Characteristics of Algorithms and Applications

Each learning algorithm has certain conditions under which it performs well. For
example, nearest neighbor classifiers work well when similar input vectors correlate
well with similar output classes. Using the two-input binary example from Section 2,
given a template “011?”, a nearest neighbor classifier would assume this is the “OR”
function “0111”, since the unspecified pattern, “11” is closer to “01” and “10” than
to “00”.

The XOR function (“0110”), on the other hand, violates the similarity criterion,
because values nearer each other are actually more likely to be of different classes.
Thus the nearest neighbor and other geometrically based algorithms are not
appropriate for the XOR function, because they will provide random or worse
generalization.

One way that models can be “improved” is by identifying conditions under which it
does not perform well (e.g., by finding kinds of regularity that the algorithm cannot
identify or represent), and then add the capability to handle such conditions when it is
likely that they exist in an application. For example, the nearest neighbor algorithm is
extremely sensitive to irrelevant attributes, so an extension to the basic algorithm
that finds attribute weights or removes irrelevant attributes would be likely to improve
generalization when there is a strong likelihood that there are irrelevant attributes in
the problem. Again, our knowledge of the application domain, the source of the data,
and other such knowledge can help to identify when such conditions are likely.

When this kind of knowledge is available about an application, we can match this
information against our knowledge of various learning algorithms (or the effect of

27

various parameters in an algorithm) to choose one that is appropriate, i.e., one
designed to handle the aspects we know about the problem, and thus one likely to
generalize well on it.

4.1. Characteristics of Applications

This section presents a list of issues that can be used to decide whether an
algorithm is appropriate for an application. One useful area of research in machine
learning is to identify how each learning algorithm addresses such issues, as well as
how to identify characteristics of applications in relation to each issue.

The following list is not exhaustive, but is meant to serve as a starting point in
identifying characteristics of an application.

4.1.1. NUMBER OF INPUT ATTRIBUTES (DIMENSIONALITY).

Some applications have a large number of input attributes, which can be
troublesome for algorithms that suffer from the “curse of dimensionality.” For
example, k-d trees [Wess, Althoff & Derwand, 1994] for speeding up searches in
nearest neighbor classifiers are not effective when the dimensionality grows too large
[Sproull, 1991]. On the other hand, some algorithms can make use of the additional
information to improve generalization, especially if they have a way of ignoring
attributes that are not useful.

4.1.2. TYPE OF INPUT ATTRIBUTES.

Input attributes can be nominal (discrete, unordered), linear (discrete, but
ordered), or continuous (real-valued), and applications can have input attributes that
are all of one type or a mixture of different kinds of attributes [Wilson & Martinez,
1997]. Some models are designed only to handle one kind of attribute. For example,
some models cannot handle continuous attributes and must therefore discretize
[Lebowitz, 1985; Schlimmer, 1987] such attributes before using them.

4.1.3. TYPE OF OUTPUT.

Output values can be continuous or discrete. Many learning models are designed
only for classification, and thus can handle only discrete outputs, while others perform
regression and are appropriate for continuous outputs.

4.1.4. NOISE.

Errors can occur in input values or output values, and can result from measurement
errors, corruption of the data, or unusual occurrences that are correctly recorded.
Noise-reduction algorithms such as pruning techniques in decision trees [C4.5] or the
use of k>1 in the k-nearest neighbor algorithm [Cover & Hart, 1967] can help reduce
the effect of noisy instances, though such techniques can also hurt generalization in
some cases, especially when noise is not present.

Many applications also have missing values (or “don’t know” values) that must
be dealt with in a reasonable manner [Quinlan, 1989].

4.1.5. IRRELEVANT ATTRIBUTES.

Some learning models such as C4.5 [Quinlan, 1993] are quite good at ignoring
irrelevant attributes, while others, such as the basic nearest-neighbor algorithm, are

28

extremely sensitive to them, and require modifications [Aha, 1992a; Wilson &
Martinez, 1996] to handle them appropriately.

4.1.6. SHAPE OF DECISION SURFACE.

The shape of the decision surface in the input space can have a major effect on
whether an algorithm can solve the problem efficiently. Many models are limited in
the kinds of decision surfaces they can generate. For example, decision trees and
rule-based systems often have axis-aligned hyperrectangular boundaries; nearest-
neighbor classifiers can form decision boundaries made of the intersection of
hyperplanes (each of which bisects the line between two instances of different
classes); backpropagation neural networks form curved surfaces formed by an
intersection of sigmoidal hypersurfaces [Lippmann, 1987].

Many problems have geometric decision surfaces such that points close together
are grouped into the same class or have similar output values, and most learning
algorithms do better with such problems. Others, like the XOR problem, do not have
geometrically simple decision surfaces, and are thus difficult for many learning
algorithms, though other representations like logic statements can sometimes be used
to generalize in such cases.

Some problems also have overlapping concepts, which makes a rigid decision
surface inappropriate. Models such as backpropagation networks that have a
confidence associated with their decisions can be useful in such cases.

4.1.7. DATA DENSITY.

The density of data can be thought of as either the proportion of possible input
patterns that are included in the training set, or as the amount of training data
available compared to the complexity of the decision surface.

4.1.8. ORDER OF ATTRIBUTE-CLASS CORRELATIONS.

Some problems can be solved using low-order combinations of input attributes
(e.g., the Iris database [Merz & Murphy, 1996] can be largely solved using only one
of the inputs), while other problems can only be solved using combinations of several
or all of the input attributes. Similarly, some models can do only linearly separable
problems (e.g., perceptron [Widrow & Lehr, 1990]), though most do handle higher-
order combinations of input values.

The first three criteria are usually easy to identify (number and types of input and
output attributes). We also often have a feel for how accurate the data is that we
have collected, and whether it is likely to contain some noise. Missing values are also
easily identified.

Irrelevant attributes are usually difficult to identify, because sometimes an
attribute will only correlate well with the output when combined in some higher-order
way with other attributes. Such combinations are difficult to identify, since there are
an exponential number of them to check for, and typically insufficient data to support
strong conclusions about which combinations of attribute values are significant.

4.2. Characteristics of Learning Algorithms

Each of the issues listed in Section 4.1 identifies characteristics of applications to
keep in mind when choosing a learning algorithm. It is certainly not trivial to obtain

29

such information about applications, but hopefully at least some of the above
information can be obtained about a particular application before deciding upon a
learning algorithm to use on it.

In order for such information to be useful in choosing a learning algorithm,
knowledge about individual learning models must also be available. One way to
determine the conditions under which an algorithm will perform well is to use artificial
data. Artificial data can be designed to test specific conditions such as noise-
tolerance, non-axis-aligned decision boundaries, and so forth. Since the researcher
has complete control over how such data is constructed, and knows what the
underlying function really is, it can be modified in ways to test specific abilities.

However, it is still a necessity to test algorithms on real data, too, in order to see
how well the algorithm works in typical real-world conditions. In addition, real-world
data can be modified to see how changing certain conditions affects generalization
ability or other aspects of the algorithm’s performance. For example, to test noise
tolerance, a real-world dataset can have noise added to it by randomly changing input
or output values to see how fast generalization accuracy drops with an increasing
level of noise. Similarly, irrelevant attributes can be added to see how a model
handles them.

In addition to such empirical studies, theoretical conclusions can often be drawn
from an examination of the learning algorithm itself. For example, the possible shapes
of decision surfaces can often be derived from looking at an algorithm and the
representation it uses for concept descriptions. Once the theoretical limits on the
shape of the decision surface is determined, artificial functions can be used to see how
well different surfaces can be approximated by a learning model. Some simple shapes
that can be used as starting points include axis-aligned hyperrectangles, diagonal
hyperplanes, and hyperspheres.

By using a combination of theoretical analysis, artificial data, real-world data, and
artificially modified real-world data, much can be learned about each learning algorithm
and the conditions under which it will fail or generalize well. When combined with
knowledge about a particular application (outside of the raw training data), the
probability of achieving high generalization can be substantially increased.

5. Conclusions

A learning algorithm needs a bias in order to generalize. No bias can achieve
higher theoretical average generalization accuracy than any other when summed over
all applications. However, some biases can achieve higher practical average
generalization accuracy than others when their bias is more appropriate for those
functions that are more likely to occur in practice, even if their bias is worse for
functions that are less likely to occur.

In order to increase the probability of achieving high generalization accuracy, it is
important to know what characteristics each learning algorithm has, and how an
algorithm’s parameters affect these characteristics, so that an appropriate algorithm
can be chosen to handle each application. By increasing the probability that an
appropriate bias will be chosen for each problem, the average practical generalization
accuracy can be increased.

Research in machine learning and related areas should seek to identify
characteristics of learning models, identify conditions for which each model is

30

appropriate, and address areas of weakness among them. It should also continue to
introduce new learning algorithms, improve existing algorithms, and indicate when
such algorithms and improvements are appropriate. Research should also continue to
explore ways of using knowledge outside of the raw training data to help decide what
bias would be best for a particular application. By so doing, the chance for increased
generalization accuracy in real-world situations can continue to be improved.

References

Aha, David W., (1992a). “Tolerating noisy, irrelevant and novel attributes in instance-based learning
algorithms.” International Journal of Man-Machine Studies, vol. 36, pp. 267-287.

Aha, David W., (1992b). “Generalizing from Case Studies: A Case Study.” In Proceedings of the
Ninth International Conference on Machine Learning (MLC-92), Aberdeen, Scotland: Morgan
Kaufmann, pp. 1-10.

Cover, T. M., and P. E. Hart, (1967). “Nearest Neighbor Pattern Classification.” Institute of
Electrical and Electronics Engineers Transactions on Information Theory, vol. 13, no. 1, pp. 21-
27.

Dietterich, Thomas G., (1989). “Limitations on Inductive Learning.” In Proceedings of the Sixth
International Conference on Machine Learning.

Lebowitz, Michael, (1985). “Categorizing Numeric Information for Generalization.” Cognitive
Science, vol. 9, pp. 285-308.

Lippmann, Richard P., (1987). “An Introduction to Computing with Neural Nets,” IEEE ASSP
Magazine, vol. 3, no. 4, pp. 4-22.

Merz, C. J., and P. M. Murphy, (1996). UCI Repository of Machine Learning Databases. Irvine,
CA: University of California Irvine, Department of Information and Computer Science. Internet:
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Mitchell, Tom M., (1980). “The Need for Biases in Learning Generalizations.” in J. W. Shavlik &
T. G. Dietterich (Eds.), Readings in Machine Learning. San Mateo, CA: Morgan Kaufmann,
1990, pp. 184-191.

Quinlan, J. R., (1989). “Unknown Attribute Values in Induction.” In Proceedings of the 6th
International Workshop on Machine Learning. San Mateo, CA: Morgan Kaufmann, pp. 164-168.

Quinlan, J. R., (1993). C4.5: Programs for Machine Learning, San Mateo, CA: Morgan Kaufmann.

Rumelhart, D. E., and J. L. McClelland, (1986). Parallel Distributed Processing, MIT Press, Ch. 8,
pp. 318-362.

Schaffer, Cullen, (1993). “Selecting a Classification Method by Cross-Validation.” Machine
Learning, vol. 13, no. 1.

Schaffer, Cullen, (1994). “A Conservation Law for Generalization Performance.” In Proceedings of
the Eleventh International Conference on Machine Learning (ML’94), Morgan Kaufmann, 1994.

Schlimmer, Jeffrey C., (1987). “Learning and Representation Change.” In Proceedings of the Sixth
National Conference on Artificial Intelligence (AAAI’87), vol. 2, pp. 511-535.

Sproull, Robert F., (1991). “Refinements to Nearest-Neighbor Searching in k-Dimensional Trees.”
Algorithmica, vol. 6, pp. 579-589.

Wess, Stefan, Klaus-Dieter Althoff and Guido Derwand, (1994). “Using k-d Trees to Improve the
Retrieval Step in Case-Based Reasoning.” Stefan Wess, Klaus-Dieter Althoff, & M. M. Richter
(Eds.), Topics in Case-Based Reasoning. Berlin: Springer-Verlag, pp. 167-181.

31

Widrow, Bernard, and Michael A. Lehr, (1990). “30 Years of Adaptive Neural Networks:
Perceptron, Madaline, and Backpropagation,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1415-
1441.

Wilson, D. Randall, and Tony R. Martinez, (1997). “Improved Heterogeneous Distance Metrics,”
Journal of Artificial Intelligence Research, vol. 6, no. 1, pp. 1-34.

Wilson, D. Randall, and Tony R. Martinez, “Instance-Based Learning with Genetically Derived
Attribute Weights,” International Conference on Artificial Intelligence, Expert Systems and
Neural Networks (AIE’96), pp. 11-14, August 1996.

Wolpert, David H., (1993). “On Overfitting Avoidance as Bias.” Technical Report SFI TR 92-03-
5001. Santa Fe, NM: The Santa Fe Institute.

32

Part II

Heterogeneous Distance Functions
“And who is my neighbor?”

—Luke 10:29.

Many applications have both linear and nominal attributes but previous distance
functions did not handle both kinds of attributes satisfactorily. Chapter 4 introduces
the Heterogeneous Value Difference Metric (HVDM), which uses Euclidean distance
for linear attributes and the Value Difference Metric (VDM) for nominal attributes.
This chapter then uses the HVDM in a radial basis function neural network.

Chapter 4 was published under the following reference.

Wilson, D. Randall, and Tony R. Martinez, “Heterogeneous Radial Basis Function
Networks,” Proceedings of the International Conference on Neural Networks
(ICNN’96), vol. 2, pp. 1263-1267, June 1996.

Chapter 5 introduces two additional heterogeneous distance functions that allow
the VDM to be applied directly to continuously valued attributes, thus avoiding
problems associated with normalization between nominal and continuous attributes.
These two distance functions, the Interpolated VDM (IVDM) and the Windowed
VDM (WVDM), were first published in the following conference paper.

Wilson, D. Randall, and Tony R. Martinez, (1996). “Value Difference Metrics for
Continuously Valued Attributes,” International Conference on Artificial
Intelligence, Expert Systems and Neural Networks (AIE’96), pp. 74-78.

Chapter 5 discusses modifications to the normalization used by HVDM, presents the
IVDM and WVDM distance functions, and provides in-depth comparisons between
these new heterogeneous distance functions and several popular alternatives used
previously. Chapter 5 was published in the Journal of Artificial Intelligence Research,
and can be referenced as follows.

Wilson, D. Randall, and Tony R. Martinez, (1997). “Heterogeneous Distance
Functions for Instance-Based Learning,” Journal of Artificial Intelligence
Research (JAIR), vol. 6, no. 1, pp. 1-34.

33

Chapter 4

Heterogeneous Radial Basis Function Networks

“What goes around, comes around. Unless it’s square.”
—Steve Cordon.

Proceedings of the International Conference on Neural Networks (ICNN’96),
vol. 2, pp. 1263-1267, June 1996.

Abstract

Radial Basis Function (RBF) networks typically use a distance function designed for numeric
attributes, such as Euclidean or city-block distance. This paper presents a heterogeneous
distance function which is appropriate for applications with symbolic attributes, numeric
attributes, or both. Empirical results on 30 data sets indicate that the heterogeneous distance
metric yields significantly improved generalization accuracy over Euclidean distance in most
cases involving symbolic attributes.

1. Introduction

Much research has been directed at finding better ways of helping machines learn
from examples. When domain knowledge in a particular area is weak, solutions can
be expensive, time consuming and even impossible to derive using traditional
programming techniques.

In such cases, neural networks can be used as tools to make reasonable solutions
possible or good solutions more economical. Such an automated solution is often more
accurate than a hard-coded program, because it learns from actual data instead of
making assumptions about the problem. It often can adapt as the domain changes and
often takes less time to find a good solution than a programmer would. In addition,
inductive learning solutions may generalize well to unforeseen circumstances.

Radial Basis Function (RBF) networks [Chen, Cowen & Grant, 1991;
Wasserman, 1993; Wong, 1991] have received much attention recently because they
provide accurate generalization on a wide range of applications, yet can often be
trained orders of magnitude faster [Renals & Rohwer, 1989] than other models such
as backpropagation neural networks [Rumelhart, 1986] or genetic algorithms [Spears
et al., 1993].

Radial basis function networks make use of a distance function to find out how
different two input vectors are (one being presented to the network and the other
stored in a hidden node). This distance function is typically designed for numeric
attributes only and is inappropriate for nominal (unordered symbolic) attributes.

This paper introduces a heterogeneous distance function which allows radial basis
function networks to appropriately handle applications that contain nominal attributes,
numeric attributes, or both. Section 2 introduces the basic radial basis function

34

network that will be used to demonstrate the usefulness of the heterogeneous
distance function. Section 3 introduces the distance function itself. Section 4 presents
empirical results which indicate that in most cases the heterogeneous distance
function significantly improves generalization over Euclidean distance when symbolic
attributes are present and never reduces accuracy in completely numeric domains.
Section 5 presents conclusions and future research areas.

2. Radial Basis Function Network

This section presents a radial basis function (RBF) network that is used as a
probabilistic neural network (PNN) [Specht, 1992] for classification. The distance
function presented in this paper could be appropriately used on many different kinds of
basis-function networks, so this particular network is just one example of its use.
This network was chosen because of its simplicity, which helps to focus on the new
distance function instead of on other factors.

The network learns from a training set T, which is a collection of examples called
instances. Each instance i has an input vector yi, and an output class, denoted as
classi. During execution, the network receives additional input vectors, denoted as x,
and outputs the class that x seems most likely to belong to.

The probabilistic neural network is shown in Figure 1. The first (leftmost) layer
contains input nodes, each of which receives an input value from the corresponding
element in the input vector x. Thus, for an application with m input attributes, there
are m input nodes. All connections in the network have a weight of 1. In essence, this
means that the input vector is passed directly to each hidden node.

zx2

x3

h1

h2

h3

h4

c1

c2

x:

Hidden
nodes

Class
nodes

Input
nodes

x1
Decision

node

 Figure 1. Radial Basis Function Network.

There is one hidden node for each training instance i in the training set. Each
hidden node hi has a center point yi associated with it, which is the input vector of

instance i. A hidden node also has a value σ i which determines the size of its
receptive field. This value is set to the distance of the nearest neighbor of i in the
training set, using the same distance function as that used during execution.

A hidden node receives an input vector x and outputs an activation given by the
function:

35

g(x, yi ,σi) = exp[-D2(x, yi) / 2σi
2] (1)

where D is a distance function such as Euclidean distance or the heterogeneous
distance function that will be discussed in Section 3. This function g is a Gaussian
function which returns a value of 1 if x and yi are equal, and drops to an insignificant
value as the distance grows.

Each hidden node hi is connected to a single class node. If the output class of
instance i is j, then hi is connected to class node cj. Each class node cj computes the
sum of the activations of the hidden nodes that are connected to it (i.e., all the hidden
nodes for a particular class) and passes this sum to a decision node. The decision
node outputs the class with the highest summed activation.

One of the greatest advantages of this network is that it does not require any
iterative training. One disadvantage of this network is that it has one hidden node for
each training instance and thus requires more computational resources during
execution than many other models. In addition, it does not iteratively train weights on
any of the connections, which can make its generalization less flexible.

3. Heterogeneous Distance Function

In Section 2, a probabilistic neural network was presented using radial basis
functions and a simple weighting scheme that avoided iterative training. In this
section, several alternatives for the distance function D are defined, including a new
heterogeneous distance function H.

Radial basis functions typically use the Euclidean distance function:

E(x, y) = (xi − yi)
2

i=1

m

∑ (2)

where m is the number of input variables (attributes) in the application. An
alternative function, the city-block or Manhattan distance function, uses less
computation and often does not significantly change the results [Specht, 1992]. It is
defined as:

M(x, y) = xi − yi
i=1

m

∑ (3)

One problem with both of these distance functions is that they assume that the
input variables are linear. However, there are many applications that have nominal
attributes. A nominal attribute is one with a discrete set of attribute values that are
unordered. For example, a variable representing symptoms might have possible
values of headache, sore throat, chest pains, stomach pains, ear ache, and blurry
vision. Using a linear distance measurement on such values makes little sense in this
case, because numbers assigned to the values are in an arbitrary order. In such cases
a distance function is needed that handles nominal inputs appropriately.

Stanfill & Waltz [1986] introduced the value difference metric (VDM) which has
been used as the basis of several distance functions in the area of machine learning

36

[Cost & Salzberg, 1993, Domingos, 1995; Rachlin et al., 1994]. Using VDM, the
distance between two values x and y of a single attribute a is given as

vdma(x, y) =
Na,x,c

Na,x
−

Na,y,c

Na,y






c=1

C

∑
2

(4)

where Na,x is the number of times attribute a had value x; Na,x,c is the number of
times attribute a had value x and the output class was c; and C is the number of output
classes. Using this distance measure, two values are considered to be closer if they
have more similar classifications, regardless of the order of the values.

Some models that have used the VDM or extensions of it (notably PEBLS
[Rachlin et al., 1994]) have discretized continuous attributes into a somewhat
arbitrary number of discrete ranges and then treated these values as nominal values.
Discretization throws away much of the information available to the learning model
and often reduces generalization accuracy [Ventura & Martinez, 1995].

The Heterogeneous Radial Basis Function (HRBF) model presented in this paper
makes use of a new distance function that uses the above part of the VDM as a
building block. In the HRBF model, the heterogeneous distance H between two
vectors x and y is given as

H(x, y) = da(xa , ya)2

a=1

m

∑ (5)

da(x, y) =
1

normalized_ vdma(x, y)

normalized_ diff a(x, y)

if x or y is unknown; otherwise...

if a is nominal

if a is numeric






(6)

where m is the number of attributes. The function da(x,y) returns a distance between
the two attribute values x and y using one of two functions (defined below), depending
on whether the attribute is nominal or numeric. Many data sets contain unknown
input values which must be handled appropriately in a practical system. The function
da(x,y) therefore returns a distance of 1 if either x or y is unknown. Other more
complicated methods have been tried, as in [Wilson, 1994], but with little effect on
accuracy. The function H is similar to that used in [Giraud-Carrier & Martinez, 1995],
except that it uses VDM instead of an overlap metric for nominal values and
normalizes differently.

One weakness of the basic Euclidean and Manhattan distance functions is that if
one of the input variables has a relatively large range, then it can overpower the other
input variables. For example, suppose an application has just two input attributes, f
and g. If f can have values from 1 to 1000 and g has values only from 1 to 10, then g’s
influence on the distance function will usually be overpowered by f’s influence.

Therefore, distances are often normalized by dividing the distance for each variable
by the range of that attribute, so that the distance for each input variable is in the
range 0..1. However, this allows outliers (extreme values) to have a profound effect
on the contribution of an attribute. For example, if a variable has values which are in

37

the range 0..10 in almost every case but with one (possibly erroneous) value of 50,
then dividing by the range would almost always result in a value less than 0.2. A
more robust alternative is to divide the values by the standard deviation in order to
reduce the effect of extreme values on the typical cases.

In the heterogeneous distance metric, the situation is more complicated because
the nominal and numeric distance values come from different types of measurements.
It is therefore necessary to find a way to scale these two different measurements into
approximately the same range in order to give each variable a similar influence on the
overall distance measurement.

Since 95% of the values in a normal distribution fall within two standard deviations
of the mean, the difference between numeric values is divided by 4 standard deviations
in order to scale each value into a range that is usually of width 1.0.

Using VDM, the average value for Na,x,c/Na,x (as well as for Na,y,c/Na,y) is 1/C.
Since the difference is squared and then added C times, the sum is usually in the
neighborhood of C(1/C2)=1/C. This sum is therefore multiplied by C to get it in the
range 0..1, making it roughly equal in influence to normalized numeric values.

The functions normalized_vdm and normalized_diff are thus defined as

normalized_ vdma(x, y) = C *
Na,x,c

Na,x
−

Na,y,c

Na,y

2

c=1

C

∑ (7)

normalized_ diff a(x, y) =
x − y

4σa
(8)

where C is the number of classes, N is defined as in (4), and σa is the standard
deviation of the numeric values of attribute a. Note that in practice the square root in
(7) is not performed since the squared attribute distances are needed in (5) to
compute H. Similarly, the square root in (5) is not typically performed in computing H,
since the squared distance (H2 instead of D2 in this case) is used in (1) to compute g,
the activation of a hidden node.

4. Empirical Results

The Heterogeneous Radial Basis Function (HRBF) algorithm was implemented
and tested on several databases from the Machine Learning Database Repository at
the University of California Irvine [Murphy & Aha, 1993].

Each test consisted of ten trials, each using one of ten partitions of the data
randomly selected from the data sets, i.e., 10-fold cross-validation. Each trial
consisted of building a network using 90% of the training instances in hidden nodes
and then using this network to classify the remaining 10% of the instances to see how
many were classified correctly.

In order to see what effect the new heterogeneous distance function has on
accuracy, a homogeneous version of the algorithm was implemented as well, which is
exactly the same as HRBF, except that it uses a normalized Euclidean distance
function. This is accomplished by using normalized_dif fa (x ,y) instead of

38

normalized_vdma(x,y) in (6) for nominal as well as for numeric attributes. The
homogeneous algorithm will be referred to as the default algorithm, or simply RBF.
Both algorithms used the same training sets and test sets for each trial.

The average accuracy for each database over all trials is shown in Figure 2. A
bold value indicates which value was highest for each database. One asterisk (*)
indicates that the higher value is statistically significantly higher at a 90% confidence
level, using a one-tailed paired t-test. Two asterisks (**) are used to mark
differences that are significant at a 95% or higher confidence interval.

Figure 2 also lists the number of continuous and nominal input attributes for each
database. Note that the accuracy for every application that has only numeric
attributes is exactly the same for both RBF and HRBF. This is no surprise, since the
distance functions are equivalent on numeric attributes.

Annealing
Audiology
Australian-Credit
Bridges
Credit-Screening
DNA Promoters
Echocardiogram
Flags
Hayes-Roth
Heart
Heart-Disease (Hungarian)
Heart-Disease (More)
Heart-Disease (Swiss)
Hepatitis
Horse-Colic
House-Votes-84
Image Segmentation
Solar-Flare 1
Solar-Flare 2
Soybean-Large
Thyroid-Disease (Euthyroid)
Tic-Tac-Toe
Zoo
 Average:

Numeric Databases
Breast-Cancer-Wisconsin
Liver-Disorders
Iris
Pima-Indians-Diabetes
Sat.Test
Vowel
Wine

76.19
36.00
80.14
52.36
75.36
54.27
78.04
45.74
52.17
80.74
64.00
45.95
38.85
79.33
67.09
69.22
80.48
81.71
99.53
13.01
90.74
65.78
78.89**
65.46

97.00
62.50
94.00
76.30
85.65
92.01
94.38

76.06
54.00**
83.77**
55.27*
83.48**
76.91**
79.46
57.11**
65.96**
80.00
74.92**
45.95
38.85
79.33
67.09
79.77**
80.48
81.41
99.53
35.10**
90.74
79.74**
73.33
71.23**

97.00
62.50
94.00
76.30
85.65
92.01
94.38

9
0
6
4
6
0
7

10
0
7
7
7
7
6
7
0

18
1
1
6
7
0
0

9
6
4
8

36
10
13

29
69
8
7
9

57
2

18
4
6
6
6
6

13
16
16
1
9

11
29
18
9

16

0
0
0
0
0
0
0

Database
RBF

(Euclidean) HRBF
Numeric

Attributes
Nominal

Attributes

Figure 2. Comparative experimental results of RBF and HRBF.

39

However, on the databases that have some or all nominal attributes, HRBF
obtained higher generalization accuracy than RBF in 12 out of 23 cases, 10 of which
were significant at the 95% level or above. RBF had a higher accuracy in only four
cases, and only one of those (the Zoo data set) had a difference that was statistically
significant.

It is interesting to note that in the Zoo data set, 15 out of 16 of the attributes are
boolean, and the remaining attribute, while not linear, is actually an ordered attribute.
These attributes are tagged as nominal, but the Euclidean distance function is
appropriate for them as well.

In all, HRBF performed as well or better than the default algorithm in 26 out of 30
cases.

The above results indicate that the heterogeneous distance function is typically
more appropriate than the Euclidean distance function for applications with one or
more nominal attributes, and is equivalent to it for domains without nominal attributes.

5. Conclusions & Future Research

The Heterogeneous Radial Basis Function (HRBF) network uses a normalized
heterogeneous distance function which is typically more appropriate than the
Euclidean distance function for applications that have at least some nominal or
symbolic attributes. By using a more appropriate distance function, higher
generalization accuracy can be obtained on most typical heterogeneous or completely
symbolic domains. Furthermore, the heterogeneous distance function is equivalent to
a normalized Euclidean distance function in completely numeric domains so
generalization accuracy will be identical in those domains as well.

In this paper the heterogeneous distance function was used with a probabilistic
neural network for classification, which allowed very fast training at the cost of a large,
static network. However, this function is appropriate for a wide range of basis
function networks that use distance functions.

Current research is seeking to test the heterogeneous distance function on a
variety of other models, including various Radial Basis Function networks and
instance-based machine learning systems. The normalization factors are also being
examined to see if they provide the best possible normalization.

In addition, it appears that some data which is tagged as “nominal” is often
somewhat ordered. It is hypothesized that if the values of nominal attributes are
randomly rearranged then the HRBF would perform about the same (since it does not
depend on the ordering of nominal values), but that the homogeneous RBF would
suffer a loss in accuracy. The accuracy of this hypothesis and the severity of the loss
in accuracy are currently being explored.

The results of this research are encouraging, and show that heterogeneous
distance functions can be used to apply basis function networks to a wider variety of
applications and achieve higher generalization accuracy than the homogeneous
distance functions used in the past.

40

References

Chen, S., C. R. N. Cowen, and P. M. Grant, “Orthogonal Least Squares Learning Algorithm for
Radial Basis Function Networks,” IEEE Transactions on Neural Networks, vol. 2, no. 2, pp. 302-
309, 1991.

Cost, Scott, and Steven Salzberg, “A Weighted Nearest Neighbor Algorithm for Learning with
Symbolic Features,” Machine Learning, vol. 10, pp. 57-78, 1993.

Domingos, Pedro, “Rule Induction and Instance-Based Learning: A Unified Approach,” to appear in
The 1995 International Joint Conference on Artificial Intelligence (IJCAI-95), 1995.

Giraud-Carrier, Christophe, and Tony Martinez, “An Efficient Metric for Heterogeneous Inductive
Learning Applications in the Attribute-Value Language,” Intelligent Systems, pp. 341-350, 1995.

Murphy, P. M., and D. W. Aha, UCI Repository of Machine Learning Databases. Irvine, CA:
University of California Irvine, Department of Information and Computer Science. Internet:
ftp://ftp.ics.uci.edu/pub/machine-learning-databases, 1993.

Rachlin, John, Simon Kasif, Steven Salzberg, David W. Aha, “Towards a Better Understanding of
Memory-Based and Bayesian Classifiers,” in Proceedings of the Eleventh International Machine
Learning Conference, New Brunswick, NJ: Morgan Kaufmann, pp. 242-250, 1994.

Renals, Steve, and Richard Rohwer, “Phoneme Classification Experiments Using Radial Basis
Functions,” Proceedings of the IEEE International Joint Conference on Neural Networks
(IJCNN’89), vol. 1, pp. 461-467, 1989.

Rumelhart, D. E., and J. L. McClelland, Parallel Distributed Processing, MIT Press, 1986.

Spears, William M., Kenneth A. De Jong, Thomas Bäck, David B. Fogel, and Hugo de Garis, “An
Overview of Evolutionary Computation,” Proceedings of the European Conference on Machine
Learning, vol. 667, pp. 442-459, 1993.

Specht, Donald F., (1992). “Enhancements to Probabilistic Neural Networks,” in Proceedings
International Joint Conference on Neural Networks (IJCNN ’92), vol. 1, pp. 761-768.

Stanfill, C., and D. Waltz, “Toward memory-based reasoning,” Communications of the ACM, vol.
29, December 1986, pp. 1213-1228, 1986.

Ventura, Dan, and Tony Martinez, “An Empirical Comparison of Discretization Models,”
Proceedings of the 10th International Symposium on Computer and Information Sciences, pp. 443-
450, 1995.

Wasserman, Philip D., Advanced Methods in Neural Computing, New York, NY: Van Nostrand
Reinhold, pp. 147-176, 1993.

Wilson, D. Randall, Prototype Styles of Generalization, Master’s Thesis, Brigham Young University,
1994.

Wong, Yiu-fai, “How Gaussian Radial Basis Functions Work,” Proceedings of the IEEE International
Joint Conference on Neural Networks (IJCNN’91), vol. 2, pp. 133-138, 1991.

41

Chapter 5

Improved Heterogeneous Distance Functions

“Close only counts in horseshoes and thermonuclear warfare.”
—Richard A. Ingalls

Journal of Artificial Intelligence Research (JAIR), vol. 6, no. 1, pp. 1-34, 1997.

Early work on this subject was also published in:
Proceedings of the International Conference on Artificial Intelligence,

Expert Systems and Neural Networks (AIE’96), pp. 11-14, 1996.

Abstract

Instance-based learning techniques typically handle continuous and linear input values well,
but often do not handle nominal input attributes appropriately. The Value Difference Metric
(VDM) was designed to find reasonable distance values between nominal attribute values, but
it largely ignores continuous attributes, requiring discretization to map continuous values
into nominal values. This paper proposes three new heterogeneous distance functions, called
the Heterogeneous Value Difference Metric (HVDM), the Interpolated Value Difference
Metric (IVDM), and the Windowed Value Difference Metric (WVDM). These new distance
functions are designed to handle applications with nominal attributes, continuous attributes,
or both. In experiments on 48 applications the new distance metrics achieve higher
classification accuracy on average than three previous distance functions on those datasets that
have both nominal and continuous attributes.

1. Introduction

Instance-Based Learning (IBL) [Aha, Kibler & Albert, 1991; Aha, 1992; Wilson
& Martinez, 1993; Wettschereck, Aha & Mohri, 1995; Domingos, 1995] is a paradigm
of learning in which algorithms typically store some or all of the n available training
examples (instances) from a training set, T, during learning. Each instance has an
input vector x, and an output class c. During generalization, these systems use a
distance function to determine how close a new input vector y is to each stored
instance, and use the nearest instance or instances to predict the output class of y
(i.e., to classify y). Some instance-based learning algorithms are referred to as
nearest neighbor techniques [Cover & Hart, 1967; Hart, 1968; Dasarathy, 1991], and
memory-based reasoning methods [Stanfill & Waltz, 1986; Cost & Salzberg, 1993;
Rachlin et al., 1994] overlap significantly with the instance-based paradigm as well.
Such algorithms have had much success on a wide variety of applications (real-world
classification tasks).
 Many neural network models also make use of distance functions, including radial
basis function networks [Broomhead & Lowe, 1988; Renals & Rohwer, 1989;
Wasserman, 1993], counterpropagation networks [Hecht-Nielsen, 1987], ART
[Carpenter & Grossberg, 1987], self-organizing maps [Kohonen, 1990] and
competitive learning [Rumelhart & McClelland, 1986]. Distance functions are also

42

used in many fields besides machine learning and neural networks, including statistics
[Atkeson, Moore & Schaal, 1996], pattern recognition [Diday, 1974; Michalski, Stepp
& Diday, 1981], and cognitive psychology [Tversky, 1977; Nosofsky, 1986].

There are many distance functions that have been proposed to decide which
instance is closest to a given input vector [Michalski, Stepp & Diday, 1981; Diday,
1974]. Many of these metrics work well for numerical attributes but do not
appropriately handle nominal (i.e., discrete, and perhaps unordered) attributes.

The Value Difference Metric (VDM) [Stanfill & Waltz, 1986] was introduced to
define an appropriate distance function for nominal (also called symbolic) attributes.
The Modified Value Difference Metric (MVDM) uses a different weighting scheme
than VDM and is used in the PEBLS system [Cost & Salzberg, 1993; Rachlin et al.,
1994]. These distance metrics work well in many nominal domains, but they do not
handle continuous attributes directly. Instead, they rely upon discretization
[Lebowitz, 1985; Schlimmer, 1987], which can degrade generalization accuracy
[Ventura & Martinez, 1995].

Many real-world applications have both nominal and linear attributes, including,
for example, over half of the datasets in the UCI Machine Learning Database
Repository [Merz & Murphy, 1996]. This paper introduces three new distance
functions that are more appropriate than previous functions for applications with both
nominal and continuous attributes. These new distance functions can be incorporated
into many of the above learning systems and areas of study, and can be augmented
with weighting schemes [Wettschereck, Aha & Mohri, 1995; Atkeson, Moore &
Schaal, 1996] and other enhancements that each system provides.

The choice of distance function influences the bias of a learning algorithm. A bias
is “a rule or method that causes an algorithm to choose one generalized output over
another” [Mitchell, 1980]. A learning algorithm must have a bias in order to
generalize, and it has been shown that no learning algorithm can generalize more
accurately than any other when summed over all possible problems [Schaffer, 1994]
(unless information about the problem other than the training data is available). It
follows then that no distance function can be strictly better than any other in terms of
generalization ability, when considering all possible problems with equal probability.

However, when there is a higher probability of one class of problems occurring
than another, some learning algorithms can generalize more accurately than others
[Wolpert, 1993]. This is not because they are better when summed over all problems,
but because the problems on which they perform well are more likely to occur. In this
sense, one algorithm or distance function can be an improvement over another in that
it has a higher probability of good generalization than another, because it is better
matched to the kinds of problems that will likely occur.

Many learning algorithms use a bias of simplicity [Mitchell, 1980; Wolpert, 1993]
to generalize, and this bias is appropriate—meaning that it leads to good
generalization accuracy—for a wide variety of real-world applications, though the
meaning of simplicity varies depending upon the representational language of each
learning algorithm. Other biases, such as decisions made on the basis of additional
domain knowledge for a particular problem [Mitchell, 1980], can also improve
generalization.

In this light, the distance functions presented in this paper are more appropriate
than those used for comparison in that they on average yield improved generalization
accuracy on a collection of 48 applications. The results are theoretically limited to this
set of datasets, but the hope is that these datasets are representative of other

43

problems that will be of interest (and occur frequently) in the real world, and that the
distance functions presented here will be useful in such cases, especially those
involving both continuous and nominal input attributes.

Section 2 provides background information on distance functions used previously.
Section 3 introduces a distance function that combines Euclidean distance and VDM
to handle both continuous and nominal attributes. Sections 4 and 5 present two
extensions of the Value Difference Metric which allow for direct use of continuous
attributes. Section 4 introduces the Interpolated Value Difference Metric (IVDM),
which uses interpolation of probabilities to avoid problems related to discretization.
Section 5 presents the Windowed Value Difference Metric (WVDM), which uses a
more detailed probability density function for a similar interpolation process.

Section 6 presents empirical results comparing three commonly used distance
functions with the three new functions presented in this paper. The results are
obtained from using each of the distance functions in an instance-based learning
system on 48 datasets. The results indicate that the new heterogeneous distance
functions are more appropriate than previously used functions on datasets with both
nominal and linear attributes, in that they achieve higher average generalization
accuracy on these datasets. Section 7 discusses related work, and Section 8 provides
conclusions and future research directions.

2. Previous Distance Functions

As mentioned in the introduction, there are many learning systems that depend
upon a good distance function to be successful. A variety of distance functions are
available for such uses, including the Minkowsky [Batchelor, 1978], Mahalanobis
[Nadler & Smith, 1993], Camberra, Chebychev, Quadratic, Correlation, and Chi-
square distance metrics [Michalski, Stepp & Diday, 1981; Diday, 1974]; the Context-
Similarity measure [Biberman, 1994]; the Contrast Model [Tversky, 1977];
hyperrectangle distance functions [Salzberg, 1991; Domingos, 1995] and others.
Several of these functions are defined in Figure 1.

Although there have been many distance functions proposed, by far the most
commonly used is the Euclidean Distance function, which is defined as

E(x, y) = (xa − ya)2

a=1

m

∑ (1)

where x and y are two input vectors (one typically being from a stored instance, and
the other an input vector to be classified) and m is the number of input variables
(attributes) in the application. The square root is often not computed in practice,
because the closest instance(s) will still be the closest, regardless of whether the
square root is taken.

An alternative function, the city-block or Manhattan distance function, requires
less computation and is defined as

M(x, y) = xa − ya
a=1

m

∑ (2)

44

The Euclidean and Manhattan distance functions are equivalent to the
Minkowskian r-distance function [Batchelor, 1978] with r = 2 and 1, respectively.

Figure 1. Equations of selected distance functions (x and y are vectors of m attribute values).

D(x, y) = xi − yi
r

i=1

m

∑










1
r

D(x, y) = xi − yi()2

i=1

m

∑ D(x, y) = xi − yi
i=1

m

∑

D(x, y) =
xi − yi

xi + yii=1

m

∑ D(x, y) = max
i=1

m
xi − yi

D(x, y) = (x − y)T Q(x − y) = (xi − yi)qji
i=1

m

∑










j=1

m

∑ (x j − yj)

D(x, y) = 1
sumi

xi
sizex

− yi
sizey








2

i=1

m

∑

D(x, y) = 1 − 2
n(n −1)

sign(xi − x j)sign(yi − yj)
j=1

i−1

∑
i=1

m

∑

Minkowsky: Euclidean: Manhattan / city-block:

Camberra: Chebychev:

Quadratic:

Mahalanobis:

Correlation:

Chi-square:

Kendall’s Rank Correlation:

Q is a problem-specific positive
definite m × m weight matrix

V is the covariance matrix of A1..Am,
and Aj is the vector of values for
attribute j occuring in the training set
instances 1..n.

xi = yi and is the average value for
attribute i occuring in the training set.

sign(x)=-1, 0 or 1 if x < 0,
x = 0, or x > 0, respectively.

sumi is the sum of all values for attribute

i occuring in the training set, and sizex is
the sum of all values in the vector x.

D(x, y) = [detV]1/m(x − y)TV −1(x − y)

D(x, y) =
(xi − xi)(yi − yi)

i=1

m

∑

(xi − xi)
2

i=1

m

∑ (yi − yi)
2

i=1

m

∑

2.1. Normalization

One weakness of the basic Euclidean distance function is that if one of the input
attributes has a relatively large range, then it can overpower the other attributes. For
example, if an application has just two attributes, A and B, and A can have values from
1 to 1000, and B has values only from 1 to 10, then B’s influence on the distance
function will usually be overpowered by A’s influence. Therefore, distances are often
normalized by dividing the distance for each attribute by the range (i.e., maximum-
minimum) of that attribute, so that the distance for each attribute is in the approximate
range 0..1. In order to avoid outliers, it is also common to divide by the standard
deviation instead of range, or to “trim” the range by removing the highest and lowest
few percent (e.g., 5%) of the data from consideration in defining the range. It is also

45

possible to map any value outside this range to the minimum or maximum value to
avoid normalized values outside the range 0..1. Domain knowledge can often be used
to decide which method is most appropriate.

Related to the idea of normalization is that of using attribute weights and other
weighting schemes. Many learning systems that use distance functions incorporate
various weighting schemes into their distance calculations [Wettschereck, Aha &
Mohri, 1995; Atkeson, Moore & Schaal, 1996]. The improvements presented in this
paper are independent of such schemes, and most of the various weighting schemes
(as well as other enhancements such as instance pruning techniques) can be used in
conjunction with the new distance functions presented here.

2.2. Attribute Types

None of the distance functions shown in Figure 1, including Euclidean distance,
appropriately handle non-continuous input attributes.

An attribute can be linear or nominal, and a linear attribute can be continuous or
discrete. A continuous (or continuously valued) attribute uses real values, such as
the mass of a planet or the velocity of an object. A linear discrete (or integer)
attribute can have only a discrete set of linear values, such as number of children.

It can be argued that any value stored in a computer is discrete at some level. The
reason continuous attributes are treated differently is that they can have so many
different values that each value may appear only rarely (perhaps only once in a
particular application). This causes problems for algorithms such as VDM (described
in Section 2.4) that depend on testing two values for equality, because two continuous
values will rarely be equal, though they may be quite close to each other.

A nominal (or symbolic) attribute is a discrete attribute whose values are not
necessarily in any linear order. For example, a variable representing color might have
values such as red, green, blue, brown, black and white, which could be represented by
the integers 1 through 6, respectively. Using a linear distance measurement such as
(1) or (2) on such values makes little sense in this case.

2.3. Heterogeneous Overlap-Euclidean Metric (HOEM)

One way to handle applications with both continuous and nominal attributes is to
use a heterogeneous distance function that uses different attribute distance functions
on different kinds of attributes. One approach that has been used is to use the overlap
metric for nominal attributes and normalized Euclidean distance for linear attributes.

For the purposes of comparison during testing, we define a heterogeneous
distance function that is similar to that used by IB1, IB2 and IB3 [Aha, Kibler &
Albert, 1991; Aha, 1992] as well as that used by Giraud-Carrier & Martinez [1995].
This function defines the distance between two values x and y of a given attribute a as

da(x, y) =
1, if x or y is unknown, else

overlap(x, y), if a is nominal, else

rn_ diff a(x, y)






(3)

Unknown attribute values are handled by returning an attribute distance of 1 (i.e., a
maximal distance) if either of the attribute values is unknown. The function overlap
and the range-normalized difference rn_diff are defined as

46

overlap(x, y) =
0, if x = y

1, otherwise




(4)

rn_ diff a(x, y) = | x − y|
rangea

(5)

The value rangea is used to normalize the attributes, and is defined as

rangea= maxa- mina (6)

where maxa and mina are the maximum and minimum values, respectively, observed
in the training set for attribute a. This means that it is possible for a new input vector
to have a value outside this range and produce a difference value greater than one.
However, such cases are rare, and when they do occur, a large difference may be
acceptable anyway. The normalization serves to scale the attribute down to the point
where differences are almost always less than one.

The above definition for da returns a value which is (typically) in the range 0..1,
whether the attribute is nominal or linear. The overall distance between two (possibly
heterogeneous) input vectors x and y is given by the Heterogeneous Overlap-
Euclidean Metric function HOEM(x,y)

HOEM(x, y) = da(xa , ya)2

a=1

m

∑ (7)

This distance function removes the effects of the arbitrary ordering of nominal
values, but its overly simplistic approach to handling nominal attributes fails to make
use of additional information provided by nominal attribute values that can aid in
generalization.

2.4. Value Difference Metric (VDM)

The Value Difference Metric (VDM) was introduced by Stanfill and Waltz [1986]
to provide an appropriate distance function for nominal attributes. A simplified version
of the VDM (without the weighting schemes) defines the distance between two
values x and y of an attribute a as

vdma(x, y) =
Na,x,c

Na,x
−

Na,y,c

Na,yc=1

C

∑
q

= Pa,x,c − Pa,y,c
q

c=1

C

∑ (8)

where

• N a,x is the number of instances in the training set T that have value x for
attribute a;

• Na,x,c is the number of instances in T that have value x for attribute a and output
class c;

47

• C is the number of output classes in the problem domain;
• q is a constant, usually 1 or 2; and
• Pa,x,c is the conditional probability that the output class is c given that attribute

a has the value x, i.e., P(c | xa). As can be seen from (8), Pa,x,c is defined
a s

Pa,x,c =
Na,x,c

Na,x
(9)

where Na,x is the sum of Na,x,c over all classes, i.e.,

 Na,x = Na,x,c
c=1

C

∑ (10)

and the sum of Pa,x,c over all C classes is 1 for a fixed value of a and x.
Using the distance measure vdma(x,y), two values are considered to be closer if

they have more similar classifications (i.e., more similar correlations with the output
classes), regardless of what order the values may be given in. In fact, linear discrete
attributes can have their values remapped randomly without changing the resultant
distance measurements.

For example, if an attribute color has three values red, green and blue, and the
application is to identify whether or not an object is an apple, red and green would be
considered closer than red and blue because the former two both have similar
correlations with the output class apple.

The original VDM algorithm [Stanfill & Waltz, 1986] makes use of feature
weights that are not included in the above equations, and some variants of VDM
[Cost & Salzberg, 1993; Rachlin et al., 1994; Domingos, 1995] have used alternate
weighting schemes. As discussed earlier, the new distance functions presented in
this paper are independent of such schemes and can in most cases make use of similar
enhancements.

One problem with the formulas presented above is that they do not define what
should be done when a value appears in a new input vector that never appeared in the
training set. If attribute a never has value x in any instance in the training set, then
Na,x,c for all c will be 0, and Na,x (which is the sum of Na,x,c over all classes) will also
be 0. In such cases Pa,x,c = 0/0, which is undefined. For nominal attributes, there is
no way to know what the probability should be for such a value, since there is no
inherent ordering to the values. In this paper we assign Pa,x,c the default value of 0 in
such cases (though it is also possible to let Pa,x,c = 1/C, where C is the number of
output classes, since the sum of Pa,x,c for c = 1..C is always 1.0).

If this distance function is used directly on continuous attributes, the values can all
potentially be unique, in which case Na,x is 1 for every value x, and Na,x,c is 1 for one
value of c and 0 for all others for a given value x. In addition, new vectors are likely to
have unique values, resulting in the division by zero problem above. Even if the value
of 0 is substituted for 0/0, the resulting distance measurement is nearly useless.

Even if all values are not unique, there are often enough different values for a
continuous attribute that the statistical sample is unreliably small for each value, and

48

the distance measure is still untrustworthy. Because of these problems, it is
inappropriate to use the VDM directly on continuous attributes.

2.5. Discretization

One approach to the problem of using VDM on continuous attributes is
discretization [Lebowitz, 1985; Schlimmer, 1987; Ventura, 1995]. Some models that
have used the VDM or variants of it [Cost & Salzberg, 1993; Rachlin et al., 1994;
Mohri & Tanaka, 1994] have discretized continuous attributes into a somewhat
arbitrary number of discrete ranges, and then treated these values as nominal
(discrete unordered) values. This method has the advantage of generating a large
enough statistical sample for each nominal value that the P values have some
significance. However, discretization can lose much of the important information
available in the continuous values. For example, two values in the same discretized
range are considered equal even if they are on opposite ends of the range. Such
effects can reduce generalization accuracy [Ventura & Martinez, 1995].

In this paper we propose three new alternatives, which are presented in the
following three sections. Section 3 presents a heterogeneous distance function that
uses Euclidean distance for linear attributes and VDM for nominal attributes. This
method requires careful attention to the problem of normalization so that neither
nominal nor linear attributes are regularly given too much weight.

In Sections 4 and 5 we present two distance functions, the Interpolated Value
Difference Metric (IVDM) and the Windowed Value Difference Metric (WVDM),
which use discretization to collect statistics and determine values of Pa,x,c for
continuous values occurring in the training set instances, but then retain the
continuous values for later use. During generalization, the value of Pa,y,c for a
continuous value y is interpolated between two other values of P, namely, Pa,x1,c and
Pa,x2,c, where x1 ≤ y ≤ x2. IVDM and WVDM are essentially different techniques for
doing a nonparametric probability density estimation [Tapia & Thompson, 1978] to
determine the values of P for each class. A generic version of the VDM algorithm,
called the discretized value difference metric (DVDM) is used for comparisons with
the two new algorithms.

3. Heterogeneous Value Difference Metric (HVDM)

As discussed in the previous section, the Euclidean distance function is
inappropriate for nominal attributes, and VDM is inappropriate for continuous
attributes, so neither is sufficient on its own for use on a heterogeneous application,
i.e., one with both nominal and continuous attributes.

In this section, we define a heterogeneous distance function HVDM that returns
the distance between two input vectors x and y. It is defined as follows

HVDM(x, y) = da(xa , ya)2

a=1

m

∑ (11)

where m is the number of attributes. The function da(x,y) returns a distance between
the two values x and y for attribute a and is defined as

49

da(x, y) =
1, if x or y is unknown; otherwise...

normalized_ vdma(x, y), if a is nominal

normalized_ diff a(x, y), if a is linear






(12)

The function da(x,y) uses one of two functions (defined below in Section 3.1),
depending on whether the attribute is nominal or linear. Note that in practice the
square root in (11) is not typically performed because the distance is always positive,
and the nearest neighbor(s) will still be nearest whether or not the distance is
squared. However, there are some models (e.g., distance-weighted k-nearest
neighbor, [Dudani, 1976]] that require the square root to be evaluated.

Many applications contain unknown input values which must be handled
appropriately in a practical system [Quinlan, 1989]. The function da(x,y) therefore
returns a distance of 1 if either x or y is unknown, as is done by Aha, Kibler & Albert
[1991] and Giraud-Carrier & Martinez [1995]. Other more complicated methods
have been tried [Wilson & Martinez, 1993], but with little effect on accuracy.

The function HVDM is similar to the function HOEM given in Section 2.3, except
that it uses VDM instead of an overlap metric for nominal values and it also
normalizes differently. It is also similar to the distance function used by RISE 2.0
[Domingos, 1995], but has some important differences noted below in Section 3.2.

Section 3.1 presents three alternatives for normalizing the nominal and linear
attributes. Section 3.2 presents experimental results which show that one of these
schemes provides better normalization than the other two on a set of several
datasets. Section 3.3 gives empirical results comparing HVDM to two commonly
used distance functions. [The appendix at the end of this chapter gives recent
developments on handling skewed class distributions with HVDM.]

3.1. Normalization

As discussed in Section 2.1, distances are often normalized by dividing the
distance for each variable by the range of that attribute, so that the distance for each
input variable is in the range 0..1. This is the policy used by HOEM in Section 2.3.
However, dividing by the range allows outliers (extreme values) to have a profound
effect on the contribution of an attribute. For example, if a variable has values which
are in the range 0..10 in almost every case but with one exceptional (and possibly
erroneous) value of 50, then dividing by the range would almost always result in a
value less than 0.2. A more robust alternative in the presence of outliers is to divide
the values by the standard deviation to reduce the effect of extreme values on the
typical cases.

For the new heterogeneous distance metric HVDM, the situation is more
complicated because the nominal and numeric distance values come from different
types of measurements: numeric distances are computed from the difference between
two linear values, normalized by standard deviation, while nominal attributes are
computed from a sum of C differences of probability values (where C is the number of
output classes). It is therefore necessary to find a way to scale these two different
kinds of measurements into approximately the same range to give each variable a
similar influence on the overall distance measurement.

Since 95% of the values in a normal distribution fall within two standard deviations
of the mean, the difference between numeric values is divided by 4 standard deviations

50

to scale each value into a range that is usually of width 1. The function
normalized_diff is therefore defined as shown below in Equation 13.

normalized_ diff a(x, y) =
x − y

4σa
(13)

where σa is the standard deviation of the numeric values of attribute a.
Three alternatives for the function normalized_vdm were considered for use in the

heterogeneous distance function. These are labeled N1, N2 and N3, and the
definitions of each are given below.

N1: normalized_ vdm1a(x, y) =
Na,x,c

Na,x
−

Na,y,c

Na,yc=1

C

∑ (14)

N2: normalized_ vdm2a(x, y) =
Na,x,c

Na,x
−

Na,y,c

Na,y

2

c=1

C

∑ (15)

N3: normalized_ vdm3a(x, y) = C *
Na,x,c

Na,x
−

Na,y,c

Na,y

2

c=1

C

∑ (16)

The function N1 is Equation (8) with q=1. This is similar to the formula used in
PEBLS [Rachlin et al., 1994] and RISE [Domingos, 1995] for nominal attributes.

N2 uses q=2, thus squaring the individual differences. This is analogous to using
Euclidean distance instead of Manhattan distance. Though slightly more expensive
computationally, this formula was hypothesized to be more robust than N1 because it
favors having all of the class correlations fairly similar rather than having some very
close and some very different. N1 would not be able to distinguish between these
two. In practice the square root is not taken, because the individual attribute
distances are themselves squared by the HVDM function.

N3 is the function used in Heterogeneous Radial Basis Function Networks
[Wilson & Martinez, 1996], where HVDM was first introduced.

3.2. Normalization Experiments

In order to determine whether each normalization scheme N1, N2 and N3 gave
unfair weight to either nominal or linear attributes, experiments were run on 15
databases from the machine learning database repository at the University of
California, Irvine [Merz & Murphy, 1996]. All of the datasets for this experiment
have at least some nominal and some linear attributes, and thus require a
heterogeneous distance function.

In each experiment, five-fold cross validation was used. For each of the five trials,
the distance between each instance in the test set and each instance in the training
set was computed. When computing the distance for each attribute, the
normalized_diff function was used for linear attributes, and the normalized_vdm

51

function N1, N2, or N3 was used (in each of the three respective experiments) for
nominal attributes.

The average distance (i.e., sum of all distances divided by number of comparisons)
was computed for each attribute. The average of all the linear attributes for each
database was computed and these averages are listed under the heading “avgLin” in
Table 1.

Table 1. Average attribute distance for linear and nominal attributes.

N1 N2 N3
Database avgLin avgNom avgNom avgNom #Nom. #Lin. #C
Anneal 0.427 0.849 0.841 0.859 29 9 6
Australian 0.215 0.266 0.188 0.266 8 6 2
Bridges 0.328 0.579 0.324 0.808 7 4 7
Crx 0.141 0.268 0.193 0.268 9 6 2
Echocardiogram 0.113 0.487 0.344 0.487 2 7 2
Flag 0.188 0.372 0.195 0.552 18 10 8
Heart 0.268 0.323 0.228 0.323 6 7 2
Heart.Cleveland 0.271 0.345 0.195 0.434 6 7 5
Heart.Hungarian 0.382 0.417 0.347 0.557 6 7 5
Heart.Long-Beach-VA 0.507 0.386 0.324 0.417 6 7 5
Heart.More 0.360 0.440 0.340 0.503 6 7 5
Heart.Swiss 0.263 0.390 0.329 0.421 6 7 5
Hepatitis 0.271 0.205 0.158 0.205 13 6 2
Horse-Colic 0.444 0.407 0.386 0.407 16 7 2
Soybean-Large 0.309 0.601 0.301 0.872 29 6 19
Average 0.299 0.422 0.313 0.492 11 7 5

The averages of all the nominal attributes for each of the three normalization
schemes are listed under the headings “avgNom” in Table 1 as well. The average
distance for linear variables is exactly the same regardless of whether N1, N2 or N3 is
used, so this average is given only once. Table 1 also lists the number of nominal
(“#Nom.”) and number of linear (“#Lin.”) attributes in each database, along with the
number of output classes (“#C”).

As can be seen from the overall averages in the first four columns of the last
row of Table 1, N2 is closer than N1 or N3. However, it is important to understand
the reasons behind this difference in order to know if the normalization scheme N2 will
be more robust in general.

Figures 2-4 graphically display the averages shown in Table 1 under the headings
N1, N2 and N3, respectively, ordered from left to right by the number of output
classes. We hypothesized that as the number of output classes grows, the
normalization would get worse for N3 if it was indeed not appropriate to add the
scaling factor C to the sum. The length of each line indicates how much difference
there is between the average distance for nominal attributes and linear attributes. An
ideal normalization scheme would have a difference of zero, and longer lines indicate
worse normalization.

As the number of output classes grows, the difference for N3 between the linear
distances and the nominal distances grows wider in most cases. N2, on the other
hand, seems to remain quite close independent of the number of output classes.
Interestingly, N1 does almost as poorly as N3, even though it does not use the scaling
factor C. Apparently the squaring factor provides for a more well-rounded distance

52

Figure 4. Average distances for N3.

Nominal

Linear

0

.2

.4

.6

.8

1

A
ve

ra
ge

 d
is

ta
nc

e

Number of output classes
192 5 6 7 8 Avg2 2 2 2 2 5 5 5 5

Figure 3. Average distances for N2.

Nominal

Linear

0

.2

.4

.6

.8

1

A
ve

ra
ge

 d
is

ta
nc

e

192 5 6 7 8 Avg2 2 2 2 2 5 5 5 5
Number of output classes

Figure 2. Average distances for N1.

Nominal

Linear

0

.2

.4

.6

.8

1

A
ve

ra
ge

 d
is

ta
nc

e

Number of output classes
192 5 6 7 8 Avg2 2 2 2 2 5 5 5 5

metric on nominal attributes similar
to that provided by using Euclidean
distance instead of Manhattan
distance on linear attributes.

The underlying hypothesis
behind performing normalization is
that proper normalization will
typically improve generalization
accuracy. A nearest neighbor
classifier (with k =1) was
implemented using HVDM as the
distance metric. The system was
tested on the heterogeneous
datasets appearing in Table 1 using
the three different normalization
schemes discussed above, using
ten-fold cross-validation [Schaffer,
1993], and the results are
summarized in Table 2. All the
normalization schemes used the
same training sets and test sets for
each trial. Bold entries indicate
which scheme had the highest
accuracy. An asterisk indicates
that the difference was greater that
1% over the next highest scheme.

As can be seen from the table,
the normalization scheme N2 had
the highest accuracy, and N1 was
substantially lower than the other
two. N2 and N3 each had the
highest accuracy for 8 domains.
More significantly, N2 was over 1%
higher 5 times compared to N1
being over 1% higher on just one
dataset. N3 was higher than the
other two on just one dataset, and
had a lower average accuracy than
N 2 .

These results support the
hypothesis that the normalization
scheme N2 achieves higher
generalization accuracy than N1 or
N3 (on these datasets) due to its
more robust normalization though accuracy for N3 is almost as good as N2.

Note that proper normalization will not always necessarily improve generalization
accuracy. If one attribute is more important than the others in classification, then
giving it a higher weight may improve classification. Therefore, if a more important
attribute is given a higher weight accidentally by poor normalization, it may actually

53

 Table 2. Generalization accuracy using N1, N2 and N3.

Database
Anneal
Australian
Bridges
Crx
Echocardiogram
Flag
Heart.Cleveland
Heart.Hungarian
Heart.Long-Beach-Va
Heart.More
Heart
Heart.Swiss
Hepatitis
Horse-Colic
Soybean-Large
Average

N3
94.99
81.59
59.55
81.01
94.82
51.50
71.61
75.82
70.00*
72.48
89.49
75.19
77.33
60.53
87.89
76.25

N2
94.61
81.45
59.64
80.87
94.82
55.82*
76.56*
76.85*
65.50
72.09
89.49
78.52*
76.67
60.53
90.88*
76.95

N1
93.98
71.30
43.36
70.29
70.36
28.95
73.88
70.75
65.50
60.03
88.46
74.81
73.50
64.75*
41.45
66.09

improve generalization accuracy. However, this is a random improvement that is not
typically the case. Proper normalization should improve generalization in more cases
than not when used in typical applications.
 As a consequence of the above results, N2 is used as the normalization scheme
for HVDM, and the function normalized_vdm is defined as in (15).

3.3. Empirical Results of HVDM vs. Euclidean and HOEM

A nearest neighbor classifier (with k=1) using the three distance functions listed
in Table 3 was tested on 48 datasets from the UCI machine learning database
repository. Of these 48 datasets, the results obtained on the 35 datasets that have at
least some nominal attributes are shown in Table 3.

The results are approximately equivalent on datasets with only linear attributes,
so the results on the remaining datasets are not shown here, but can be found in
Section 6. 10-fold cross-validation was again used, and all three distance metrics
used the same training sets and test sets for each trial.

The results of these experiments are shown in Table 3. The first column lists the
name of the database (“.test” means the database was originally meant to be used
as a test set, but was instead used in its entirety as a separate database). The
second column shows the results obtained when using the Euclidean distance function
normalized by standard deviation on all attributes, including nominal attributes. The
next column shows the generalization accuracy obtained by using the HOEM metric,
which uses range-normalized Euclidean distance for linear attributes and the overlap
metric for nominal attributes. The final column shows the accuracy obtained by using
the HVDM distance function which uses the standard-deviation-normalized
Euclidean distance (i.e., normalized_diff as defined in Equation 13) on linear
attributes and the normalized_vdm function N2 on nominal attributes.

The highest accuracy obtained for each database is shown in bold. Entries in the
Euclid. and HOEM columns that are significantly higher than HVDM (at a 90% or

54

higher confidence level, using a two-tailed paired t test) are marked with an asterisk
(*). Entries that are significantly lower than HVDM are marked with a “less-than”
sign (<).

Table 3. Generalization accuracy of the Euclidean,
HOEM, and HVDM distance functions.

Database
Anneal
Audiology
Audiology.Test
Australian
Bridges
Crx
Echocardiogram
Flag
Heart.Cleveland
Heart.Hungarian
Heart.Long-Beach-Va
Heart.More
Heart.Swiss
Hepatitis
Horse-Colic
House-Votes-84
Image.Segmentation
Led+17
Led-Creator
Monks-1.Test
Monks-2.Test
Monks-3.Test
Mushroom
Promoters
Soybean-Large
Soybean-Small
Thyroid.Allbp
Thyroid.Allhyper
Thyroid.Allhypo
Thyroid.Allrep
Thyroid.Dis
Thyroid.Hypothyroid
Thyroid.Sick-Euthyroid
Thyroid.Sick
Zoo
Average:

Euclid.
94.99
60.50
41.67
80.58
58.64
78.99
94.82
48.95
73.94
73.45
71.50
72.09
93.53
77.50
65.77
93.12
92.86
42.90
57.20
77.08
59.04
87.26

100.00
73.73
87.26

100.00
94.89
97.00
90.39
96.14
98.21
93.42
68.23
86.93
97.78
79.44

HOEM
94.61
72.00
75.00
81.16
53.73
81.01
94.82
48.84
74.96
74.47
71.00
71.90
91.86
77.50
60.82
93.12
93.57
42.90
57.20
69.43
54.65
78.49

100.00
82.09
89.20

100.00
94.89
97.00
90.39
96.14
98.21
93.42
68.23
86.89
94.44
80.11

HVDM
94.61
77.50
78.33
81.45
59.64
80.87
94.82
55.82
76.56
76.85
65.50
72.09
89.49
76.67
60.53
95.17
92.86
60.70
56.40
68.09
97.50

100.00
100.00

92.36
90.88

100.00
95.00
96.86
90.29
96.11
98.21
93.36
68.23
86.61
98.89
83.38

<
<

<

<

*

<

<
*

<
<

<
<

*

<

*

<

<
*

<
<

<

*

*

As can be seen from Table 3, the HVDM distance function’s overall average
accuracy was higher than that of the other two metrics by over 3%. HVDM achieved
as high or higher generalization accuracy than the other two distance functions in 21 of
the 35 datasets. The Euclidean distance function was highest in 18 datasets, and
HOEM was highest in only 12 datasets.

HVDM was significantly higher than the Euclidean distance function on 10
datasets, and significantly lower on only 3. Similarly, HVDM was higher than HOEM
on 6 datasets, and significantly lower on only 4.

55

These results support the hypothesis that HVDM handles nominal attributes
more appropriately than Euclidean distance or the heterogeneous Euclidean-overlap
metric, and thus tends to achieve higher generalization accuracy on typical
applications.

4. Interpolated Value Difference Metric (IVDM)

In this section and Section 5 we introduce distance functions that allow VDM to be
applied directly to continuous attributes. This alleviates the need for normalization
between attributes. It also in some cases provides a better measure of distance for
continuous attributes than linear distance.

For example, consider an application with an input attribute height and an output
class that indicates whether a person is a good candidate to be a fighter pilot in a
particular airplane. Those individuals with heights significantly below or above the
preferred height might both be considered poor candidates, and thus it could be
beneficial to consider their heights as more similar to each other than to those of the
preferred height, even though they are farther apart in a linear sense.

On the other hand, linear attributes for which linearly distant values tend to
indicate different classifications should also be handled appropriately. The
Interpolated Value Difference Metric (IVDM) handles both of these situations, and
handles heterogeneous applications robustly.

A generic version of the VDM distance function, called the discretized value
difference metric (DVDM) will be used for comparisons with extensions of VDM
presented in this paper.

4.1. IVDM Learning Algorithm

The original value difference metric (VDM) uses statistics derived from the
training set instances to determine a probability Pa,x,c that the output class is c given
the input value x for attribute a.

When using IVDM, continuous values are discretized into s equal-width intervals
(though the continuous values are also retained for later use), where s is an integer
supplied by the user. Unfortunately, there is currently little guidance on what value of
s to use. A value that is too large will reduce the statistical strength of the values of
P, while a value too small will not allow for discrimination among classes. For the
purposes of this paper, we use a heuristic to determine s automatically: let s be 5 or C,
whichever is greatest, where C is the number of output classes in the problem domain.
Current research is examining more sophisticated techniques for determining good
values of s, such as cross-validation, or other statistical methods [e.g., Tapia &
Thompson, 1978, p. 67]. (Early experimental results indicate that the value of s may
not be critical as long as s ≥ C and s « n, where n is the number of instances in the
training set.)

The width wa of a discretized interval for attribute a is given by

wa =
maxa − mina

s
(17)

where maxa and mina are the maximum and minimum value, respectively, occurring in
the training set for attribute a.

56

As an example, consider the Iris database from the UCI machine learning
databases. The Iris database has four continuous input attributes, the first of which is
sepal length. Let T be a training set consisting of 90% of the 150 available training
instances, and S be a test set consisting of the remaining 10%.

In one such division of the training set, the values in T for the sepal length attribute
ranged from 4.3 to 7.9. There are only three output classes in this database, so we let
s=5, resulting in a width of |7.9 - 4.3| / 5 = 0.72. Note that since the discretization is
part of the learning process, it would be unfair to use any instances in the test set to
help determine how to discretize the values. The discretized value v of a continuous
value x for attribute a is an integer from 1 to s, and is given by

v = discretizea(x) =
x, if a is discrete, else

s, if x = maxa , else

(x − mina) / wa  +1









(18)

After deciding upon s and finding wa, the discretized values of continuous
attributes can be used just like discrete values of nominal attributes in finding Pa,x,c.
Figure 5 lists pseudo-code for how this is done.

Figure 5. Pseudo code for finding Pa,x,c.

LearnP(training set T)
For each attribute a

For each instance i in T
Let x be the input value for attribute a of instance i.
v = discretizea(x) [which is just x if a is discrete]
Let c be the output class of instance i.
Increment Na,v,c by 1.
Increment Na,v by 1.

For each discrete value v (of attribute a)
For each class c

If Na,v=0
Then Pa,v,c=0

Else Pa,v,c = Na,v,c / Na,v
Return 3-D array Pa,v,c.

For the first attribute of the Iris database, the values of Pa,x,c are displayed in
Figure 6. For each of the five discretized ranges of x, the probability for each of the
three corresponding output classes are shown as the bar heights. Note that the
heights of the three bars sum to 1.0 for each discretized range. The bold integers
indicate the discretized value of each range. For example, a sepal length greater than
or equal to 5.74 but less than 6.46 would have a discretized value of 3.

57

0

0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9

1.0

1. Iris
Setosa

2. Iris
Versicolor

3. Iris
Viginica

4.3 5.02 5.74 6.46 7.18 7.9

Sepal Length (in cm)

Pr
ob

ab
ili

ty

1 2 3 4 5
Bold =
discretized
range number.

.867

.100
.033

.485
.455

.061 .026

.474.500

0.0

.391

.609

1.0

0.0 0.0

Output Class:

Figure 6. Pa,x,c for a=1, x=1..5, c=1..3, on the first attribute of the Iris database.

4.2. IVDM and DVDM Generalization

Thus far the DVDM and IVDM algorithms learn identically. However, at this
point the DVDM algorithm need not retain the original continuous values because it
will use only the discretized values during generalization. On the other hand, the
IVDM will use the continuous values.

During generalization, an algorithm such as a nearest neighbor classifier can use
the distance function DVDM, which is defined as follows

DVDM(x, y) = vdma(discretizea(xa),discretizea(ya))
2

a=1

m

∑ (19)

where discretizea is as defined in Equation (18) and vdma is defined as in Equation
(8), with q=2. We repeat it here for convenience

vdma(x, y) = Pa,x,c − Pa,y,c
2

c=1

C

∑ (20)

Unknown input values [Quinlan, 1989] are treated as simply another discrete value,
as was done in [Domingos, 1995].

Table 4. Example from the Iris database.

Input Attributes
 1 2 3 4 Output Class

A: 5.0 3.6 1.4 0.2 -> 1 (Iris Setosa)
B: 5.7 2.8 4.5 1.3 -> 2 (Iris Versicolor)

y: 5.1 3.8 1.9 0.4

As an example, consider two training instances A and B as shown in Table 4, and
a new input vector y to be classified. For attribute a=1, the discretized values for A,

58

B, and y are 1, 2, and 2, respectively. Using values from Figure 6, the distance for
attribute 1 between y and A is

|.867-.485|2 + |.1-.455|2 + |.033-.061|2 = .273

while the distance between y and B is 0, since they have the same discretized value.
Note that y and B have values on different ends of range 2, and are not actually

nearly as close as y and A are. In spite of this fact, the discretized distance function
says that y and B are equal because they happen to fall into the same discretized
range.

IVDM uses interpolation to alleviate such problems. IVDM assumes that the
Pa,x,c values hold true only at the midpoint of each range, and interpolates between
midpoints to find P for other attribute values.

Figure 7 shows the P values for the second output class (Iris Versicolor) as a
function of the first attribute value (sepal length). The dashed line indicates what P
value is used by DVDM, and the solid line shows what IVDM uses.

0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9
1.0

0
4 4.3 5.02 5.74 6.46 7.18 7.9

Sepal Length (in cm)

1 2 3 4 5

Center
points

Bold =
discretized
range number.

DVDM

IVDM

Pr
ob

ab
ili

ty
 o

f
C

la
ss

 2

Figure 7. P1,x,2 values from the DVDM and IVDM for attribute 1, class 2 of the Iris database.

The distance function for the Interpolated Value Difference Metric is defined as

IVDM(x, y) = ivdma(xa , ya)2

a=1

m

∑ (21)

where ivdma is defined as

ivdma(x, y) =
vdma(x, y) if a is discrete

pa,c(x) − pa,c(y)
2

c=1

C

∑ otherwise






(22)

The formula for determining the interpolated probability value pa,c(x) of a continuous
value x for attribute a and class c is

59

pa,c(x) = Pa,u,c +
x − mida,u

mida,u+1 − mida,u







* (Pa,u+1,c − Pa,u,c) (23)

In this equation, mida,u and mida,u+1 are midpoints of two consecutive discretized
ranges such that mida,u ≤ x < mida,u+1. P a,u,c is the probability value of the
discretized range u, which is taken to be the probability value of the midpoint of range
u (and similarly for Pa,u+1,c). The value of u is found by first setting u = discretizea(x),
and then subtracting 1 from u if x < mida,u. The value of mida,u can then be found as
follows

 mida,u = mina + widtha * (u+.5) (24)

Figure 8 shows the values of pa,c(x) for attribute a=1 of the Iris database for all
three output classes (i.e. c=1, 2, and 3). Since there are no data points outside the
range mina..maxa, the probability value Pa,u,c is taken to be 0 when u < 1 or u > s,
which can be seen visually by the diagonal lines sloping toward zero on the outer
edges of the graph. Note that the sum of the probabilities for the three output classes
sum to 1.0 at every point from the midpoint of range 1 through the midpoint of range 5.

Bold =
discretized
range number.4 4.3 5.02 5.74 6.46 7.18 7.9

Sepal Length (in cm)

1 2 3 4 5

1. Iris Setosa

2. Iris Versicolor

3. Iris Viginica

Output Class:

Pr
ob

ab
ili

ty
 o

f
C

la
ss

0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8
0.9
1.0

0

Figure 8. Interpolated probability values for attribute 1 of the Iris database.

Using IVDM on the example instances in Table 4, the values for the first attribute
are not discretized as they are with DVDM, but are used to find interpolated
probability values. In that example, y has a value of 5.1, so p1,c(x) interpolates
between midpoints 1 and 2, returning the values shown in Table 5 for each of the three
classes. Instance A has a value of 5.0, which also falls between midpoints 1 and 2,
but instance B has a value of 5.7, which falls between midpoints 2 and 3.

As can be seen from Table 5, IVDM (using the single-attribute distance function
ivdm) returns a distance which indicates that y is closer to A than B (for the first
attribute), which is certainly the case here. DVDM (using the discretized vdm), on
the other hand, returns a distance which indicates that the value of y is equal to that of
B, and quite far from A, illustrating the problems involved with using discretization.

60

Table 6. Generalization for DVDM vs. IVDM.

Database
Annealing
Australian
Bridges
Credit Screening
Echocardiogram
Flag
Glass
Heart Disease
Heart (Cleveland)
Heart (Hungarian)
Heart (Long-Beach-Va)
Heart (More)
Heart (Swiss)
Hepatitis
Horse-Colic
Image Segmentation
Ionosphere
Iris
Liver Disorders
Pima Indians Diabetes
Satellite Image
Shuttle
Sonar
Thyroid (Allbp)
Thyroid (Allhyper)
Thyroid (Allhypo)
Thyroid (Allrep)
Thyroid (Dis)
Thyroid (Hypothyroid)
Thyroid (Sick)
Thyroid (Sick-Euthyroid)
Vehicle
Vowel
Wine
Average:

DVDM
94.99
83.04
56.73
80.14

100.00
58.76
56.06
80.37
79.86
81.30
71.00
72.29
88.59
80.58
76.75
92.38
92.60
92.00
55.04
71.89
87.06
96.17
78.45
94.86
96.93
89.36
96.86
98.29
93.01
88.24
88.82
63.72
91.47
94.38
83.08

IVDM
96.11
80.58
60.55
80.14

100.00
57.66
70.54
81.85
78.90
80.98
66.00
73.33
87.88
82.58
76.78
92.86
91.17
94.67
58.23
69.28
89.79
99.77
84.17
95.32
97.86
96.07
98.43
98.04
98.07
95.07
96.86
69.27
97.53
97.78
85.22

*

*

*
*

*
*
*

*
*
*
*
*
*

*

Table 5. Example of ivdm vs. vdm.

value p1,1(v) p1,2(v) p1,3(v) ivdm1(v,y) vdm1(v,y)
A 5.0 .687 .268 .046 .005 .273
B 5.7 .281 .463 .256 .188 0

y 5.1 .634 .317 .050

The IVDM and DVDM algorithms were implemented and tested on 48 datasets
from the UCI machine learning databases. The results for the 34 datasets that contain
at least some continuous attributes are shown in Table 6. (Since IVDM and DVDM
are equivalent on domains with only discrete attributes, the results on the remaining

61

datasets are deferred to Section 6.) 10-fold cross-validation was again used, and the
average accuracy for each database over all 10 trials is shown in Table 6. Bold values
indicate which value was highest for each dataset. Asterisks (*) indicates that the
difference is statistically significant at a 90% confidence level or higher, using a two-
tailed paired t-test.

On this set of datasets, IVDM had a higher average generalization accuracy
overall than the discretized algorithm. IVDM obtained higher generalization accuracy
than DVDM in 23 out of 34 cases, 13 of which were significant at the 90% level or
above. DVDM had a higher accuracy in 9 cases, but only one of those had a difference
that was statistically significant.

These results indicate that the interpolated distance function is typically more
appropriate than the discretized value difference metric for applications with one or
more continuous attributes. Section 6 contains further comparisons of IVDM with
other distance functions.

5. Windowed Value Difference Metric (WVDM)

The IVDM algorithm can be thought of as sampling the value of Pa,u,c at the
midpoint mida,u of each discretized range u. P is sampled by first finding the instances
that have a value for attribute a in the range mida,u ± wa / 2. Na,u is incremented once
for each such instance, and Na,u,c is also incremented for each instance whose output
class is c, after which Pa,u,c = Na,u,c / Na,u is computed. IVDM then interpolates
between these sampled points to provide a continuous but rough approximation to the
function pa,c(x). It is possible to sample P at more points and thus provide a closer
approximation to the function pa,c(x), which may in turn provide for more accurate
distance measurements between values.

Figure 9 shows pseudo-code for the Windowed Value Difference Metric
(WVDM). The WVDM samples the value of Pa,x,c at each value x occurring in the
training set for each attribute a, instead of only at the midpoints of each range. In fact,
the discretized ranges are not even used by WVDM on continuous attributes, except
to determine an appropriate window width, wa, which is the same as the range width
used in DVDM and IVDM. The pseudo-code for the learning algorithm used to
determine Pa,x,c for each attribute value x is given in Figure 9.

For each value x occurring in the training set for attribute a, P is sampled by
finding the instances that have a value for attribute a in the range x ± wa / 2, and then
computing Na,x, Na,x,c, and Pa,x,c = Na,x,c / Na,x as before. Thus, instead of having a
fixed number s of sampling points, a window of instances, centered on each training
instance, is used for determining the probability at a given point. This technique is
similar in concept to shifted histogram estimators [Rosenblatt, 1956] and to Parzen
window techniques [Parzen, 1962].

For each attribute the values are sorted (using an O(nlogn) sorting algorithm) so
as to allow a sliding window to be used and thus collect the needed statistics in O(n)
time for each attribute. The sorted order is retained for each attribute so that a binary
search can be performed in O(log n) time during generalization.

Values occurring between the sampled points are interpolated just as in IVDM,
except that there are now many more points available, so a new value will be
interpolated between two closer, more precise values than with IVDM.

62

WVDM_Find_P(attribute a,continuous value x)
// Find Pa,x,c for c=1..C, given a value x for attribute a.
Find i such that instance[a][i].val[a] ≤ x ≤ instance[a][i+1].val[a] (binary search).
x1 = instance[a][i].val[a] (unless i<1, in which case x1=min[a] - (w[a] / 2))
x2 = instance[a][i+1].val[a] (unless i>n, in which case x2=max[a] + (w[a] / 2))
For each class c=1..C

p1=p[a][i][c] (unless i<1, in which case p1=0)
p2=p[a][i+1][c] (unless i>n, in which case p2=0)
Pa,x,c = p1 + ((x-x1)/(x2-x1)) * (p2 - p1)

Return array Pa,x,1..C.

Figure 10. Pseudo-code for the WVDM probability interpolation (see Figure 9 for definitions).

Define:
instance[a][1..n] as the list of all n instances in T sorted in ascending order by attribute a.
instance[a][i].val[a] as the value of attribute a for instance[a][i].
x as the center value of the current window, i.e., x=instance[a][i].val[a].
p[a][i][c] as the probability Pa,x,c that the output class is c given the input value x for

attribute a. Note that i is an index, the not value itself.
N[c] as the number Na,x,c of instances in the current window with output class c.
N as the total number Na,x of instances in the current window.
instance[a][in] as the first instance in the window.
instance[a][out] as the first instance outside the window. (i.e., the window contains

instances instance[a][in..out-1]).
w[a] as the window width for attribute a.

LearnWVDM(training set T)
For each continuous attribute a

Sort instance[a][1..n] in ascending order by attribute a, using a quicksort.
Initialize N and N[c] to 0, and in and out to 1 (i.e., start with an empty window).
For each i=1..n

Let x=instance[a][i].val[a].
// Expand window to include all instances in range
While (out < n) and (instance[a][out].val[a] < (x + w[a]/2))

Increment N[c], where c=the class of instance[a][out].
Increment N.
Increment out.

// Shrink window to exclude instances no longer in range
While (in < out) and (instance[a][in].val[a] < (x - w[a]/2))

Decrement N[c], where c=the class of instance[a][in].
Decrement N.
Increment in.

// Compute the probability value for each class from the current window
for each class c=1..C

p[a][i][c] = N[c] / N. (i.e., Pa,x,c = Na,x,c / Na,x).
Return the 3-D array p[a][i][c].

Figure 9. Pseudo code for the WVDM learning algorithm.

The pseudo-code for the interpolation algorithm is given in Figure 10. This
algorithm takes a value x for attribute a and returns a vector of C probability values
Pa,x,c for c=1..C. It first does a binary search to find the two consecutive instances in

63

the sorted list of instances for attribute a that surround x. The probability for each
class is then interpolated between that stored for each of these two surrounding
instances. (The exceptions noted in parenthesis handle outlying values by
interpolating towards 0 as is done in IVDM.)

Once the probability values for each of an input vector’s attribute values are
computed, they can be used in the vdm function just as the discrete probability values
are.

The WVDM distance function is defined as

WVDM(x, y) = wvdma(xa , ya)2

a=1

m

∑ (25)

and wvdma is defined as

wvdma(x, y) =
vdma(x, y) if a is discrete

Pa,x,c − Pa,y,c
2

c=1

C

∑ otherwise






(26)

where Pa,x,c is the interpolated probability value for the continuous value x as
computed in Figure 10. Note that we are typically finding the distance between a new
input vector and an instance in the training set. Since the instances in the training set
were used to define the probability at each of their attribute values, the binary search
and interpolation is unnecessary for training instances because they can immediately
recall their stored probability values, unless pruning techniques have been used.

One drawback to this approach is the increased storage needed to retain C
probability values for each attribute value in the training set. Execution time is not
significantly increased over IVDM or DVDM. (See Section 6.2 for a discussion on
efficiency considerations).

Figure 11. Example of the WVDM probability landscape.

4 5 6 7 8

Pr
ob

ab
ili

ty
 o

f
C

la
ss 1. Iris Setosa

2. Iris Versicolor

3. Iris Viginica

Output Class:

Sepal Length (in cm)

0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9
1.0

0

Figure 11 shows the probability values for each of the three classes for the first
attribute of the Iris database again, this time using the windowed sampling technique.
Comparing Figure 11 with Figure 8 reveals that on this attribute IVDM provides

64

approximately the same overall shape, but misses much of the detail. For example,
the peak occurring for output class 2 at approximately sepal length=5.75. In Figure 8
there is a flat line which misses this peak entirely, due mostly to the somewhat
arbitrary position of the midpoints at which the probability values are sampled.

Table 7 summarizes the results of testing the WVDM algorithm on the same
datasets as DVDM and IVDM. A bold entry again indicates the highest of the two
accuracy measurements, and an asterisk (*) indicates a difference that is statistically
significant at the 90% confidence level, using a two-tailed paired t-test.

Table 7. Generalization of WVDM vs. DVDM.

Database
Annealing
Australian
Bridges
Credit Screening
Echocardiogram
Flag
Glass
Heart Disease
Heart (Cleveland)
Heart (Hungarian)
Heart (Long-Beach-Va)
Heart (More)
Heart (Swiss)
Hepatitis
Horse-Colic
Image Segmentation
Ionosphere
Iris
Liver Disorders
Pima Indians Diabetes
Satellite Image
Shuttle
Sonar
Thyroid (Allbp)
Thyroid (Allhyper)
Thyroid (Allhypo)
Thyroid (Allrep)
Thyroid (Dis)
Thyroid (Hypothyroid)
Thyroid (Sick)
Thyroid (Sick-Euthyroid)
Vehicle
Vowel
Wine
Average:

DVDM
94.99
83.04
56.73
80.14

100.00
58.76
56.06
80.37
79.86
81.30
71.00
72.29
88.59
80.58
76.75
92.38
92.60
92.00
55.04
71.89
87.06
96.17
78.45
94.86
96.93
89.36
96.86
98.29
93.01
88.24
88.82
63.72
91.47
94.38
83.08

*

*
*

*
*
*
*
*
*

WVDM
95.87
82.46
56.64
81.45
98.57
58.74
71.49
82.96
80.23
79.26
68.00
73.33
88.72
79.88
74.77
93.33
91.44
96.00
57.09
70.32
89.33
99.61
84.19
95.29
97.50
90.18
97.07
98.00
96.96
97.11
94.40
65.37
96.21
97.22
84.68

On this set of databases, WVDM was an average of 1.6% more accurate than
DVDM overall. WVDM had a higher average accuracy than DVDM on 23 out of the
34 databases, and was significantly higher on 9, while DVDM was only higher on 11
databases, and none of those differences were statistically significant.

65

Section 6 provides further comparisons of WVDM with other distance functions,
including IVDM.

6. Empirical Comparisons and Analysis of Distance Functions

This section compares the distance functions discussed in this paper. A nearest
neighbor classifier was implemented using each of six different distance functions:
Euclidean (normalized by standard deviation) and HOEM as discussed in Section 2;
HVDM as discussed in Section 3; DVDM and IVDM as discussed in Section 4; and
WVDM as discussed in Section 5. Figure 12 summarizes the definition of each
distance function.

Figure 12. Summary of distance function definitions.

Continuous
Distance
Function

D(x, y) = da(xa , ya)2

a=1

m

∑

Linear
Discrete Nominal

xa − ya
σa

xa − ya
rangea

xa − ya
4σa

vdma(disca(xa),disca(ya))

ivdma(xa,ya)

Interpolate probabilities
from range midpoints.

wvdma(xa,ya)
Interpolate probabilities
from adjacent values.

WVDM

All functions use the same
overall distance function:

Euclidean

HOEM

HVDM

IVDM

DVDM

xa − ya
σa

0 if xa = ya
1 if xa ≠ ya

Definition of da(xa,ya) for each attribute type:

vdma(xa , ya)

where rangea = maxa − mina , and vdma(x, y) = Pa,x,c − Pa,y,c
2

c=1

C

∑

vdma(xa , ya)

vdma(xa , ya)

vdma(xa , ya)

Each distance function was tested on 48 datasets from the UCI machine learning
databases, again using 10-fold cross-validation. The average accuracy over all 10
trials is reported for each test in Table 8. The highest accuracy achieved for each
dataset is shown in bold. The names of the three new distance functions presented in
this paper (HVDM, IVDM and WVDM) are also shown in bold to identify them.

66

 D i s t a n c e F u n c t i o n # of inputs
Database Euclid HOEM HVDM DVDM IVDM WVDM #Inst. Con Int Nom

Annealing 94.99 94.61 94.61 94.99 96.11 95.87 798 6 3 29
Audiology 60.50 72.00 77.50 77.50 77.50 77.50 200 0 0 69
Audiology (test) 41.67 75.00 78.33 78.33 78.33 78.33 26 0 0 69
Australian 80.58 81.16 81.45 83.04 80.58 82.46 690 6 0 8
Breast Cancer 94.99 95.28 94.99 95.57 95.57 95.57 699 0 9 0
Bridges 58.64 53.73 59.64 56.73 60.55 56.64 108 1 3 7
Credit Screening 78.99 81.01 80.87 80.14 80.14 81.45 690 6 0 9
Echocardiogram 94.82 94.82 94.82 100.00 100.00 98.57 132 7 0 2
Flag 48.95 48.84 55.82 58.76 57.66 58.74 194 3 7 18
Glass 72.36 70.52 72.36 56.06 70.54 71.49 214 9 0 0
Heart Disease 72.22 75.56 78.52 80.37 81.85 82.96 270 5 2 6
Heart (Cleveland) 73.94 74.96 76.56 79.86 78.90 80.23 303 5 2 6
Heart (Hungarian) 73.45 74.47 76.85 81.30 80.98 79.26 294 5 2 6
Heart (Long-Beach-Va) 71.50 71.00 65.50 71.00 66.00 68.00 200 5 2 6
Heart (More) 72.09 71.90 72.09 72.29 73.33 73.33 1541 5 2 6
Heart (Swiss) 93.53 91.86 89.49 88.59 87.88 88.72 123 5 2 6
Hepatitis 77.50 77.50 76.67 80.58 82.58 79.88 155 6 0 13
Horse-Colic 65.77 60.82 60.53 76.75 76.78 74.77 301 7 0 16
House-Votes-84 93.12 93.12 95.17 95.17 95.17 95.17 435 0 0 16
Image Segmentation 92.86 93.57 92.86 92.38 92.86 93.33 420 18 0 1
Ionosphere 86.32 86.33 86.32 92.60 91.17 91.44 351 34 0 0
Iris 94.67 95.33 94.67 92.00 94.67 96.00 150 4 0 0
LED+17 noise 42.90 42.90 60.70 60.70 60.70 60.70 10000 0 0 24
LED 57.20 57.20 56.40 56.40 56.40 56.40 1000 0 0 7
Liver Disorders 62.92 63.47 62.92 55.04 58.23 57.09 345 6 0 0
Monks-1 77.08 69.43 68.09 68.09 68.09 68.09 432 0 0 6
Monks-2 59.04 54.65 97.50 97.50 97.50 97.50 432 0 0 6
Monks-3 87.26 78.49 100.00 100.00 100.00 100.00 432 0 0 6
Mushroom 100.00 100.00 100.00 100.00 100.00 100.00 8124 0 1 21
Pima Indians Diabetes 71.09 70.31 71.09 71.89 69.28 70.32 768 8 0 0
Promoters 73.73 82.09 92.36 92.36 92.36 92.36 106 0 0 57
Satellite Image 90.21 90.24 90.21 87.06 89.79 89.33 4435 36 0 0
Shuttle 99.78 99.78 99.78 96.17 99.77 99.61 9253 9 0 0
Sonar 87.02 86.60 87.02 78.45 84.17 84.19 208 60 0 0
Soybean (Large) 87.26 89.20 90.88 92.18 92.18 92.18 307 0 6 29
Soybean (Small) 100.00 100.00 100.00 100.00 100.00 100.00 47 0 6 29
Thyroid (Allbp) 94.89 94.89 95.00 94.86 95.32 95.29 2800 6 0 22
Thyroid (Allhyper) 97.00 97.00 96.86 96.93 97.86 97.50 2800 6 0 22
Thyroid (Allhypo) 90.39 90.39 90.29 89.36 96.07 90.18 2800 6 0 22
Thyroid (Allrep) 96.14 96.14 96.11 96.86 98.43 97.07 2800 6 0 22
Thyroid (Dis) 98.21 98.21 98.21 98.29 98.04 98.00 2800 6 0 22
Thyroid (Hypothyroid) 93.42 93.42 93.36 93.01 98.07 96.96 3163 7 0 18
Thyroid (Sick-Euthyroid) 68.23 68.23 68.23 88.24 95.07 94.40 3163 7 0 18
Thyroid (Sick) 86.93 86.89 86.61 88.82 96.86 97.11 2800 6 0 22
Vehicle 70.93 70.22 70.93 63.72 69.27 65.37 846 18 0 0
Vowel 99.24 98.86 99.24 91.47 97.53 96.21 528 10 0 0
Wine 95.46 95.46 95.46 94.38 97.78 97.22 178 13 0 0
Zoo 97.78 94.44 98.89 98.89 98.89 98.89 90 0 0 16
Average: 80.78 81.29 83.79 84.06 85.56 85.24

Table 8. Summary of Generalization Accuracy

67

Table 8 also lists the number of instances in each database (“#Inst.”), and the
number of continuous (“Con”), integer (“Int”, i.e., linear discrete), and nominal
(“Nom”) input attributes.

On this set of 48 datasets, the three new distance functions (HVDM, IVDM and
WVDM) did substantially better than Euclidean distance or HOEM. IVDM had the
highest average accuracy (85.56%) and was almost 5% higher on average than
Euclidean distance (80.78%), indicating that it is a more robust distance function on
these datasets, especially those with nominal attributes. WVDM was only slightly
lower than IVDM with 85.24% accuracy. Somewhat surprisingly, DVDM was slightly
higher than HVDM on these datasets, even though it uses discretization instead of a
linear distance on continuous attributes. All four of the VDM-based distance
functions outperformed Euclidean distance and HOEM.

Out of the 48 datasets, Euclidean distance had the highest accuracy 11 times;
HOEM was highest 7 times; HVDM, 14; DVDM, 19; IVDM, 25 and WVDM, 18.

For datasets with no continuous attributes, all four of the VDM-based distance
functions (HVDM, DVDM, IVDM and WVDM) are equivalent. On such datasets,
the VDM-based distance functions achieve an average accuracy of 86.6% compared to
78.8% for HOEM and 76.6% for Euclidean, indicating a substantial superiority on such
problems.

For datasets with no nominal attributes, Euclidean and HVDM are equivalent, and
all the distance functions perform about the same on average except for DVDM, which
averages about 4% less than the others, indicating the detrimental effects of
discretization. Euclidean and HOEM have similar definitions for applications without
any nominal attributes, except that Euclidean is normalized by standard deviation
while HOEM is normalized by the range of each attribute. It is interesting that the
average accuracy over these datasets is slightly higher for Euclidean than HOEM,
indicating that the standard deviation may provide better normalization on these
datasets. However, the difference is small (less than 1%), and these datasets do not
contain many outliers, so the difference is probably negligible in this case.

One disadvantage with scaling attributes by the standard deviation is that
attributes which almost always have the same value (e.g., a boolean attribute that is
almost always 0) will be given a large weight—not due to scale, but because of the
relative frequencies of the attribute values. A related problem can occur in HVDM. If
there is a very skewed class distribution (i.e., there are many more instances of some
classes than others), then the P values will be quite small for some classes and quite
large for others, and in either case the difference |P a,x,c - P a,y ,c | will be
correspondingly small, and thus nominal attributes will get very little weight when
compared to linear attributes. This phenomenon was noted by Ting [1994, 1996],
where he recognized such problems on the hypothyroid dataset. Future research will
address these normalization problems and look for automated solutions. Fortunately,
DVDM, IVDM and WVDM do not suffer from either problem, because all attributes
are scaled by the same amount in such cases, which may in part account for their
success over HVDM in the above experiments. [See the appendix to this chapter for
recent developments on handling skewed class distributions in HVDM.]

For datasets with both nominal and continuous attributes, HVDM is slightly
higher than Euclidean distance on these datasets, which is in turn slightly higher than
HOEM, indicating that the overlap metric may not be much of an improvement on
heterogeneous databases. DVDM, IVDM and WVDM are all higher than Euclidean
distance on such datasets, with IVDM again in the lead.

68

6.1. Effects of Sparse Data

Distance functions that use VDM require some statistics to determine distance.
We therefore hypothesized that generalization accuracy might be lower for VDM-
based distance functions than for Euclidean distance or HOEM when there was very
little data available, and that VDM-based functions would increase in accuracy more
slowly than the others as more instances were made available, until a sufficient
number of instances allowed a reasonable sample size to determine good probability
values.

Figure 13. Average accuracy as the amount of data increases.

%Instances Used

%
A

ve
ra

g
e

G
en

er
al

iz
at

io
n

 A
cc

u
ra

cy

55.00

60.00

65.00

70.00

75.00

80.00

85.00

0 20 40 60 80 100

Euclidean

HOEM

HVDM

DVDM

IVDM

WVDM

To test this hypothesis, the experiments used to obtain the results shown in Table
8 were repeated using only part of the available training data. Figure 13 shows how
the generalization accuracy on the test set improves as the percentage of available
training instances used for learning and generalization is increased from 1% to 100%.
The generalization accuracy values shown are the averages over all 48 of the datasets
in Table 8.

Surprisingly, the VDM-based distance functions increased in accuracy as fast or
faster than Euclidean and HOEM even when there was very little data available. It
may be that when there is very little data available, the random positioning of the

69

sample data in the input space has a greater detrimental affect on accuracy than does
the error in statistical sampling for VDM-based functions.

It is interesting to note from Figure 13 that the six distance functions seem to pair
up into three distinct pairs. The interpolated VDM-based distance functions (IVDM
and WVDM) maintain the highest accuracy, the other two VDM-based functions are
next, and the functions based only on linear and overlap distance remain lowest from
very early in the graph.

6.2. Efficiency Considerations

This section considers the storage requirements, learning speed, and
generalization speed of each of the algorithms presented in this paper.

6.2.1. STORAGE

All of the above distance functions must store the entire training set, requiring
O(nm) storage, where n is the number of instances in the training set and m is the
number of input attributes in the application, unless some instance pruning technique
is used. For the Euclidean and HOEM functions, this is all that is necessary, but
even this amount of storage can be restrictive as n grows large.

For HVDM, DVDM, and IVDM, the probabilities Pa,x,c for all m attributes (only
discrete attributes for HVDM) must be stored, requiring O(mvC) storage, where v is
the average number of attribute values for the discrete (or discretized) attributes and
C is the number of output classes in the application. It is possible to instead store an
array Da,x,y = vdma(x,y) for HVDM and DVDM, but the storage would be O(mv2),
which is only a savings when C < v.

For WVDM, C probability values must be stored for each continuous attribute
value, resulting in O(nmC) storage which is typically much larger than O(mvC)
because n is usually much larger than v (and cannot be less). It is also necessary to
store a list of (pointers to) instances for each attribute, requiring an additional O(mn)
storage. Thus the total storage for WVDM is O((C+2)nm) = O(Cnm).

Storage
O(mn)
O(mn)
O(mn+mvC)
O(mn+mvC)
O(mn+mvC)
O(Cmn)

Learning Time
O(mn)
O(mn)
O(mn+mvC)
O(mn+mvC)
O(mn+mvC)
O(mnlogn+mvC)

Generalization Time
O(mn)
O(mn)
O(mnC) or O(mn)
O(mnC) or O(mn)
O(mnC) or O(mn)
O(mnC)

Distance Function
Euclidean
HOEM
HVDM
DVDM
IVDM
WVDM

Table 9. Summary of efficiency for six distance metrics.

Table 9 summarizes the storage requirements of each system. WVDM is the only
one of these distance functions that requires significantly more storage than the
others. For most applications, n is the critical factor, and all of these distance
functions could be used in conjunction with instance pruning techniques to reduce
storage requirements. See Section 7 for a list of several techniques to reduce the
number of instances retained in the training set for subsequent generalization.

70

6.2.2. LEARNING SPEED

It takes nm time to read in a training set. It takes an additional 2nm time to find
the standard deviation of the attributes for Euclidean distance, or just nm time to find
the ranges for HOEM.

Computing VDM statistics for HVDM, DVDM and IVDM takes mn+mvC time,
which is approximately O(mn). Computing WVDM statistics takes mnlogn+mnC
time, which is approximately O(mnlogn).

In general, the learning time is quite acceptable for all of these distance functions.

6.2.3. GENERALIZATION SPEED

Assuming that each distance function must compare a new input vector to all
training instances, Euclidean and HOEM take O(mn) time. HVDM, IVDM and
DVDM take O(mnC) (unless Da,x,y has been stored instead of Pa,x,c for HVDM, in
which case the search is done in O(m n) time). WVDM takes
O(logn+mnC) = O(mnC) time.

Though m and C are typically fairly small, the generalization process can require a
significant amount of time and/or computational resources as n grows large.
Techniques such as k-d trees [Deng & Moore, 1995; Wess, Althoff & Derwand,
1994; Sproull, 1991] and projection [Papadimitriou & Bentley, 1980] can reduce the
time required to locate nearest neighbors from the training set, though such algorithms
may require modification to handle both continuous and nominal attributes. Pruning
techniques used to reduce storage (as in Section 6.2.1) will also reduce the number of
instances that must be searched for generalization.

7. Related Work

Distance functions are used in a variety of fields, including instance-based
learning, neural networks, statistics, pattern recognition, and cognitive psychology
(see Section 1 for references). Section 2 lists several commonly used distance
functions involving numeric attributes.

Normalization is often desirable when using a linear distance function such as
Euclidean distance so that some attributes do not arbitrarily get more weight than
others. Dividing by the range or standard deviation to normalize numerical attributes
is common practice. Turney [1993; Turney & Halasz, 1993] investigated contextual
normalization, in which the standard deviation and mean used for normalization of
continuous attributes depend on the context in which the input vector was obtained.
In this paper we do not attempt to use contextual normalization, but instead use
simpler methods of normalizing continuous attributes, and then focus on how to
normalize appropriately between continuous and nominal attributes.

The Value Distance Metric (VDM) was introduced by Stanfill & Waltz [1986]. It
uses attribute weights not used by the functions presented in this paper. The
Modified Value Difference Metric (MVDM) [Cost & Salzberg, 1993; Rachlin et al.,
1994] does not use attribute weights but instead uses instance weights. It is
assumed that these systems use discretization [Lebowitz, 1985; Schlimmer, 1987] to
handle continuous attributes.

71

Ventura [1995; Ventura & Martinez, 1995] explored a variety of discretization
methods for use in systems that can use only discrete input attributes. He found that
using discretization to preprocess data often degraded accuracy, and recommended
that machine learning algorithms be designed to handle continuous attributes directly.

Ting [1994, 1996] used several different discretization techniques in conjunction
with MVDM and IB1 [Aha, Kibler & Albert, 1991]. His results showed improved
generalization accuracy when using discretization. Discretization allowed his
algorithm to use MVDM on all attributes instead of using a linear distance on
continuous attributes, and thus avoided some of the normalization problems discussed
above in Sections 3.1 and 3.2. In this paper, similar results can be seen in the slightly
higher results of DVDM (which also discretizes continuous attributes and then uses
VDM) when compared to HVDM (which uses linear distance on continuous
attributes). In this paper, DVDM uses equal-width intervals for discretization, while
Ting’s algorithms make use of more advanced discretization techniques.

Domingos [1995] uses a heterogeneous distance function similar to HVDM in his
RISE system, a hybrid rule and instance-based learning system. However, RISE
uses a normalization scheme similar to “N1” in Sections 3.1 and 3.2, and does not
square individual attribute distances.

Mohri & Tanaka [1994] use a statistical technique called Quantification Method II
(QM2) to derive attribute weights, and present distance functions that can handle
both nominal and continuous attributes. They transform nominal attributes with m
values into m boolean attributes, only one of which is on at a time, so that weights for
each attribute can actually correspond to individual attribute values in the original
data.

Turney [1994] addresses cross-validation error and voting (i.e. using values of
k > 1) in instance-based learning systems, and explores issues related to selecting
the parameter k (i.e., number of neighbors used to decide on classification). In this
paper we use k = 1 in order to focus attention on the distance functions themselves,
but accuracy would be improved on some applications by using k > 1.

IVDM and WVDM use nonparametric density estimation techniques [Tapia &
Thompson, 1978] in determining values of P for use in computing distances. Parzen
windows [Parzen, 1962] and shifting histograms [Rosenblatt, 1956] are similar in
concept to these techniques, especially to WVDM. These techniques often use
gaussian kernels or other more advanced techniques instead of a fixed-sized sliding
window. We have experimented with gaussian-weighted kernels as well but results
were slightly worse than either WVDM or IVDM, perhaps because of increased
overfitting.

This paper applies each distance function to the problem of classification, in which
an input vector is mapped into a discrete output class. These distance functions could
also be used in systems that perform regression [Atkeson, Moore & Schaal, 1996;
Atkeson, 1989; Cleveland & Loader, 1994], in which the output is a real value, often
interpolated from nearby points, as in kernel regression [Deng & Moore, 1995].

As mentioned in Section 6.2 and elsewhere, pruning techniques can be used to
reduce the storage requirements of instance-based systems and improve
classification speed. Several techniques have been introduced, including IB3 [Aha,
Kibler & Albert, 1991; Aha, 1992], the condensed nearest neighbor rule [Hart, 1968],
the reduced nearest neighbor rule [Gates, 1972], the selective nearest neighbor rule
[Ritter et al., 1975], typical instance based learning algorithm [Zhang, 1992],
prototype methods [Chang, 1974], hyperrectangle techniques [Salzberg, 1991;

72

Wettschereck & Dietterich, 1995], rule-based techniques [Domingos, 1995], random
mutation hill climbing [Skalak, 1994; Cameron-Jones, 1995] and others [Kibler & Aha,
1987; Tomek, 1976; Wilson, 1972].

8. Conclusions & Future Research Areas

There are many learning systems that depend on a reliable distance function to
achieve accurate generalization. The Euclidean distance function and many other
distance functions are inappropriate for nominal attributes, and the HOEM function
throws away information and does not achieve much better accuracy than the
Euclidean function itself.

The Value Difference Metric (VDM) was designed to provide an appropriate
measure of distance between two nominal attribute values. However, current
systems that use the VDM often discretize continuous data into discrete ranges,
which causes a loss of information and often a corresponding loss in generalization
accuracy.

This paper introduced three new distance functions. The Heterogeneous Value
Difference Function (HVDM) uses Euclidean distance on linear attributes and VDM
on nominal attributes, and uses appropriate normalization. The Interpolated Value
Difference Metric (IVDM) and Windowed Value Difference Metric (WVDM) handle
continuous attributes within the same paradigm as VDM. Both IVDM and WVDM
provide classification accuracy which is higher on average than the discretized version
of the algorithm (DVDM) on the datasets with continuous attributes that we
examined, and they are both equivalent to DVDM on applications without any
continuous attributes.

In our experiments on 48 datasets, IVDM and WVDM achieved higher average
accuracy than HVDM, and also did better than DVDM, HOEM and Euclidean
distance. IVDM was slightly more accurate than WVDM and requires less time and
storage, and thus would seem to be the most desirable distance function on
heterogeneous applications similar to those used in this paper. Properly normalized
Euclidean distance achieves comparable generalization accuracy when there are no
nominal attributes, so in such situations it is still an appropriate distance function.

The learning system used to obtain generalization accuracy results in this paper
was a nearest neighbor classifier, but the HVDM, IVDM and WVDM distance
functions can be used with a k-nearest neighbor classifier with k > 1 or incorporated
into a wide variety of other systems to allow them to handle continuous values
including instance-based learning algorithms (such as PEBLS), radial basis function
networks, and other distance-based neural networks. These new distance metrics
can also be used in such areas as statistics, cognitive psychology, pattern recognition
and other areas where the distance between heterogeneous input vectors is of
interest. These distance functions can also be used in conjunction with weighting
schemes and other improvements that each system provides.

The new distance functions presented here show improved average generalization
on the 48 datasets used in experimentation. It is hoped that these datasets are
representative of the kinds of applications that we face in the real world, and that
these new distance functions will continue to provide improved generalization
accuracy in such cases.

73

Future research will look at determining under what conditions each distance
function is appropriate for a particular application. We will also look closely at the
problem at selecting the window width, and will look at the possibility of smoothing
WVDM’s probability landscape to avoid overfitting. The new distance functions will
also be used in conjunction with a variety of weighting schemes to provide more
robust generalization in the presence of noise and irrelevant attributes, as well as
increase generalization accuracy on a wide variety of applications.

Appendix. Handling Skewed Class Distributions with HVDM.

[Note: This appendix did not appear in the JAIR paper, but describes research
done after its publication.]

As mentioned in Sections 3 and 6, the HVDM distance metric is sensitive to
skewed class distributions. If there are many more instances of some classes than
others, then the probability Pa,x,c that the class is c will on average be quite small
(close to 0) for some classes and quite large (close to 1) for others, due to the a
priori probability of the class. Whether the class is a common one or an uncommon
one, the difference |Pa,x,c - Pa,y,c| will be correspondingly small, and thus nominal
attributes will get very little weight when compared to linear attributes. This
phenomenon was noted by Ting [1994, 1996], where he recognized such problems on
the hypothyroid dataset.

The following example illustrates this problem. Consider a single binary input
attribute x in a problem with binary output classes. (There could be additional input
attributes as well, but VDM would treat them separately). Table 10 shows the steps
leading to the determination of the distance between the two values 0 and 1 for
attribute x.

In this problem there are 110 instances, 10 of which are in class 0, and 100 of
which are in class 1. Table 10(a) shows the number of instances in each class that
have each input value for attribute x. Table 10(b) shows what the probability values
are in each case, and Table 10(c) shows how these values are used to arrive at a
difference of .1776 between values 0 and 1 of attribute x.

However, note that class 0 is much more highly correlated with x=1 than with x=0,
while class 1 is much more highly correlated with x=0 than with x=1. In other words,
the values 0 and 1 for attribute x are actually quite different, but this is not reflected by
the attribute distance of .1776. Compare this to the attribute distance of 1.0 that
would be assigned if the overlap distance were used.

0 1

0

1
x

class

1

9

80

20

Na,x,c

0 1

0

1
x

class

1/81=.01234

9/29=.31034

80/81=.98765

20/29=.68966

Pa,x,c

vdma(0,1)=(.01234-.31034)2

 +(.98765-.68966)2

 =.0888+.08888
 =.1776

Table 10. Illustration of problems with HVDM in the presence of skewed class distributions.
(a) Number of instances with each attribute value that occur in each class. (b) The probability of each

class, given the attribute value. (c) The distance between x=0 and x=1 computed by vdma.

74

It is possible to replicate the instances in the less common class in order to get rid
of the effects of skewed class distribution. In our example, we can accomplish this by
including each instance of class 0 in the training set 10 times when computing VDM
distances. The effect of doing this is shown in Table 11.

0 1

0

1
x

class

10

90

80

20

0 1

0

1
x

class

10/90=.1111

90/110=.8181

80/90=.8889

20/110=.1818

Na,x,c Pa,x,c

vdma(0,1)=(.1111-.8181)2

 +(.8889-.1818)2

 =.4999+..4999
 =.9998

Table 11. Effect of replicating instances so that class frequencies are equalized.

In this example, there are now 100 instances of each class, and as can be seen
from Table 11, the distance between values 0 and 1 for attribute x is now almost 1,
which is almost five times as large as before. This method brings out the fact that the
values are indeed quite different for each class.

Replicating instances is not convenient, especially when the number of instances
is the majority class is not a multiple of the number in the minority class. Fortunately,
it is also not necessary. The vdma(x,y) function can be modified such that it directly
discounts the effect of the a priori probability of each class. This can be done by
dividing Na,x,c by the total number of instances in each class. Let this modified value
be ′Na,x,c . Then this value is defined as

′Na,x,c =
Na,x,c

Na,x,c
c=1

C

∑
(27)

where C is the number of output classes. The probability is computed with the new
value ′Na,x,c using the same functions as in (9),

′Pa,x,c =
′Na,x,c

′Na,x
(28)

where ′Na,x is the sum of ′Na,x,c over all classes, i.e.,

 ′Na,x = ′Na,x,c
c=1

C

∑ (29)

Applying this technique to the example above yields the probabilities shown in
Table 12. As can be seen from Table 12(c), the final probabilities are identical to
those obtained by replicating the instances in the minority class, which means that the
distance between values 0 and 1 using this technique will be .9998 as in Table 11.

75

The modified version of the HVDM that uses this technique is called the Normalized
Heterogeneous Value Difference Metric (NHVDM).

0 1

0

1
x

class

1/10=.1

9/10=.9

80/100=.8

20/100=.2

N’a,x,c

0 1

0

1
x

class

.1/.9=.1111

.9/1.1=.8181

.8/.9=.8889

.2/1.1=.1818

P’a,x,c

0 1

0

1
x

class

1

9

80

20

Na,x,c

Table 12. Normalizing VDM to reduce the effect of skewed class distributions.

In experiments on the same datasets as those used in Section 6, the NHVDM had
lower accuracy on average that HVDM (82.73% for NHVDM vs. 83.79% for HVDM).
However, it did achieve slightly higher accuracy on the hypothyroid dataset (93.42%
vs. 93.36%), which, as mentioned in Section 6, has a skewed class distribution and in
fact led to the development of this extension. It is interesting to note that 95% of the
instances in the hypothyroid dataset are of the same class, which means that almost
95% accuracy can be obtained simply by choosing the most common class. However,
the amount of information added by the classification of these models may be much
higher than that achieved by the simple approach, and thus are of value [Zarndt,
1995].

We recommend at this stage that the NHVDM distance function be used instead
of HVDM when there are both nominal and continuous attributes and when the
classes have very different frequencies. For problems with nearly equal class
distributions, HVDM was better empirically in our experiments. IVDM actually did
better than both of these alternatives in our experiments, and avoids the problem of
skewed distributions by the fact that all attributes’ distances will be reduced by a
similar amount, thus nullifying the effect.

References

Aha, David W., (1992). Tolerating noisy, irrelevant and novel attributes in instance-based learning
algorithms. International Journal of Man-Machine Studies, vol. 36, pp. 267-287.

Aha, David W., Dennis Kibler, and Marc K. Albert, (1991). Instance-Based Learning Algorithms.
Machine Learning, vol. 6, pp. 37-66.

Atkeson, Chris, (1989). Using local models to control movement. In D. S. Touretzky (Ed.),
Advances in Neural Information Processing Systems 2. San Mateo, CA: Morgan Kaufmann.

Atkeson, Chris, Andrew Moore, and Stefan Schaal, (1996). Locally weighted learning. To appear in
Artificial Intelligence Review.

Batchelor, Bruce G., (1978). Pattern Recognition: Ideas in Practice. New York: Plenum Press, pp.
71-72.

Biberman, Yoram, (1994). A Context Similarity Measure. In Proceedings of the European
Conference on Machine Learning (ECML-94). Catalina, Italy: Springer Verlag, pp. 49-63.

76

Broomhead, D. S., and D. Lowe (1988). Multi-variable functional interpolation and adaptive
networks. Complex Systems, vol. 2, pp. 321-355.

Cameron-Jones, R. M., (1995). Instance Selection by Encoding Length Heuristic with Random
Mutation Hill Climbing. In Proceedings of the Eighth Australian Joint Conference on Artificial
Intelligence, pp. 99-106.

Carpenter, Gail A., and Stephen Grossberg, (1987). A Massively Parallel Architecture for a Self-
Organizing Neural Pattern Recognition Machine. Computer Vision, Graphics, and Image
Processing, vol. 37, pp. 54-115.

Chang, Chin-Liang, (1974). Finding Prototypes for Nearest Neighbor Classifiers. IEEE Transactions
on Computers, vol. 23, no. 11, pp. 1179-1184.

Cleveland, W. S., and C. Loader, (1994). Computational Methods for Local Regression. Technical
Report 11, Murray Hill, NJ: AT&T Bell Laboratories, Statistics Department.

Cost, Scott, and Steven Salzberg, (1993). A Weighted Nearest Neighbor Algorithm for Learning
with Symbolic Features. Machine Learning, vol. 10, pp. 57-78.

Cover, T. M., and P. E. Hart, (1967). Nearest Neighbor Pattern Classification. Institute of
Electrical and Electronics Engineers Transactions on Information Theory, vol. 13, no. 1, pp. 21-
27.

Dasarathy, Belur V., (1991). Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques.
Los Alamitos, CA: IEEE Computer Society Press.

Deng, Kan, and Andrew W. Moore, (1995). Multiresolution Instance-Based Learning. To appear in
The Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’95).

Diday, Edwin, (1974). Recent Progress in Distance and Similarity Measures in Pattern Recognition.
Second International Joint Conference on Pattern Recognition, pp. 534-539.

Domingos, Pedro, (1995). Rule Induction and Instance-Based Learning: A Unified Approach. to
appear in The 1995 International Joint Conference on Artificial Intelligence (IJCAI-95).

Dudani, Sahibsingh A., (1976). The Distance-Weighted k-Nearest-Neighbor Rule. IEEE Transactions
on Systems, Man and Cybernetics, vol. 6, no. 4, April 1976, pp. 325-327.

Gates, G. W., (1972). The Reduced Nearest Neighbor Rule. IEEE Transactions on Information
Theory, vol. IT-18, no. 3, pp. 431-433.

Giraud-Carrier, Christophe, and Tony Martinez, (1995). An Efficient Metric for Heterogeneous
Inductive Learning Applications in the Attribute-Value Language. Intelligent Systems, pp. 341-
350.

Hart, P. E., (1968). The Condensed Nearest Neighbor Rule. Institute of Electrical and Electronics
Engineers Transactions on Information Theory, vol. 14, pp. 515-516.

Hecht-Nielsen, R., (1987). Counterpropagation Networks. Applied Optics, vol. 26, no. 23, pp.
4979-4984.

Kibler, D., and David W. Aha, (1987). Learning representative exemplars of concepts: An initial case
study. Proceedings of the Fourth International Workshop on Machine Learning. Irvine, CA:
Morgan Kaufmann, pp. 24-30.

Kohonen, Teuvo, (1990). The Self-Organizing Map. In Proceedings of the IEEE, vol. 78, no. 9, pp.
1464-1480.

Lebowitz, Michael, (1985). Categorizing Numeric Information for Generalization. Cognitive
Science, vol. 9, pp. 285-308.

Merz, C. J., and P. M. Murphy, (1996). UCI Repository of Machine Learning Databases. Irvine,
CA: University of California Irvine, Department of Information and Computer Science. Internet:
http://www.ics.uci.edu/~mlearn/MLRepository.html.

77

Michalski, Ryszard S., Robert E. Stepp, and Edwin Diday, (1981). A Recent Advance in Data
Analysis: Clustering Objects into Classes Characterized by Conjunctive Concepts. Progress in
Pattern Recognition, vol. 1, Laveen N. Kanal and Azriel Rosenfeld (Eds.). New York: North-
Holland, pp. 33-56.

Mitchell, Tom M., (1980). The Need for Biases in Learning Generalizations. in J. W. Shavlik & T.
G. Dietterich (Eds.), Readings in Machine Learning. San Mateo, CA: Morgan Kaufmann, 1990,
pp. 184-191.

Mohri, Takao, and Hidehiko Tanaka, (1994). “An Optimal Weighting Criterion of Case Indexing for
both Numeric and Symbolic Attributes. In D. W. Aha (Ed.), Case-Based Reasoning: Papers
from the 1994 Workshop, Technical Report WS-94-01. Menlo Park, CA: AIII Press, pp. 123-127.

Nadler, Morton, and Eric P. Smith, (1993). Pattern Recognition Engineering. New York: Wiley, pp.
293-294.

Nosofsky, Robert M., (1986). Attention, Similarity, and the Identification-Categorization
Relationship. Journal of Experimental Psychology: General, vol. 115, no. 1, pp. 39-57.

Papadimitriou, Christos H., and Jon Louis Bentley, (1980). A Worst-Case Analysis of Nearest
Neighbor Searching by Projection. Lecture Notes in Computer Science, vol. 85, Automata
Languages and Programming, pp. 470-482.

Parzen, Emanuel, (1962). On estimation of a probability density function and mode. Annals of
Mathematical Statistics. vol. 33, pp. 1065-1076.

Quinlan, J. R., (1989). Unknown Attribute Values in Induction. In Proceedings of the 6th
International Workshop on Machine Learning. San Mateo, CA: Morgan Kaufmann, pp. 164-168.

Rachlin, John, Simon Kasif, Steven Salzberg, David W. Aha, (1994). Towards a Better Understanding
of Memory-Based and Bayesian Classifiers. In Proceedings of the Eleventh International Machine
Learning Conference. New Brunswick, NJ: Morgan Kaufmann, pp. 242-250.

Renals, Steve, and Richard Rohwer, (1989). Phoneme Classification Experiments Using Radial Basis
Functions. In Proceedings of the IEEE International Joint Conference on Neural Networks
(IJCNN’89), vol. 1, pp. 461-467.

Ritter, G. L., H. B. Woodruff, S. R. Lowry, and T. L. Isenhour, (1975). An Algorithm for a
Selective Nearest Neighbor Decision Rule. IEEE Transactions on Information Theory, vol. 21, no.
6, pp. 665-669.

Rosenblatt, Murray, (1956). Remarks on Some Nonparametric Estimates of a Density Function.
Annals of Mathematical Statistics. vol. 27, pp. 832-835.

Rumelhart, D. E., and J. L. McClelland, (1986). Parallel Distributed Processing, MIT Press, Ch. 8,
pp. 318-362.

Salzberg, Steven, (1991). A Nearest Hyperrectangle Learning Method. Machine Learning, vol. 6,
pp. 277-309.

Schaffer, Cul l en, (1993). Sel ect ing a Classificat ion Method by Cross-Val idat ion. M achine Learning,
vol. 13, no. 1.

Schaffer, Cullen, (1994). A Conservation Law for Generalization Performance. In Proceedings of the
Eleventh International Conference on Machine Learning (ML’94), Morgan Kaufmann, 1994.

Schlimmer, Jeffrey C., (1987). Learning and Representation Change. In Proceedings of the Sixth
National Conference on Artificial Intelligence (AAAI’87), vol. 2, pp. 511-535.

Skalak, D. B., (1994). Prototype and Feature Selection by Sampling and Random Mutation Hill
Climbing Algorithms. In Proceedings of the Eleventh International Conference on Machine
Learning (ML94). Morgan Kaufmann, pp. 293-301.

Sproull, Robert F., (1991). Refinements to Nearest-Neighbor Searching in k-Dimensional Trees.
Algorithmica, vol. 6, pp. 579-589.

78

Stanfill, C., and D. Waltz, (1986). Toward memory-based reasoning. Communications of the ACM,
vol. 29, December 1986, pp. 1213-1228.

Tapia, Richard A., and James R. Thompson, (1978). Nonparametric Probability Density Estimation.
Baltimore, MD: The Johns Hopkins University Press.

Ting, Kai Ming, (1994). Discretization of Continuous-Valued Attributes and Instance-Based
Learning. Technical Report no. 491, Basser Department of Computer Science, University of
Sydney, Australia.

Ting, Kai Ming, (1996). Discretisation in Lazy Learning. To appear in the special issue on Lazy
Learning in Artificial Intelligence Review.

Tomek, Ivan, (1976). An Experiment with the Edited Nearest-Neighbor Rule. IEEE Transactions on
Systems, Man, and Cybernetics, vol. 6, no. 6, June 1976, pp. 448-452.

Turney, Peter, (1994). Theoretical Analyses of Cross-Validation Error and Voting in Instance-Based
Learning. Journal of Experimental and Theoretical Artificial Intelligence (JETAI), pp. 331-360.

Turney, Peter, (1993). Exploiting context when learning to classify. In Proceedings of the
European Conference on Machine Learning. Vienna, Austria: Springer-Verlag, pp. 402-407.

Turney, Peter, and Michael Halasz, (1993). Contextual Normalization Applied to Aircraft Gas
Turbine Engine Diagnosis. Journal of Applied Intelligence, vol. 3, pp. 109-129.

Tversky, Amos, (1977). Features of Similarity. Psychological Review, vol. 84, no. 4, pp. 327-352.

Ventura, Dan, (1995). On Discretization as a Preprocessing Step for Supervised Learning Models,
Master’s Thesis, Department of Computer Science, Brigham Young University.

Ventura, Dan, and Tony R. Martinez (1995). An Empirical Comparison of Discretization Methods.
In Proceedings of the Tenth International Symposium on Computer and Information Sciences, pp.
443-450.

Wasserman, Philip D., (1993). Advanced Methods in Neural Computing. New York, NY: Van
Nostrand Reinhold, pp. 147-176.

Wess, Stefan, Klaus-Dieter Althoff and Guido Derwand, (1994). Using k-d Trees to Improve the
Retrieval Step in Case-Based Reasoning. Stefan Wess, Klaus-Dieter Althoff, & M. M. Richter
(Eds.), Topics in Case-Based Reasoning. Berlin: Springer-Verlag, pp. 167-181.

Wettschereck, Dietrich, and Thomas G. Dietterich, (1995). An Experimental Comparison of Nearest-
Neighbor and Nearest-Hyperrectangle Algorithms. Machine Learning, vol. 19, no. 1, pp. 5-28.

Wettschereck, Dietrich, David W. Aha, and Takao Mohri, (1995). A Review and Comparative
Evaluation of Feature Weighting Methods for Lazy Learning Algorithms. Technical Report
AIC-95-012. Washington, D.C.: Naval Research Laboratory, Navy Center for Applied Research
in Artificial Intelligence.

Wilson, D. Randall, and Tony R. Martinez, (1993). The Potential of Prototype Styles of
Generalization. In Proceedings of the Sixth Australian Joint Conference on Artifical Intelligence
(AI’93), pp. 356-361.

Wilson, D. Randall, and Tony R. Martinez, (1996). Heterogeneous Radial Basis Functions. In
Proceedings of the International Conference on Neural Networks (ICNN’96), vol. 2, pp. 1263-
1267.

Wilson, Dennis L., (1972). Asymptotic Properties of Nearest Neighbor Rules Using Edited Data.
IEEE Transactions on Systems, Man, and Cybernetics, vol. 2, no. 3, pp. 408-421.

Wolpert, David H., (1993). On Overfitting Avoidance as Bias. Technical Report SFI TR 92-03-
5001. Santa Fe, NM: The Santa Fe Institute.

Zhang, Jianping, (1992). Selecting Typical Instances in Instance-Based Learning. Proceedings of the
Ninth International Conference on Machine Learning.

79

Part III

Instance Set Reduction
“2B|~2B?” —William Shakespeare.

One of the main disadvantages of the basic nearest neighbor algorithm is its large
storage requirements and slow classification speed. Probabilistic neural networks
have very similar drawbacks and similar techniques can be used to address the
weaknesses of both models.

Chapter 6 presents a model called the Reduced Probabilistic Neural Network,
which is a radial basis function neural network used for classification that removes
most of its nodes during the training phase. This chapter was published in

Wilson, D. Randall, and Tony R. Martinez, (1997). “Improved Center Point
Selection for Radial Basis Function Networks,” In Proceedings of the
International Conference on Artificial Neural Networks and Genetic Algorithms
(ICANNGA’97).

Chapter 7 surveys much of the work done in instance reduction techniques in the
fields of statistics, pattern recognition, machine learning, and artificial intelligence. It
also presents several new pruning techniques that achieve higher average accuracy
than previous models while reducing storage more than most previous models.

Three of the new pruning techniques were first published in

Wilson, D. Randall, and Tony R. Martinez, (1997). “Instance Pruning Techniques,”
To appear in Fisher, D., ed., Machine Learning: Proceedings of the Fourteenth
International Conference (ICML’97), Morgan Kaufmann Publishers, San
Francisco, CA.

Work done in the above paper was extended in Chapter 7 with several additional
pruning techniques and with more detail in the survey of related work, including
empirical comparisons with many existing techniques. The reference for the extended
paper which appears as Chapter 7 is

Wilson, D. Randall, and Tony R. Martinez, (1997). “Reduction Techniques for
Exemplar-Based Learning Algorithms,” submitted to Machine Learning
Journal.

80

Chapter 6

Improved Center Point Selection for Probabilistic
Neural Networks

“All probabilities are 50%—Either a thing will happen, or it won’t.”

In Proceedings of the International Conference on Artificial Neural Networks and
Genetic Algorithms (ICANNGA’97), 1997.

Abstract

Probabilistic Neural Networks (PNN) typically learn more quickly than many neural
network models and have had success on a variety of applications. However, in their basic
form, they tend to have a large number of hidden nodes. One common solution to this
problem is to keep only a randomly selected subset of the original training data in building
the network. This paper presents an algorithm called the Reduced Probabilistic Neural
Network (RPNN) that seeks to choose a better-than-random subset of the available instances
to use as center points of nodes in the network. The algorithm tends to retain non-noisy
border points while removing nodes with instances in regions of the input space that are
highly homogeneous. In experiments on 22 datasets, the RPNN had better average
generalization accuracy than two other PNN models, while requiring an average of less than
one-third the number of nodes.

1. Introduction

Probabilistic Neural Networks (PNN) [Specht, 1992] often learn more quickly than
many neural network models such as backpropagation networks [Rumelhart, 1986],
and have had success on a variety of applications. PNN’s are a special form of radial
basis function (RBF) network [Wasserman, 1993] used for classification.

The network learns from a training set T, which is a collection of examples called
instances. Each instance i has an input vector yi, and an output class, denoted as
classi. During execution, the network receives additional input vectors, denoted as x,
and outputs the class that x seems most likely to belong to.

The probabilistic neural network used in this paper is shown in Figure 1. The first
(leftmost) layer contains one input node for each input attribute in an application. All
connections in the network have a weight of 1, which means that the input vector is
passed directly to each hidden node.

There is one hidden node for each training instance i in the training set. Each
hidden node hi has a center point yi associated with it, which is the input vector of

instance i. A hidden node also has a spread factor, σi, which determines the size of
its receptive field. There are a variety of ways to set this parameter. In this paper,
we set σi equal to a fraction f of the distance to the nearest neighbor of each instance
i. The value of f begins at 0.5 and a binary search is performed to fine-tune this value.

81

At each of five steps the value of f that results in the highest average confidence of
classification is chosen.

zx2

x3

h1

h2

h3

h4

c1

c2

x:

Hidden
nodes

Class
nodes

Input
nodes

x1
Decision

node

Figure 1. Probabilistic Neural Network.

A hidden node receives an input vector x and outputs an activation given by the
Gaussian function g, which returns a value of 1 if x and yi are equal, and drops to an
insignificant value as the distance grows:

g(x, yi ,σi) = exp[-D2(x, yi) / 2σi
2] (1)

The distance function D determines how far apart the two vectors are. By far the most
common distance function used in PNN’s is Euclidean distance. However, in order to
appropriately handle applications that have both linear and nominal attributes, we use
a heterogeneous distance function HVDM [Wilson & Martinez, 1996, 1997] that uses
normalized Euclidean distance for linear attributes and the Value Difference Metric
(VDM) [Stanfill & Waltz, 1986] for nominal attributes. It is defined as follows.

HVDM(x, y) = da(xa , ya)2

a=1

m

∑ (2)

where m is the number of attributes. The function da(x,y) returns a distance between
the two values x and y for attribute a and is defined as

da(x, y) =
1

vdma(x, y)

diff a(x, y)

if x or y is unknown

if a is nominal

if a is linear






(3)

The function da(x,y) uses the following function, based on the Value Difference Metric
(VDM) [Stanfill & Waltz, 1986] for nominal (discrete, unordered) attributes:

vdma(x, y) =
Na,x,c

Na,x
−

Na,y,c

Na,y

2

c=1

C

∑ (4)

82

where Na,x is the number of times attribute a had value x; Na,x,c is the number of
times attribute a had value x and the output class was c; and C is the number of output
classes. For linear attributes the following function is used.

diff a(x, y) =
x − y

4sa
(5)

where sa is the sample standard deviation of the values occurring for attribute a in the
training set.

Each hidden node hi in the network is connected to a single class node. If the
output class of instance i is j, then hi is connected to class node cj. Each class node cj
computes the sum of the activations of the hidden nodes that are connected to it (i.e.,
all the hidden nodes for a particular class) and passes this sum to a decision node.
The decision node outputs the class with the highest summed activation.

One of the greatest advantages of this network is that it does not require any
iterative training, and thus can learn quite quickly. However, one of the main
disadvantages of this network is that it has one hidden node for each training instance
and thus requires more computational resources (storage and time) during execution
than many other models. When simulated on a serial machine, O(n) time is required
to classify a single input vector. On a parallel system, only O(log n) time is required,
but n nodes and nm connections are still required (where n is the number of instances
in the training set, and m is the number of input attributes).

The most direct way to reduce storage requirements and speed up execution is to
reduce the number of nodes in the network. One common solution to this problem is to
keep only a randomly selected subset of the original training data in building the
network. However, arbitrarily removing instances can reduce generalization accuracy.
In addition, it is difficult to know how many nodes can be safely removed without a
reasonable stopping criterion.

Other subset selection algorithms exist in linear regression theory [Rawlings,
1988], including forward selection, in which the network starts with no nodes and
nodes are added one at a time to the network. Another method that has been used
[MacQueen, 1967] is k-means clustering [Leonard, Kramer & Ungar, 1992].

This paper presents an algorithm called the Reduced Probabilistic Neural Network
(RPNN) that begins with all of the available training instances as node centers and
selectively removes them one at a time until classification accuracy suffers. The
algorithm tends to retain only non-noisy border points while removing nodes with
instances in regions of the input space that are highly homogeneous. The next section
gives details of this algorithm.

2. Reduction Algorithm

The Reduced Probabilistic Neural Network (RPNN) begins with one node per
training instance, as does the original PNN, and then uses the following basic rule to
determine which nodes are removed from the network.

Remove a node if it does not cause more instances in the original training set to
be classified incorrectly by the nodes remaining in the network.

83

In other words, if the removal of a node does not hurt classification, remove it. When
applying this rule to the network, the order of removal is important. In particular, it
may be desirable to remove instances far from decision boundaries first, since they
have the least effect on decisions. RPNN does this by finding the distance of every
instance from its nearest enemy, which is the nearest neighbor of a different class, and
then sorting the instances by that distance. The above rule is then applied beginning
with the node furthest from its nearest enemy and proceeding to that which is closest
to its nearest enemy.

In order to decide if the removal of a node degrades classification accuracy, each
instance in the original training set is queried to see if its classification would be
altered by the removal of the instance in question.

Specifically, in our serial implementation each instance maintains a vector of
activations with one activation level for each class. The removal of a particular node
would subtract some amount of activation (dependent on the distance) from its own
class if removed. In addition, if the removed instance I is the nearest neighbor of
some other instance A, then A must find a new nearest neighbor, and update its σ
accordingly, which in turn changes what effect A has on all other instances.

The change in activation due to both the removal of I and the possible change in σ
of other nodes may be enough to cause the classification of some instances to change.
The change can cause an instance that used to be correctly classified to be
misclassified, or cause an instance that was misclassified to be correctly classified.
Such changes are counted, and if the number of newly misclassified instances is less
than or equal to the number of new correctly classified instances, then the removal is
performed, and the changes in activation values and σ parameters are made
permanent. Otherwise they are restored to their previous values.

In order to reduce the effect of noisy instances on the network, the instance
corresponding to the node that is being considered for removal is not included in the
tabulation. This means a node can be removed even if its instance is itself no longer
classified correctly, as long as other instances are not hurt.

To further reduce the effect of noise, a noise-reduction pass through the network is
done first, beginning with the instance closest to its nearest enemy, since noisy
instances are often close to instances of another class. During the noise reduction
step, the criteria for removal is more strict. In order to be removed, an instance must
not hurt classification, as explained above, and it must also strictly increase the
average confidence of classification. The confidence for each node is defined as the
activation of the correct class divided by the sum of activations for all of the output
classes.

Noisy instances are often located near instances of another class but far from
instances of their own class, so their removal will increase confidence of nearby
instance’s classification while having a much smaller effect on instances of their own
class. Other instances, however, will typically lower confidence of nearby neighbors,
which are largely of the same class, while having a smaller effect on instances of
different classes. Therefore, the test of confidence is appropriate during the noise-
reduction pass, but would prevent almost any pruning from taking place if used in the
remainder of the algorithm.

84

3. Empirical Results

The Reduced Probabilistic Neural Network (RPNN) algorithm was implemented
and tested on 22 applications from the Machine Learning Database Repository at the
University of California, Irvine [Merz & Murphy, 1996].

Each test consisted of ten trials. Each trial consisted of learning from 90% of the
training instances, and then seeing how many of the remaining 10% of the instances
were classified correctly.

The RPNN was compared to EPNN, a standard Probabilistic Neural Network
(PNN) that retains 100% of the instances in the training set and uses a normalized
Euclidean distance metric with σ set to the distance of a node’s instance to its nearest
neighbor. The RPNN was also compared to HPNN, a PNN that uses the same
heterogeneous distance function HVDM as RPNN, but retains 100% of the instances.
HPNN and RPNN both used a dynamically adjusted spreading factor, as explained in
Section 1, and RPNN used only a subset of the available instances for generalization.

Table 1 summarizes the empirical results. For each database the table shows the
average accuracy for the EPNN and HPNN using all of the instances, and for the
RPNN, using the percentage of instances shown.

Dataset
Anneal
Audiology
Australian
Breast Cancer (WI)
Bridges
Crx
Echocardiogram
Flag
Heart (Hungarian)
Heart (More)
Heart
Heart (Swiss)
Hepatitis
Horse-Colic
Iris
Liver-Bupa
Pima-Indians-Diabetes
Promoters
Soybean-Large
Vowel
Wine
Zoo
Average

EPNN
76.2
36.0
80.1
97.0
52.4
75.4
78.0
45.7
64.0
46.0
80.7
38.9
79.3
67.1
94.0
62.5
76.3
54.3
13.0
92.0
94.4
78.9
67.4

HPNN
76.2
57.0
83.8
94.7
55.2
84.4
76.8
53.6
66.7
68.8
81.5
93.5
80.6
67.1
91.3
66.6
74.1
84.5
13.0
92.4
97.2
71.1
74.1

RPNN
94.9
54.0
79.7
92.9
57.3
82.3
90.9
47.0
80.3
71.8
73.3
78.3
77.3
68.7
94.7
57.6
67.2
88.7
49.9
84.7
92.2
82.2
75.7

(size)
38.3
38.9
27.5
20.0
21.4
27.2

9.0
35.7
25.1
21.3
24.8

1.4
15.3
17.8
44.2
29.2
30.3
52.5
51.5
65.2
40.7
26.1
30.2

Table 1. Generalization Accuracy of PNN and RPNN.

The last line of Table 1 shows that RPNN had the highest average accuracy over
all 22 datasets of the three algorithms, while using less than one-third of the
instances (on average) for generalization. RPNN’s average accuracy was slightly
higher than HPNN, and both of these were substantially higher than EPNN, due in
part to the use of the HVDM distance function.

85

Using a dynamically adjusted spreading factor had very little effect on the accuracy
of HPNN (less than 1% on average), but resulted in a large improvement on RPNN
(75.5% accuracy instead of 71.5%) as well as improved size reduction.

The success of RPNN varies depending upon the application. For example, on the
Vowel dataset, it retained almost two-thirds of the instances while suffering a large
drop in accuracy compared to the other two models. However, in the Echocardiogram
dataset, the RPNN used only 9% of the data while improving generalization accuracy
by over 12%. Future research will focus on identifying characteristics of applications
that help determine whether the RPNN model is appropriate.

It should be noted that these datasets are not especially large (only a few hundred
instances in most cases), and that the reduction in size can be even more dramatic
when there are more instances available. This is especially true when the number of
instances is large compared to the complexity of the decision surface.

4. Conclusion

The Reduced Probabilistic Neural Network (RPNN) reduces the size and
execution time of a PNN by removing nodes from the network that are estimated to be
least needed for proper generalization. It tends to retain non-noisy border points in
the input space while removing nodes that are either noisy or have centers that are far
from the decision boundaries. By so doing, it can fairly quickly find a reasonable
subset of nodes to include in the PNN, thus reducing network complexity and
execution time, as well as reducing sensitivity to noise.

The RPNN requires O(n2) time for learning on a serial machine, but only O(nlogn)
time in a parallel network, and in our experiments on 22 datasets reduced storage by
over two-thirds on average.

It is possible that the RPNN could achieve even higher size reduction as well as
more robust accuracy by employing search techniques such as genetic algorithms after
initial pruning. Such search techniques could find additional nodes to remove, fine tune
the spreading factor of individual nodes, and even adjust the nodes’ center points.
Future research will address this question, and continue to seek improved size
reduction techniques. The results of this study are encouraging and show the
potential for substantial reduction without sacrificing generalization ability.

References

Leonard, J. A., M. A. Kramer, and L. H. Ungar, “Using Radial Basis Functions to Approximate a
Function and Its Error Bounds,” IEEE Transactions on Neural Networks, 3, 4, pp. 624-627, 1992

MacQueen, J., “Some methods for classification and analysis of multivariate observations,” in
Proceedings of the Fifth Berkeley Symposium on Mathematics, Statistics and Probability,
Berkeley, CA, pp. 281-297, 1967.

Merz, C. J., and P. M. Murphy, UCI Repository of Machine Learning Databases. Irvine, CA:
University of California Irvine, Department of Information and Computer Science, 1996.
Internet: http://www.ics.uci.edu/~mlearn/ MLRepository.html.

Rawlings, J. O., Applied Regression Analysis. Wadsworth & Brooks/Cole, Pacific Grove, CA, 1988.

Rumelhart, D. E., and J. L. McClelland, Parallel Distributed Processing, MIT Press, 1986.

86

Specht, Donald F., “Enhancements to Probabilistic Neural Networks,” in Proceedings of the
International Joint Conference on Neural Networks (IJCNN ’92), 1, pp. 761-768, 1992.

Stanfill, C., and D. Waltz, “Toward memory-based reasoning,” Communications of the ACM, 29,
1986.

Wasserman, Philip D., Advanced Methods in Neural Computing, New York, NY: Van Nostrand
Reinhold, pp. 147-176, 1993.

Wilson, D. Randall, and Tony R. Martinez, “Heterogeneous Radial Basis Functions,” Proceedings of
the International Conference on Neural Networks (ICNN’96), 2, pp. 1263-1267, 1996.

Wilson, D. Randall, and Tony R. Martinez, “Improved Heterogeneous Distance Functions,” Journal
of Artificial Intelligence Research (JAIR), 6, 1, pp. 1-34, 1997.

87

Chapter 7

Reduction Techniques for Exemplar-Based Learning
Algorithms

“And the bad shall be cast away,yea, even out of all the land of my vineyard;
for behold, only this once will I prune my vineyard.”

—Jacob 5:69

Submitted to Machine Learning Journal, 1997.

A shorter version of this chapter appears in
Wilson, D. Randall, and Tony R. Martinez, “Instance Pruning Techniques,”

To appear in Fisher, D., ed., Machine Learning: Proceedings of the Fourteenth
International Conference (ICML’97), Morgan Kaufmann Publishers,

San Francisco, CA, July 1997.

Abstract

Exemplar-based learning algorithms are often faced with the problem of deciding which
instances or other exemplars to store for use during generalization. Storing too many
exemplars can result in large memory requirements and slow execution speed, and can cause
an oversensitivity to noise. This paper has two main purposes. First, it provides a survey of
existing algorithms used to reduce the number of exemplars retained in exemplar-based
learning models. Second, it proposes six new reduction algorithms called DROP1-5 and DEL
that can be used to prune instances from the concept description. These algorithms and 10
algorithms from the survey are compared on 31 datasets. Of those algorithms that provide
substantial storage reduction, the DROP algorithms have the highest generalization accuracy
in these experiments, especially in the presence of noise.

1. Introduction

In supervised learning, a machine learning model is shown a training set, T, which
is a collection of training examples called instances. Each instance has an input vector
and an output value. After learning from the training set, the learning model is
presented with additional input vectors, and the model must generalize, i.e., it must
use some bias [Mitchell, 1980; Schaffer, 1993; Dietterich, 1989; Wolpert, 1993] decide
what the output value should be even if the new input vector was not in the training
set.

During generalization, a large number of machine learning models compute a
distance between the input vector and stored exemplars. Exemplars can be instances
from the original training set, or can be in other forms such as hyperrectangles,
prototypes, or rules. Many such exemplar-based learning models exist, and they are
often faced with the problem of deciding how many exemplars to store and what
portion of the instance space they should cover.

88

One of the most straightforward exemplar-based learning algorithms is the
nearest neighbor algorithm [Cover & Hart, 1967; Hart, 1968; Dasarathy, 1991]. In the
nearest neighbor and other instance-based learning (IBL) algorithms [Aha, Kibler &
Albert, 1991; Aha, 1992], the exemplars are original instances from the training set.
During generalization, these systems use a distance function to determine how close
a new input vector y is to each stored instance, and use the nearest instance or
instances to predict the output class of y (i.e., to classify y).

Other exemplar-based machine learning paradigms include memory-based
reasoning [Stanfill & Waltz, 1986], exemplar-based generalization [Salzberg, 1991;
Wettschereck & Dietterich, 1995], and case-based reasoning (CBR) [Watson &
Marir, 1994]. Such algorithms have had much success on a wide variety of domains.
There are also several exemplar-based neural network learning models, including
probabilistic neural networks (PNN) [Specht, 1992; Wilson & Martinez, 1996, 1997b]
and other radial basis function networks [Broomhead & Lowe, 1988; Renals &
Rohwer, 1989; Wasserman, 1993], as well as counterpropagation networks [Hecht-
Nielsen, 1987], ART [Carpenter & Grossberg, 1987], and competitive learning
[Rumelhart & McClelland, 1986].

Exemplar-based learning models must often decide what exemplars to store for
use during generalization, in order to avoid excessive storage and time complexity,
and possibly to improve generalization accuracy by avoiding noise and overfitting.

For example, the basic nearest neighbor algorithm retains all of the training
instances. It learns very quickly because it need only read in the training set without
much further processing, and it generalizes accurately for many applications.
However, since the basic nearest neighbor algorithm stores all of the training
instances, it has relatively large memory requirements. It must search through all
available instances to classify a new input vector, so it is slow during classification.
Also, since it stores every instance in the training set, noisy instances (i.e., those
with errors in the input vector or output class, or those not representative of typical
cases) are stored as well, which can degrade generalization accuracy.

Techniques such as k-d trees [Sproull, 1991] and projection [Papadimitriou &
Bentley, 1980] can reduce the time required to find the nearest neighbor(s) of an input
vector, but they do not reduce storage requirements, nor do they address the problem
of noise. In addition, they often become much less effective as the dimensionality of
the problem (i.e., the number of input attributes) grows.

On the other hand, when some of the instances are removed from the training set,
the storage requirements and time necessary for generalization are correspondingly
reduced. This paper focuses on the problem of reducing the size of the stored set of
instances (or other exemplars) while trying to maintain or even improve
generalization accuracy. It accomplishes this by first providing a relatively thorough
survey of machine learning algorithms used to reduce the number of exemplars needed
by learning algorithms, and then by proposing several new reduction techniques.

Section 2 discusses several issues related to the problem of instance set
reduction, and provides a framework for discussion of individual reduction algorithms.
Section 3 surveys much of the work done in this area. Section 4 presents a collection
of six new algorithms called DROP1-6 and DEL that are used to reduce the size of the
training set while maintaining or even improving generalization accuracy. Section 5
presents empirical comparing 10 of the surveyed techniques with the six new
techniques on 31 datasets. Section 6 provides conclusions and future research
directions.

89

2. Issues in Exemplar Set Reduction

This section provides a framework for the discussion of the exemplar reduction
algorithms presented in later sections. The issues discussed in this section include
exemplar representation, the order of the search, the choice of distance function, the
general intuition of which instances to keep, and how to evaluate the different
reduction strategies.

2.1. Representation

One choice in designing a training set reduction algorithm is to decide whether to
retain a subset of the original instances or whether to modify the instances using a
new representation. For example, some models [Salzberg, 1991; Wettschereck &
Dietterich, 1995] use hyperrectangles to represent collections of instances; instances
can be generalized into rules [Domingos, 1995]; and prototypes can be used to
represent a cluster of instances [Chang, 1974], even if no original instance occurred at
the point where the prototype is located.

On the other hand, many models seek to retain a subset of the original instances.
One problem with using the original data points is that there may not be any data
points located at the precise points that would make for the most accurate and concise
concept description. Prototypes, on the other hand, can be artificially constructed to
exist exactly where they are needed, if such locations can be accurately determined.

Similarly, rules and hyperrectangles can be constructed to reduce the need for
instances in certain areas of the input space. However they are often restricted
because of their axis-aligned boundaries.

2.2. Direction of Search

When searching for a subset S of instances to keep from training set T, there are
also a variety of directions the search can proceed, including incremental, decremental,
and batch.

2.2.1. INCREMENTAL

The incremental search begins with an empty subset S, and adds each instance in
T to S if it fulfills some criteria. In this case the order of presentation of instances can
be very important. In particular, the first few instances may have a very different
probability of being included in S than they would if they were visited later.

Under such schemes, the order of presentation of instances in T to the algorithm is
typically random because by definition, an incremental algorithm should be able to
handle new instances as they are made available without all of them being present at
the beginning. In addition, some incremental algorithms do not retain all of the
previously seen instances even during the learning phase, which can also make the
order of presentation important.

One advantage to an incremental scheme is that if instances are made available
later, after training is complete, they can continue to be added to S according to the
same criteria. The main disadvantage is that incremental algorithms are sensitive to
the order of presentation of the instances, and their early decisions are based on very
little information, and are therefore prone to errors until more information is available.

It should be noted that some algorithms add instances to S in a somewhat
incremental fashion, but they examine all available instances to help select which

90

instance to add next. This makes the algorithm not truly incremental, but may improve
its performance substantially.

2.2.2. DECREMENTAL

The decremental search begins with S=T , and then searches for instances to
remove from S . Again the order of presentation is important, but unlike the
incremental process, all of the training examples are available for examination at any
time, so a search can be made to determine which instance would be best to remove
during each step of the algorithm. Decremental algorithms discussed in Section 3
include RNN [Gates, 1972], SNN [Ritter et al., 1975], ENN [Wilson, 1972], VSM
[Lowe, 1995], and the Shrink (Subtractive) Algorithm [Kibler & Aha, 1987]. NGE
[Salzberg, 1991] and RISE [Domingos, 1995] can also be viewed as decremental
algorithms, except that instead of simply removing instances from S , they are
generalized into hyperrectangles or rules. Similarly, Chang’s prototype rule [Chang,
1974] operates in a decremental order, but prototypes are merged into each other
instead of being simply removed.

One disadvantage with the decremental rule is that it is often computationally
more expensive than incremental algorithms. For example, in order to find the nearest
neighbor in T of an instance, n distance calculations must be made. On the other hand,
there are fewer than n instances in S (zero initially, and some fraction of T eventually),
so finding the nearest neighbor in S of an instance takes less computation.

However, if the application of a decremental algorithm can result in greater storage
reduction, then the extra computation during learning (which is done just once) can be
well worth the computational savings during execution thereafter. Increased
generalization accuracy, if it can be achieved, is also typically worth some extra time
during learning.

2.2.3. BATCH

Another way to apply a training set reduction rule is in batch mode. This involves
deciding if each instance meets the removal criteria before removing any of them.
Then all those that do meet the criteria are removed at once. For example, the All-
kNN rule [Tomek, 1976] operates this way. This can relieve the algorithm from
having to constantly update lists of nearest neighbors and other information when
instances are individually removed.

However, there are also dangers in batch processing. For example, assume the
following rule is applied to an instance set.

Remove an instance if it has the same output class as its k nearest
neighbors.

This could result in entire clusters disappearing if there are no instances of a
different class nearby. If done in decremental mode, however, some instances would
remain, because eventually enough neighbors would be removed that one of the k
nearest neighbors of an instance would have to be of another class, even if it was
originally surrounded by those of its own class.

As with decremental algorithms, batch processing suffers from increased time
complexity over incremental algorithms.

91

2.3. Border points vs. central points

Another factor that distinguishes instance reduction techniques is whether they
seek to retain border points, central points, or some other set of points.

The intuition behind retaining border points is that “internal” points do not affect
the decision boundaries as much as border points, and thus can be removed with
relatively little effect on classification.

On the other hand, some algorithms instead seek to remove border points. They
remove points that are noisy or do not agree with their neighbors. This removes close
border points, leaving smoother decision boundaries behind. However, such
algorithms do not remove internal points that do not necessarily contribute to the
decision boundary.

It may take a large number of border points to completely define a border, so some
algorithms retain center points in order to use those instances which are most typical
of a particular class to classify instances near them. This can dramatically affect
decision boundaries, because the decision boundaries depend on not only where the
instances of one class lie, but where those of other classes lie as well. In general, the
decision boundary lies halfway between two nearest instances of opposing classes, so
center points must be chosen carefully in order to keep the decision boundaries in the
correct general vicinity.

2.4. Distance Function

The distance function (or its complement, the similarity function) used to decide
which neighbors are closest to an input vector can have a dramatic effect on an
exemplar-based learning system.

The nearest neighbor algorithm and its derivatives usually use the Euclidean
distance function, which is defined as

E(x, y) = (xi − yi)
2

i=1

m

∑ (1)

where x and y are the two input vectors, m is the number of input attributes, and xi
and yi are the input values for input attribute i. This function is appropriate when all
the input attributes are numeric and have ranges of approximately equal width. When
the attributes have substantially different ranges, the attributes can be normalized by
dividing the individual attribute distances by the range or standard deviation of the
attribute.

A variety of other distance functions are also available for continuously valued
attributes, including the Minkowsky [Batchelor, 1978], Mahalanobis [Nadler & Smith,
1993], Camberra, Chebychev, Quadratic, Correlation, and Chi-square distance metrics
[Michalski, Stepp & Diday, 1981; Diday, 1974]; the Context-Similarity measure
[Biberman, 1994]; the Contrast Model [Tversky, 1977]; hyperrectangle distance
functions [Salzberg, 1991; Domingos, 1995] and others. Several of these functions are
defined in Figure 1.

92

Figure 1. Equations of selected distance functions (x and y are vectors of m attribute values).

D(x, y) = xi − yi
r

i=1

m

∑










1
r

D(x, y) = xi − yi()2

i=1

m

∑ D(x, y) = xi − yi
i=1

m

∑

D(x, y) =
xi − yi

xi + yii=1

m

∑ D(x, y) = max
i=1

m
xi − yi

D(x, y) = (x − y)T Q(x − y) = (xi − yi)qji
i=1

m

∑










j=1

m

∑ (x j − yj)

D(x, y) = 1
sumi

xi
sizex

− yi
sizey








2

i=1

m

∑

D(x, y) = 1 − 2
n(n −1)

sign(xi − x j)sign(yi − yj)
j=1

i−1

∑
i=1

m

∑

Minkowsky: Euclidean: Manhattan / city-block:

Camberra: Chebychev:

Quadratic:

Mahalanobis:

Correlation:

Chi-square:

Kendall’s Rank Correlation:

Q is a problem-specific positive
definite m × m weight matrix

V is the covariance matrix of A1..Am,
and Aj is the vector of values for
attribute j occuring in the training set
instances 1..n.

xi = yi and is the average value for
attribute i occuring in the training set.

sign(x)=-1, 0 or 1 if x < 0,
x = 0, or x > 0, respectively.

sumi is the sum of all values for attribute
i occuring in the training set, and sizex is
the sum of all values in the vector x.

D(x, y) = [detV]1/m(x − y)TV −1(x − y)

D(x, y) =
(xi − xi)(yi − yi)

i=1

m

∑

(xi − xi)
2

i=1

m

∑ (yi − yi)
2

i=1

m

∑

When nominal (discrete, unordered) attributes are included in an application, a
distance metric is needed that supports them. Some learning models have used the
overlap metric, which defines the distance for an attribute as 0 if the values are equal,
or 1 if they are different, regardless of which two values they are.

An alternative distance function for nominal attributes is the Value Difference
Metric (VDM) [Stanfill & Waltz, 1986]. Using the VDM, the distance between two
values x and y of a single attribute a is given as

vdma(x, y) =
Na,x,c

Na,x
−

Na,y,c

Na,y






c=1

C

∑
2

(2)

where Na,x is the number of times attribute a had value x; Na,x,c is the number of
times attribute a had value x and the output class was c; and C is the number of output

93

classes. Using this distance measure, two values are considered to be closer if they
have more similar classifications, regardless of the order of the values.

In order to handle heterogeneous applications—those with both numeric and
nominal attributes—it is possible to use a heterogeneous distance function such as
HVDM [Wilson & Martinez, 1997], which is defined as

HVDM(x, y) = da(xa , ya)2

a=1

m

∑ (3)

where the function da(x,y) is the distance for attribute a and is defined as

da(x, y) =
1

vdma(x, y)
x − y

4σa

if x or y is unknown; otherwise...

if a is nominal

if a is numeric













(4)

where vdma(x,y) is the function given in (2), and σa is the standard deviation of the
values occurring for attribute a in the instances in the training set T. This function
handles unknown input values by assigning them a large distance, and provides
appropriate normalization between numeric and nominal attributes, as well as
between numeric attributes of different scales.

Several algorithms use weighting schemes that alter the distance measurements
and voting influence of each instance. In this paper we focus on training set reduction,
and thus will not use any weighting schemes in our experiments other than those
needed for normalization in the distance function, as explained above. A good survey
of weighting schemes is given by Wettschereck, Aha and Mohri [1995].

2.5. Voting

Another decision that must be made for many algorithms is the choice of k, which
is the number of neighbors used to decide the output class of an input vector. The
value of k is typically a small, odd integer (e.g., 1, 3 or 5). Usually each such nearest
neighbor gets exactly one vote, so even values of k could result in “ties” that would
have to be resolved arbitrarily or through some more complicated scheme. There are
some algorithms which give closer neighbors more influence than further ones, such as
the Distance-Weighted kNN Rule [Dudani, 1976]. Such modifications reduce the
sensitivity of the algorithm to the selection of k. Radial Basis Function networks
[Wasserman, 1993] and Probabilistic Neural Networks [Specht, 1992] use a
Gaussian weighting of influence and allow all instances to “vote”, though instances
that are very far from the input have only negligible influence. This does away with
the need for the k parameter, but introduces a need for weight-spreading parameters.

One common way of determining the value of k is to use leave-one-out cross-
validation. For each of several values of k, each instance is classified by its k nearest
neighbors other than the instance itself, to see if it is classified correctly. The value
for k that produces the highest accuracy is chosen.

94

In the basic nearest neighbor rule, setting k greater than 1 decreases the
sensitivity of the algorithm to noise, and tends to smooth the decision boundaries
somewhat. It is also important for many pruning algorithms to have a k > 1.
However, once pruning has taken place, it is possible that the value of k should be
changed. For example, if the training set has been reduced to the point that there is
only one instance representing what was formerly a cluster of instances, then perhaps
k = 1 would be more appropriate than k > 1, especially if the noisy instances have
been removed during the reduction process. In other cases, the value of k should
remain the same. Thus, it may be appropriate to find a value of k for use during the
pruning process, and then redetermine the best value for k after pruning is completed.

It may even be advantageous to update k dynamically during the pruning process.
For example, if a very large value of k were used initially, the order of removal of
instances from the subset might be improved.

2.6. Evaluation Strategies

In comparing training set reduction algorithms, there are a number of criteria that
can be used to compare the relative strengths and weaknesses of each algorithm.
These include speed increase (during execution), storage reduction, noise tolerance,
generalization accuracy, time requirements (during learning), and incrementality.

2.6.1. STORAGE REDUCTION

One of the main goals of training set reduction algorithms is to reduce storage
requirements. It is important to note that if alternate representations are used (e.g.,
hyperrectangles or rules), any increase in the size of the new representation must be
taken into account along with the reduction in number of instances stored.

2.6.2. SPEED INCREASE

Another main goal is to speed up classification. A reduction in the number of
stored instances will typically yield a corresponding reduction in the time it takes to
search through these instances and classify a new input vector. Again, more complex
representations such as hyperrectangles may not need as many comparisons, but may
require more computation for each comparison, and this must be taken into account.

2.6.3. GENERALIZATION ACCURACY

A successful algorithm will be able to significantly reduce the size of the training
set without significantly reducing generalization accuracy. Ideally, algorithms will be
able to detect at what point generalization accuracy will suffer, and reduce the size of
the subset to near that point. In some cases generalization accuracy can increase
with the reduction of instances, such as when noisy instances are removed and when
decision boundaries are smoothed to more closely match the true underlying function
rather than the sampling distribution.

2.6.4. NOISE TOLERANCE

Algorithms also differ with respect to how well they work in the presence of noise.
In the presence of noise, there are two main problems that can occur. The first is that
very few instances will be removed from the training set because they are needed to
maintain the noisy (and thus overly complex) decision boundaries. The second

95

problem is that generalization accuracy can suffer, especially if noisy instances are
retained while good instances are removed. In such cases the reduced training set can
be much less accurate than the full training set in classifying new input vectors.

2.6.5. LEARNING SPEED

The learning process is done just once on a training set, so it is not quite as
important for the learning phase to be fast. However, if the learning phase takes too
long it can become impractical for real applications. Ironically, it is on especially large
training sets that reduction algorithms are most badly needed, so a reasonable (e.g.,
O(n2) or faster) time bound is desirable.

2.6.6. INCREMENTAL

In some cases it is convenient to have an incremental algorithm so that additional
instances can be added over time as they become available. On the other hand, it is
possible to use a non-incremental algorithm on an initial database and then employ a
separate incremental database once a reasonable starting point has been achieved.

Note that not all algorithms attempt to meet all of these goals. For example, a
hybrid hyperrectangle and nearest-neighbor algorithm by Wettschereck and Dietterich
[1995] saves all of the training set in addition to the hyperrectangles, and thus
actually increases storage requirements. However, it uses the hyperrectangles to
quickly classify most input vectors, and only uses the entire training set when
necessary. Thus, it sacrifices the goal of storage reduction in favor of the goals of
classification speed and maintaining or increasing generalization accuracy.

3. Survey of Instance Reduction Algorithms

Many researchers have addressed the problem of training set size reduction. This
section surveys several techniques, discusses them in light of the framework
presented in Section 2, and points out their interesting differences. Most of the
models discussed here use a subset of the original instances as their representation,
and though most have primarily used the Euclidean distance function in the past, they
can typically make use of the HVDM distance function or other distance functions
when needed. Most of the models also tend to use k = 1 except where noted, though
in most cases the algorithms can be modified to use k > 1.

In order to avoid repeating lengthy definitions, some notation is introduced here. A
training set T consists of n instances (or prototypes) P1..n. Each instance P has k
nearest neighbors P.N1..k (ordered from nearest to furthest), where k is typically a
small odd integer such as 1, 3 or 5. P also has a nearest enemy, P.E, which is the
nearest instance with a different output class. Those instances that have P as one of
their k nearest neighbors are called associates of P, and are notated as P.A1..a (sorted
from nearest to furthest) where a is the number of associates that P has.

96

3.1. Nearest Neighbor Editing Rules

3.1.1. CONDENSED NEAREST NEIGHBOR RULE

Hart [1968] made one of the first attempts to reduce the size of the training set
with his Condensed Nearest Neighbor Rule (CNN). His algorithm finds a subset S of
the training set T such that every member of T is closer to a member of S of the same
class than to a member of S of a different class. In this way, the subset S can be used
to classify all the instances in T correctly.

This algorithm begins by randomly selecting one instance belonging to each output
class from T and putting them in S. Then each instance in T is classified using only the
instances in S. If an instance is misclassified, it is added to S, thus ensuring that it
will be classified correctly. This process is repeated until there are no instances in T
that are misclassified. This algorithm ensures that all instances in T are classified
correctly, though it does not guarantee a minimal set.

This algorithm is especially sensitive to noise, because noisy instances will
usually be misclassified by their neighbors, and thus will be retained. This causes two
problems. First, storage reduction is hindered, because noisy instances are retained,
and because they are there, often non-noisy instances nearby will also need to be
retained. The second problem is that generalization accuracy is hurt because noisy
instances are usually exceptions and thus do not represent the underlying function
well. Since some neighbors have probably been pruned, a noisy instance in S will
often cover more of the input space than it did in T , thus causing even more
misclassifications than before reduction.

3.1.2. SELECTIVE NEAREST NEIGHBOR RULE

Ritter et. al. [1975] extended the condensed NN method in their Selective Nearest
Neighbor Rule (SNN) such that every member of T must be closer to a member of S of
the same class than to any member of T (instead of S) of a different class. Further,
the method ensures a minimal subset satisfying these conditions.

The algorithm for SNN is more complex than most other reduction algorithms, and
the learning time is significantly greater, due to the manipulation of an n × n matrix and

occasional recursion. The SNN algorithm begins by constructing a binary n × n matrix
A (where n is the number of instances in T), where Aij is set to 1 when instance j is of
the same class as instance i, and it is closer to instance i than i’s nearest enemy, i.e.,
the nearest neighbor of i in T that is of a different class than i. Aii is always set to 1.

Once this array is set up, the following 5 steps are taken until no columns remain
in the array:

1. For all columns i that have exactly one bit on, let j be the row with the bit on
in column i. Row j is removed, instance j is added to S, and all columns
with a bit on in row j are removed.

2. For all rows j, delete row j if for all (remaining) columns i and for some
(remaining) row k, Aji ≤ Aki. In other words, row j is deleted if, whenever
row j contains a 1, row k also contains a 1. In this case instance j is not
added to S.

97

3. Delete any column i if for all (remaining) rows j and some (remaining)
column k, Aji ≥ Ajk.

4. Continue to repeat steps 1-3 until no further progress can be made. If no
columns remain in the array, then S is complete and the algorithm is
finished. Otherwise, go on to step 5.

5. Find the row j that when included in S requires the fewest other rows to also
be included in S. This is done as follows:
(a) For each remaining row j, assume that instance j will be added to S,

and that row j and any (remaining) columns with a bit on in row j
will be deleted. Subject to this assumption, find the fewest number
of additional rows it would take to get at least as many 1’s as there
are remaining columns. (Do not actually remove row j or the
columns yet). From the minimums found for each row j, keep track
of the absolute minimum found by any row j.

(b) For each row j in (a) that resulted in the absolute minimum number
of additional rows that might be needed, actually remove j and
columns with bits on in row j and call the algorithm recursively
beginning with step 1. If the minimum number of rows was really
used, then stop, because S is complete. Otherwise, restore row j
and the removed columns, and try the next possible row j.

(c) If no row j is successful in achieving the minimum number, increment
the absolute minimum and try (b) again until successful.

Note that the only steps in which instances are chosen for inclusion in S are steps 1
and 5.

This algorithm takes approximately O(mn2 + n3) time, compared to the O(mn2) or
less time required by most other algorithms surveyed. It also requires O(n2) storage
during the learning phase for the matrix, though this matrix is discarded after learning
is complete. The algorithm is sensitive to noise, though it will tend to sacrifice
storage more than accuracy when noise is present.

3.1.3. REDUCED NEAREST NEIGHBOR RULE

Gates [1972] introduced the Reduced Nearest Neighbor Rule (RNN). The RNN
algorithm starts with S=T and removes each instance from S if such a removal does
not cause any other instances in T to be misclassified by the instances remaining in S.
It is computationally more expensive than Hart’s condensed NN rule, but will always
produce a subset of CNN, and is thus less expensive in terms of computation and
storage during the classification stage.

Since the instance being removed is not guaranteed to be classified correctly, this
algorithm is able to remove noisy instances and internal instances while retaining
border points.

3.1.4. EDITED NEAREST NEIGHBOR RULE

Wilson [1972] developed the Edited Nearest Neighbor (ENN) algorithm in which
S starts out the same as T, and then each instance in S is removed if it does not agree
with the majority of its k nearest neighbors (with k=3, typically). This edits out noisy

98

instances as well as close border cases, leaving smoother decision boundaries. It
also retains all internal points, which keeps it from reducing the storage requirements
as much as most other reduction algorithms. The Repeated ENN (RENN) applies the
ENN algorithm repeatedly until all instances remaining have a majority of their
neighbors with the same class, which continues to widen the gap between classes and
smoothes the decision boundary.

3.1.5. ALL-KNN

Tomek [1976] extended the ENN with his All k-NN method of editing. This
algorithm works as follows. For i=1 to k, flag as bad any instance not classified
correctly by its i nearest neighbors. After completing the loop all k times, remove any
instances from S flagged as bad. In his experiments, RENN produced higher accuracy
than ENN, and the All k-NN method resulted in even higher accuracy yet. As with
ENN, this method can leave internal points intact, thus limiting the amount of
reduction that it can accomplish. These algorithms serve more as noise filters than
serious reduction algorithms.

3.1.6. VARIABLE SIMILARITY METRIC

Lowe [1995] presented a Variable Similarity Metric (VSM) learning system that
produces a confidence level of its classifications. In order to reduce storage and
remove noisy instances, an instance is removed if all k of its neighbors are of the same
class, even if they are of a different class than t (in which case t is likely to be noisy).
This removes noisy instances as well as internal instances, while retaining border
instances. The instance is only removed, however, if its neighbors are at least 60%
sure of their classification. The VSM system typically uses a fairly large k (e.g.,
k=10), and the reduction in storage is thus quite conservative, but it can provide an
increase in generalization accuracy. Also, the VSM system used distance-weighted
voting, which makes a larger value of k more appropriate.

3.2. “Instance-Based” Learning Algorithms

Aha et. al. [1991; Aha, 1992] presented a series of instance-based learning
algorithms. IB1 (Instance Based learning algorithm 1) was simply the 1-NN
algorithm, and was used as a baseline.

3.2.1. IB2

IB2 is incremental: it starts with S initially empty, and each instance in T is added
to S if it is not classified correctly by the instances already in S (with the first
instances always added). An early case study [Kibler & Aha, 1987] calls this
algorithm the Growth (Additive) Algorithm. This algorithm is quite similar to Hart’s
condensed NN rule, except that IB2 does not seed S with one instance of each class,
and does not repeat the process after the first pass through the training set. This
means that IB2 will not necessarily classify all instances in T correctly.

This algorithm retains border points in S while eliminating internal points that are
surrounded by members of the same class. Like the CNN algorithm, IB2 is extremely
sensitive to noise, because erroneous instances will usually be misclassified, and thus
noisy instances will almost always be saved, while more reliable instances are
removed.

99

3.2.2. SHRINK (SUBTRACTIVE) ALGORITHM

Kibler & Aha [1987] also presented an algorithm that starts with S=T, and then
removes any instances that would still be classified correctly by the remaining subset.
This is similar to the Reduced Nearest Neighbor (RNN) rule, except that it only
considers whether the removed instance would be classified correctly, whereas RNN
considers whether the classification of other instances would be affected by the
instance’s removal. Like RNN and many of the other algorithms, it retains border
points, but unlike RNN, this algorithm is sensitive to noise.

3.2.3. IB3

IB3 [Aha et al. 1991, Aha 1992] is another incremental algorithm that addresses
IB2’s problem of keeping noisy instances by retaining only acceptable misclassified
instances. The algorithm proceeds as follows.

For each instance t in T
Let a be the nearest acceptable instance in S to t.
(if there are no acceptable instances in S, let a be a random instance in S)
If class(a)≠class(t) then add t to S.
For each instance s in S

If s is at least as close to t as a is
Then update the classification record of s
and remove s from S if its classification record is significantly poor.

Remove all non-acceptable instance from S.

An instance is acceptable if the lower bound on its accuracy is statistically
significantly higher (at a 90% confidence level) than the upper bound on its class’
frequency. Similarly, an instance is dropped from S if the upper bound on its accuracy
is statistically significantly lower (at a 70% confidence level) than the lower bound on
its class’ frequency. Other instances are kept in S during training, and then dropped at
the end if they do not prove to be acceptable.

The formula for the statistical significance test is

p + z2

2n ± p(1 − p)
n

+ z2

4n2

1 + z2

n

(5)

where for the accuracy of an instance in S, n is the number of classification attempts
since introduction of the instance to S (i.e., the number of times it was at least as
close to t as a was), p is the accuracy of such attempts (i.e., the number of times the
class matched t’s class, divided by n), and z is the confidence (.9 for acceptance, .7 for
dropping). For a class’ frequency, p is the frequency (i.e. proportion of instances so
far that are of this class), n is the number of previously processed instances, and z is
the confidence (.9 for acceptance, .7 for dropping).

IB3 was able to achieve greater reduction in the number of instances stored and
also achieved higher accuracy than IB2, due to its reduced sensitivity to noise on the
applications on which it was tested.

100

3.2.4. IB4 AND IB5

In order to handle irrelevant attributes, IB4 [Aha, 1992] extends IB3 by building a
set of attribute weights for each class. It requires fewer instances to generalize well
when irrelevant attributes are present in a dataset. IB5 [Aha, 1992] extends IB4 to
handle the addition of new attributes to the problem after training has already begun.
These extensions of IB3 address issues that are beyond the scope of this paper, and
are thus only mentioned here.

3.2.5. MODEL CLASS SELECTION

Brodley [1993] introduced a Model Class Selection (MCS) system that uses an
instance-based learning algorithm (which claims to be “based loosely on IB3”) as
part of a larger hybrid learning algorithm. Her algorithm for reducing the size of the
training set is to keep track of how many times each instance was one of the k nearest
neighbors of another instance (as instances were being added to the concept
description), and whether its class matched that of the instance being classified. If the
number of times it was wrong is greater than the number of times it was correct then it
is thrown out. This tends to avoid noise, though it uses a simpler approach than IB3.

3.2.6. TYPICAL INSTANCE-BASED LEARNING

Zhang [1992] used a different approach called the Typical Instance Based
Learning (TIBL) algorithm, which attempted to save instances near the center of
clusters rather than on the border. This can result in much more drastic reduction in
storage and smoother decision boundaries, and is robust in the presence of noise.

The typicality of an instance is defined as the ratio of its average similarity to
instances of the same class to its average similarity to instances of other classes.
The similarity(x,y) of two instances x and y is defined as 1-distance(x,y), where

distance(x, y) = 1
m

xi − yi

maxi − mini







2

i=1

m

∑ (6)

and m is the number of input attributes, maxi and mini are the maximum and minimum
values occurring for attribute i, respectively. For nominal attributes, the distance for
that attribute is 0 if they are equal or 1 if they are different (i.e., the overlap metric).
Each instance x has a weight w x that is used during training and subsequent
classification, but which is not used in computing typicality.

The learning algorithm proceeds as follows. Pick the most typical instance x in T-S
that is incorrectly classified by the instances in S. Find the most typical instance y in
T-S which causes x to be correctly classified, and add it to S. Note that x itself is not
added at this point. Set y’s weight to be 1/typicality(y). Repeat this process until all
instances in T are classified correctly.

This strategy shows great reduction in storage, especially when the application
has “graded structures” in which some instances are more typical of a class than
others in a fairly continuous way. The TIBL algorithm also avoids saving noisy
instances. It is pseudo-incremental, i.e., it proceeds in an incremental fashion, but it
uses the entire training set to determine the typicality of each instance and the range
of each input attribute.

101

The TIBL algorithm may have difficulty on problems with complex decision
surfaces, and requires modifications to handle disjoint geometric regions that belong to
the same class.

3.2.7. RANDOM MUTATION HILL CLIMBING

Skalak [1994] used random mutation hill climbing [Papadimitriou & Steiglitz,
1982] to select instances to use in S. The method begins with m randomly selected
instances in S (where m is a parameter that is unfortunately not automatically
selected). Then for each iteration (called a mutation), one randomly selected instance
in S is removed and replaced with another randomly selected instance in T-S. If this
strictly improves classification of the instances in T, the change is retained, otherwise
it is undone. This process is repeated for n iterations, where n is another parameter
provided by the user. Skalak used n = 100.

Since it does not determine the number m of instances to retain in the subset, this
method only solves part of the problem.

3.2.8. ENCODING LENGTH

Cameron-Jones [1995] used an encoding length heuristic to determine how good
the subset S is in describing T. The basic algorithm begins with a growing phase that
takes each instance i in T and adds it to S if that results in a lower cost than not
adding it. As with IB3, the growing phase can be affected by the order of presentation
of the instances.

The cost (i.e., the value to be minimized) of the instance-based model is

COST(m,n, x) = F(m,n) + m log2(C) + F(x,n − m) + x log2(C −1) (7)

where n is the number of instances in T, m is the number of instances in S, and x is the
number of exceptions (i.e., the number of instances seen so far that are misclassified
by the instances in S). F(m,n) is the cost of encoding which m instances of the n
available are retained, and is defined as

F(m,n) = log* Cj
n

j=0

m

∑








 = log*

n!
j!(n − j!)j=0

m

∑








 (8)

where log*(x) is the sum of the positive terms of log2(x), log2(log2(x)), etc.
After all instances are seen, pruning is done, where each instance i in S is removed

if doing so lowers the cost of the classifier. Cameron-Jones calls this method the
“Pre/All” method, since it is not truly incremental, but to better distinguish it from
other techniques in this paper, we call it the Encoding Length Grow (ELGrow) method.

The Explore method [Cameron-Jones, 1995] begins by growing and pruning S
using the ELGrow method, and then performs 1000 mutations to try to improve the
classifier. Each mutation tries adding an instance to S, removing one from S, or
swapping one in S with one in T-S, and keeps the change if it does not increase the
cost of the classifier. The generalization accuracy of the Explore method is quite good
empirically, and its storage reduction is much better than most other algorithms.

102

3.3. Prototypes and Other Modifications of the Instances

Some algorithms seek to reduce storage requirements and speed up classification
by modifying the instances themselves, instead of just deciding which ones to keep.

3.3.1. PROTOTYPES

Chang [1974] introduced an algorithm in which each instance in T is initially
treated as a prototype. The nearest two instances that have the same class are
merged into a single prototype (using a weighted averaging scheme) that is located
somewhere between the two prototypes. This process is repeated until classification
accuracy starts to suffer.

This method achieved good results, though it requires modification to handle
applications that have one or more nominal input attributes.

3.3.2. RISE

Domingos [1995] introduced the RISE 2.0 system which treats each instance in T
as a rule in R. For each rule r in R, the nearest example n in T of the same class as r
is found that is not yet covered by r. The rule r is then minimally generalized to cover
n, unless that harms accuracy. This process is repeated until no rules are generalized
during an entire pass through all the rules in R.

During generalization, the nearest rule to an input vector is used to provide the
output class. If two rules are equally close, the one with higher generalization
accuracy on the training set is used.

3.3.3. EACH

Salzberg [1991] introduced the nested generalized exemplar (NGE) theory, in
which hyperrectangles are used to take the place of one or more instances, thus
reducing storage requirements. The program used to implement NGE is called the
Exemplar-Aided Constructor of Hyperrectangles (EACH). EACH seeds the system
with several randomly selected instances from the training set, after which it operates
incrementally. As each instance is presented, EACH finds the distance to the nearest
exemplar (i.e., a point or hyperrectangle), which is 0 if the instance is inside the
hyperrectangle. A point inside multiple hyperrectangles is considered to be closest to
the smallest one.

When the new instance has the same class as its nearest exemplar, the exemplar
is generalized (i.e., the hyperrectangle is grown) so that it also covers the new
instance. When the classes are different, EACH attempts to change the shape of the
second-closest exemplar so that it becomes the closest one. If it cannot do so, then
the new instance becomes a new exemplar. Weights are maintained for each
exemplar that reduce the effect of noisy exemplars and irrelevant attributes.

Wettschereck & Dietterich [1995] introduced a hybrid nearest-neighbor and
nearest-hyperrectangle algorithm that uses hyperrectangles to classify input vectors if
they fall inside the hyperrectangle, and kNN to classify inputs that were not covered
by any hyperrectangle. This algorithm must store the entire training set T , but
accelerates classification by using relatively few hyperrectangles whenever possible.

103

4. New Reduction Algorithms: DROP1-5 and DEL

Given the issues in Section 2 to consider, our research has been directed towards
finding instance reduction techniques that provide noise tolerance, high generalization
accuracy, insensitivity to the order of presentation of instances, and significant storage
reduction, which in turn improves generalization speed.

This section presents a collection of new heuristics used to decide which instances
to keep and which instances to remove from a training set. Unlike most previous
methods, these algorithms take careful note of the order in which instances are
removed. The first three methods, DROP1-3, were previously introduced by the
authors under the name RT1-3, respectively [Wilson & Martinez, 1997c].

4.1. DROP1

The first new reduction technique we present is the Decremental Reduction
Optimization Procedure 1, or DROP1. This procedure uses the following basic rule to
decide if it is safe to remove an instance from the instance set S (where S = T
originally).

 Remove P if at least as many of its associates in S
would be classified correctly without P.

To see if an instance P can be removed using this rule, each associate (i.e., each
instance that has P as one of its neighbors) is checked to see what effect the removal
of P would have on it.

Removing P causes each associate P.Ai to use its k+1st nearest neighbor
(P.Ai.Nk+1) in place of P . If P has the same class as P.Ai, and P.Ai.Nk+1 has a
different class than P.Ai, this weakens its classification, and could cause P.Ai to be
misclassified by its neighbors. On the other hand, if P is a different class than P.Ai
and P.Ai.Nk+1 is the same class as P.Ai, the removal of P could cause a previously
misclassified instance to be classified correctly.

In essence, this rule tests to see if removing P would degrade leave-one-out
cross-validation generalization accuracy, which is an estimate of the true
generalization ability of the resulting classifier. An instance is removed when it
results in the same level of generalization with lower storage requirements. By
maintaining lists of k+1 neighbors and an average of k+1 associates (and their
distances), the leave-one-out cross-validation can be computed in O(k) time for each
instance instead of the usual O(mn) time, where n is the number of instances in the
training set, and m is the number of input attributes. An O(mn) step is only required
once an instance is selected for removal.

The algorithm for DROP1 proceeds as shown in Figure 2. This algorithm begins
by building a list of nearest neighbors for each instance, as well as a list of associates.
Then each instance in S is removed if its removal does not hurt the classification of the
instances remaining in S. When an instance P is removed, all of its associates must
remove P from their list of nearest neighbors, and then must find a new nearest
neighbor so that they still have k+1 neighbors in their list. When they find a new
neighbor N , they also add themselves to N’s list of associates so that at all times
every instance has a current list of neighbors and associates.

104

Figure 2: Pseudo-code for DROP1.

 1 DROP1(Training set T): Instance set S.
 2 Let S = T.
 3 For each instance P in S:
 4 Find P.N1..k+1, the k+1 nearest neighbors of P in S.
 5 Add P to each of its neighbors’ lists of associates.
 6 For each instance P in S:
 7 Let with = # of associates of P classified correctly with P as a neighbor.
 8 Let without = # of associates of P classified correctly without P.
 9 If (without - with) ≥ 0
10 Remove P from S.
11 For each associate A of P
12 Remove P from A’s list of nearest neighbors
13 Find a new nearest neighbor for A.
14 Add A to its new neighbor’s list of associates.
15 For each neighbor N of P
16 Remove P from its N’s lists of associates.
17 Endif
18 Return S.

This algorithm removes noisy instances, because a noisy instance P usually has
associates that are mostly of a different class, and such associates will be at least as
likely to be classified correctly without P. DROP1 also removes instances in the
center of clusters, because associates there are not near their enemies, and thus
continue to be classified correctly without P.

Near the border, the removal of some instances can cause others to be classified
incorrectly because the majority of their neighbors can become enemies. Thus this
algorithm tends to keep non-noisy border points. At the limit, there is typically a
collection of border instances such that the majority of the k nearest neighbors of each
of these instances is the correct class.

4.2. DROP2: Using More Information and Ordering the Removal.

There is a potential problem that can arise in DROP1 with regards to noisy
instances. A noisy instance will typically have associates of a different class, and will
thus be contained to a somewhat small portion of the input space. However, if its
associates are removed by the above rule, the noisy instance may cover more and
more of the input space. Eventually it is hoped that the noisy instance itself will be
removed. However, if many of its neighbors are removed first, its associates may
eventually include instances of the same class from the other side of the original
decision boundary, and it is possible that removing the noisy instance at that point
could cause some of its distant associates to be classified incorrectly.

DROP2 solves this problem by considering the effect of the removal of an instance
on all the instances in the original training set T instead of considering only those
instances remaining in S. In other words, an instance P is removed from S only if at
least as many of its associates—including those that may have already been pruned—
are classified correctly without it.

Thus, the removal criterion can be restated as

 Remove P if at least as many of its associates in T
would be classified correctly without P.

105

Using this modification, each instance P in the original training set T continues to
maintain a list of its k + 1 nearest neighbors in S, even after P is removed from S. This
in turn means that instances in S have associates that are both in and out of S, while
instances that have been removed from S have no associates (because they are no
longer a neighbor of any instance). This modification makes use of additional
information that is available for estimating generalization accuracy, and also avoids
some problems that can occur with DROP1 such as removing entire clusters. This
change is made by removing lines 15 and 16 from the pseudo-code for DROP1 in
Figure 2 so that pruned instances will still be associates of their nearest neighbors in
S.

DROP2 also changes the order of removal of instances. It initially sorts the
instances in S by the distance to their nearest enemy. Instances are then checked for
removal beginning at the instance furthest from its nearest enemy. This tends to
remove instances furthest from the decision boundary first, which in turn increases the
chance of retaining border points.

4.3. DROP3: Filtering Noise.

DROP2 sorts S in an attempt to remove center points before border points. One
problem with this method is that noisy instances are also “border” points, and cause
the order of removal to be drastically changed. One noisy point in the center of a
cluster causes many points in that cluster to be considered border points, and some of
these can remain in S even after the noisy point is removed.

Two passes through S can remove the dangling center points, but unfortunately, by
that time some border points may have already been removed that should have been
kept.

DROP3 therefore uses a noise-filtering pass before sorting the instances in S.
This is done using a rule similar to ENN [Wilson, 1972]: Any instance misclassified
by its k nearest neighbors is removed. This removes noisy instances, as well as close
border points, which can in turn smooth the decision boundary slightly. This helps to
avoid “overfitting” the data, i.e., using a decision surface that goes beyond modeling
the underlying function and starts to model the data sampling distribution as well.

After removing noisy instances from S in this manner, the instances are sorted by
distance to their nearest enemy remaining in S, and thus points far from the real
decision boundary are removed first. This allows points internal to clusters to be
removed early in the process, even if there were noisy points nearby.

4.4. DROP4: More Carefully Filtering Noise

DROP4 is identical to DROP3 except that instead of blindly applying ENN, the
noise-filtering pass removes each instance only if it is (1) misclassified by its k
nearest neighbors, and (2) it does not hurt the classification of other instances. While
DROP3 usually works well, it can in rare cases remove far too many instances in the
noise-reduction pass (even all of them in one experiment). DROP4 avoids such
problems and thus protects against especially poor generalization accuracy in such
rare cases, at the expense of slightly higher storage requirements on average.

4.5. DROP5: Smoothing the Decision Boundary

DROP5 modifies DROP2 such that instances are considered for removal beginning
with instances that are nearest to their nearest enemy, and proceeding outward. This

106

serves as a noise-reduction pass, but will also cause most internal points to be
removed as well. After this pass, the furthest-to-nearest pass as done by DROP2 is
done repeatedly until no further improvement can be made.

A modified version of DROP5 was used in the Reduced Probabilistic Neural
Network (RPNN) [Wilson & Martinez, 1997b], which is a Radial Basis Function
(RBF) network used for classification. The RPNN used a pruning technique that
included a conservative nearest-to-furthest noise-filtering pass followed by a more
aggressive furthest-to-nearest node pruning pass.

4.6. Decremental Encoding Length

The Decremental Encoding Length (DEL) model is the same as DROP3, except
that it uses the encoding length heuristic (as is used in ELGrow and Explore in
Section 3.2) to decide in each case whether an instance can be removed. DEL starts
with S = T, and begins with a noise-filtering pass in which each instance is removed if
(a) it is misclassified by its k nearest neighbors, and (b) removing the instance does
not increase the encoding length cost. The remaining instances are then sorted by the
distance to their nearest enemy, and as long as any improvement is being made, the
remaining instances are removed (starting with the instance furthest from its nearest
enemy) if doing so does not increase the encoding length cost.

5. Experimental Results

Many of the reduction techniques surveyed in Section 3 and all of the techniques
proposed in Section 4 were implemented and tested on 31 datasets from the Machine
Learning Database Repository at the University of California, Irvine [Merz & Murphy,
1996]. Those included in these experiments are CNN, SNN, ENN, RENN, All k-NN,
IB2, IB3, ELGrow, Explore, DEL, and DROP1-5.

These experiments were limited to those models that choose a subset S from the
training set T to use for subsequent classification. Therefore, the methods that modify
the instances themselves were not included, i.e., rule-based, prototype, and
hyperrectangle-building methods. Similarly, VSM and MCS were excluded since they
are part of more complicated systems. RMHC was excluded because it does not
specify how many instances to retain, and its method is subsumed by Explore.
Similarly, RNN and Shrink (Subtractive) are improved upon by DROP2 and DROP1,
respectively, and are thus not included for the sake of parsimony.

The basic k nearest neighbor (kNN) algorithm that retains 100% of the training set
is also included for comparison.

All of the algorithms use k = 3, and in our experiments they all use the HVDM
distance function. (Experiments were also done using a more traditional Euclidean
distance metric with overlap metric for nominal attributes, but the average accuracy for
all of the algorithms was higher using HVDM.)

5.1. Results

Ten-fold cross-validation was used for each experiment. For each dataset, each
pruning technique was given a training set T consisting of 90% of the available data,
from which it returned a subset S. The remaining 10% of the data was classified using
only the instances in S, and the average accuracy over 10 such trials is reported for

107

Database kNN % Avg%

Anneal 93.11 100

Australian 84.78 100

Breast Cancer(WI) 96.28 100

Bridges 66.09 100

Crx 83.62 100

Echocardiogram 94.82 100

Flag 61.34 100

Glass 73.83 100

Heart 81.48 100

Heart(Cleveland) 81.19 100

Heart(Hungarian) 79.55 100

Heart(Long Beach VA) 70.00 100

Heart(More) 73.78 100

Heart(Swiss) 92.69 100

Hepatitis 80.62 100

Horse Colic 57.84 100

Image Segmentation 93.10 100

Ionosphere 84.62 100

Iris 94.00 100

LED Creator+17 67.10 100

LED Creator 73.40 100

Liver (Bupa) 65.57 100

Pima Diabetes 73.56 100

Promoters 93.45 100

Sonar 87.55 100

Soybean (Large) 88.59 100

Vehicle 71.76 100

Voting 95.64 100

Vowel 96.57 100

Wine 94.93 100

Zoo 94.44 100

Average 82.11 100

92.32

82.35

94.56
59.20

82.91

89.01
56.85

65.30

78.41
79.00

78.04

70.26
73.02

92.95

78.69
60.89

89.71

83.99
92.27

66.21

70.79
60.33

71.00
88.64

77.90

84.81
66.80

94.44

85.57
93.50

91.05
32.54

Average
28.12

27.92

25.55

37.74

27.85

30.31

39.50

38.95

30.68

31.93

30.13

31.01

30.99

26.05

28.88

27.38

30.43

28.73

31.29

34.89

35.10

37.62

33.04

31.48

37.66

38.31

37.67

26.57

47.48

30.91

34.69

79.06

96.99 9.57 86.08 10.57 96.74 9.48 91.35 9.79

77.68 24.22 81.31 28.38 78.26 24.15 85.22 4.78

95.71 7.09 93.85 8.35 95.71 7.09 96.57 3.47

61.18 49.48 61.37 52.52 62.18 48.64 64.73 28.83

79.42 24.15 81.59 27.52 79.42 24.15 86.09 4.28

85.18 14.72 48.75 26.29 85.18 14.72 72.86 11.57

53.63 50.29 53.63 51.66 53.11 49.95 49.47 34.14

68.14 38.53 64.39 42.63 66.77 39.25 62.14 33.80

70.00 26.17 77.04 33.78 70.00 26.17 80.00 13.58

73.95 30.84 76.25 33.88 73.96 30.29 81.16 11.11

70.40 28.87 75.84 34.01 73.87 27.44 79.20 9.90

61.00 35.67 67.00 43.56 57.00 35.39 70.00 4.89

69.69 33.21 72.22 43.64 69.69 33.21 76.31 9.36

91.09 11.38 92.69 15.90 90.26 11.38 93.46 3.70

75.50 25.30 81.92 30.96 74.17 25.66 73.08 5.09

59.90 35.66 64.47 48.65 60.24 35.36 66.75 8.49

90.00 16.61 77.38 13.02 89.52 16.93 92.14 16.01

82.93 21.62 81.74 19.21 82.93 21.62 85.75 14.59

90.00 12.74 83.34 14.07 90.00 12.74 94.67 19.78

55.50 43.14 59.10 51.38 55.50 43.16 60.70 32.31

64.90 35.79 71.80 92.78 64.60 35.71 70.40 22.04

56.80 40.87 57.70 52.59 56.80 40.87 58.24 10.66

65.76 36.89 67.97 42.95 65.76 36.89 69.78 10.97

86.73 13.83 87.09 15.51 84.91 14.36 91.64 18.12

74.12 32.85 79.81 28.26 80.88 33.87 69.38 12.02

83.10 24.97 80.44 20.27 84.06 24.61 86.63 30.33

67.50 37.04 67.27 43.21 67.50 37.04 67.62 28.36

93.59 9.12 95.40 10.21 93.59 9.12 95.64 5.44

86.72 30.05 78.56 19.97 87.48 29.71 89.57 36.60

92.65 14.30 96.05 14.23 92.65 14.30 91.50 16.60

91.11 12.47 76.67 10.62 91.11 12.47 92.22 29.38

CNN % SNN % IB2 % IB3 %

76.48 26.69 75.44 31.63 76.58 26.64 78.85 16.13

93.85 9.30

84.78 2.56

96.28 1.89

64.27 35.64

83.62 3.08

93.39 6.91

56.18 45.88

69.59 38.42

78.89 4.73

79.49 13.64

77.18 12.28

70.00 19.28

75.15 16.81

92.69 4.25

80.00 7.59

67.73 21.82

91.90 11.11

86.32 12.88

93.33 9.56

66.60 20.90

72.30 13.92

61.38 38.36

71.61 12.64

83.09 7.34

83.29 29.86

87.27 24.76

68.10 32.51

94.27 2.02

93.17 36.15

94.38 9.05

90.00 18.27

LED %

80.65 16.88

Table 1(a) Results for CNN, SNN, IB2, IB3 and LED.

each reduction technique on each dataset in Table 1. Due to the size of Table 1, it is
broken into three parts, but the overall average and the results for the kNN algorithm
are included with each for comparison. The average percentages of instances in T that
were included in S is also reported for each experiment under the column “%”.

Several observations can be made from the results in this table. CNN and IB2
both achieve almost identical results (less than 1% difference in both size and
accuracy in most cases), due to the similarity of their algorithms. SNN had lower
accuracy and higher storage requirements on average when compared to CNN and
IB2, and the SNN algorithm is much more complex and significantly slower than the
others as well. IB3 was able to achieve higher accuracy and lower storage than any of
these algorithms, with the only disadvantage being a learning algorithm that is
somewhat more complex (though not much slower) than CNN or IB2.

As expected, ENN, RENN and All k-NN all retained over 75% of the instances,
due to their retention of internal (non-border) instances. They all had fairly good
accuracy, largely because they still had access to most of the original instances. In
agreement with Tomek [1976], the All k-NN method achieved better reduction and
higher accuracy than RENN, which in turn had higher reduction (though slightly lower
accuracy) than ENN.

The encoding-length heuristic techniques had by far the best storage reduction of
any of the algorithms. The ELGrow algorithm achieved the lowest average reduction
(1.67%) but also suffered a significant drop in generalization accuracy when compared
to the non-pruned system. However, the Explore method achieved better average
accuracy with only a slight increase in storage over ELGrow, indicating that the

108

Database kNN % DROP1 % DROP2 % DROP3 % DROP4 % DROP5 % Avg%

Anneal 93.11 100 87.70 5.05 95.61 8.08 94.11 8.65 94.36 11.67 95.24 9.93

Australian 84.78 100 64.49 2.30 83.62 7.28 83.91 5.96 84.78 7.99 83.91 9.18

Breast Cancer(WI) 96.28 100 77.52 1.14 95.86 3.13 96.14 3.58 96.28 4.05 95.71 4.07

Bridges 66.09 100 39.64 10.17 61.18 17.30 56.36 17.60 57.36 21.28 62.82 22.22

Crx 83.62 100 65.94 3.75 84.64 7.31 85.80 5.46 85.51 7.33 83.77 7.68

Echocardiogram 94.82 100 93.39 9.61 94.82 10.51 93.39 10.66 94.82 10.96 93.39 9.16

Flag 61.34 100 43.18 9.05 62.79 20.62 61.29 20.45 59.58 27.09 58.13 25.26

Glass 73.83 100 62.97 15.47 65.04 23.10 65.02 23.88 65.91 29.54 65.45 24.81

Heart 81.48 100 72.59 5.47 81.85 12.22 83.33 13.62 81.85 16.71 81.11 16.67

Heart(Cleveland) 81.19 100 70.91 6.09 79.55 11.92 80.84 12.76 78.19 15.26 79.84 15.37

Heart(Hungarian) 79.55 100 72.17 5.74 78.52 8.80 80.29 9.86 79.22 11.53 79.60 11.15

Heart(Long Beach VA) 70.00 100 69.00 4.39 70.00 11.83 73.50 4.50 74.00 11.72 73.00 14.94

Heart(More) 73.78 100 63.46 3.51 73.98 10.71 76.38 9.14 74.36 13.19 74.63 14.62

Heart(Swiss) 92.69 100 93.46 1.81 93.46 2.53 93.46 1.81 93.46 2.35 92.63 5.42

Hepatitis 80.62 100 72.38 4.66 80.75 10.54 81.87 7.81 78.75 9.75 83.29 9.39

Horse Colic 57.84 100 59.15 1.55 70.74 8.20 70.13 10.30 67.73 20.41 68.45 14.14

Image Segmentation 93.10 100 81.19 6.61 92.86 10.45 92.62 10.98 94.05 12.41 89.29 11.35

Ionosphere 84.62 100 79.77 3.23 86.60 7.79 87.75 7.06 86.90 10.60 86.90 9.78

Iris 94.00 100 84.67 8.59 94.67 14.22 95.33 14.81 95.33 14.89 94.00 12.15

LED Creator+17 67.10 100 61.40 9.94 69.20 12.98 70.40 12.66 69.50 16.37 69.80 14.96

LED Creator 73.40 100 68.30 10.05 71.80 11.85 71.70 11.93 71.90 13.71 72.00 12.33

Liver (Bupa) 65.57 100 58.24 10.92 67.77 24.77 60.84 24.99 62.60 32.56 65.50 31.08

Pima Diabetes 73.56 100 65.23 6.50 70.44 17.59 75.01 16.90 72.53 21.76 73.05 21.95

Promoters 93.45 100 87.00 6.39 84.91 13.63 86.82 16.67 86.82 16.67 87.00 12.58

Sonar 87.55 100 64.93 11.38 80.88 26.60 78.00 26.87 82.81 31.20 79.88 29.81

Soybean (Large) 88.59 100 77.20 19.51 86.60 22.77 84.97 25.26 86.29 28.41 83.73 25.44

Vehicle 71.76 100 59.91 12.07 67.37 21.49 65.85 23.00 67.03 27.88 70.22 26.71

Voting 95.64 100 93.11 2.91 94.50 4.90 95.87 5.11 95.87 5.36 95.86 7.13

Vowel 96.57 100 83.31 39.16 91.08 44.66 89.56 45.22 90.70 46.02 93.36 42.66

Wine 94.93 100 90.98 5.74 93.24 11.42 94.93 16.11 94.93 16.17 96.08 9.74

Zoo 94.44 100 88.89 18.02 88.89 15.80 90.00 20.00 91.11 21.60 95.56 17.16

Average 82.11 100 72.65 8.41 81.07 14.03 81.14 14.31 81.11 17.30 81.39 16.09

92.32

82.35
94.56

59.20

82.91
89.01

56.85

65.30
78.41

79.00

78.04
70.26

73.02

92.95
78.69

60.89

89.71
83.99

92.27

66.21
70.79

60.33

71.00
88.64

77.90

84.81
66.80

94.44

85.57
93.50

91.05
32.54

Average

28.12

27.92

25.55

37.74

27.85

30.31

39.50

38.95

30.68

31.93

30.13

31.01

30.99

26.05

28.88

27.38

30.43

28.73

31.29

34.89

35.10

37.62

33.04

31.48

37.66

38.31

37.67

26.57

47.48

30.91

34.69

79.06

 Table 1(b). Results for DROP1-DROP5.

random mutation hill climbing step was successful in finding a better subset S after the
growing and pruning phases were complete. The DEL approach was able to achieve
higher average accuracy than the Explore method, but its storage reduction was not as
dramatic.

The ordered reduction techniques DROP2-DROP5 all had generalization accuracy
that was within 1% of the full kNN classifier. Their accuracy was higher than any of
the other reduction methods. DROP2 and DROP3 both had storage requirements of
about 14%, which is lower than any of the other methods except ELGrow and Explore.
DROP1 retained about half as many instances as the other ordered reduction
techniques, but had the worst generalization accuracy of any of them, because it fails
to use information provided by pruned instances in determining whether further
instances should be pruned.

5.2. Effect of Noise

Since several of these algorithms are designed to be robust in the presence of
noise, the same experiments were repeated with 10% noise artificially added to each
dataset. This was done by randomly changing the output class of 10% of the instances
in the training set to an incorrect value. The output class of the instances in the test
set are not noisy, so the results indicate how well each model is able to predict the
correct output even if some of its training data is faulty.

Table 2 shows the average accuracy and storage requirements over all 30 datasets
for each algorithm, including the unpruned kNN algorithm.

109

Database kNN % Avg%

Anneal 93.11 100

Australian 84.78 100

Breast Cancer(WI) 96.28 100

Bridges 66.09 100

Crx 83.62 100

Echocardiogram 94.82 100

Flag 61.34 100

Glass 73.83 100

Heart 81.48 100

Heart(Cleveland) 81.19 100

Heart(Hungarian) 79.55 100

Heart(Long Beach VA) 70.00 100

Heart(More) 73.78 100

Heart(Swiss) 92.69 100

Hepatitis 80.62 100

Horse Colic 57.84 100

Image Segmentation 93.10 100

Ionosphere 84.62 100

Iris 94.00 100

LED Creator+17 67.10 100

LED Creator 73.40 100

Liver (Bupa) 65.57 100

Pima Diabetes 73.56 100

Promoters 93.45 100

Sonar 87.55 100

Soybean (Large) 88.59 100

Vehicle 71.76 100

Voting 95.64 100

Vowel 96.57 100

Wine 94.93 100

Zoo 94.44 100

Average 82.11 100

92.32
82.35
94.56
59.20
82.91
89.01
56.85
65.30
78.41
79.00
78.04
70.26
73.02
92.95
78.69
60.89
89.71
83.99
92.27
66.21
70.79
60.33
71.00
88.64
77.90
84.81
66.80
94.44
85.57
93.50
91.05

32.54

Average
28.12

27.92

25.55

37.74

27.85

30.31

39.50

38.95

30.68

31.93

30.13

31.01

30.99

26.05

28.88

27.38

30.43

28.73

31.29

34.89

35.10

37.62

33.04

31.48

37.66

38.31

37.67

26.57

47.48

30.91

34.69

79.06

89.73 91.99 89.48 90.70 89.98 92.43

84.49 86.49 84.20 84.80 86.09 78.07

97.00 96.80 96.86 96.61 97.00 94.58

59.46 68.23 58.36 65.93 59.36 58.48

85.36 86.17 85.80 85.64 85.07 78.82

93.39 92.94 93.39 92.94 93.39 92.18

63.32 67.07 62.76 62.83 61.24 55.67

65.91 70.82 64.00 69.06 67.75 65.89

81.11 83.13 81.11 81.98 81.85 72.02

82.49 83.46 82.16 82.51 81.51 72.72

80.28 82.12 79.25 79.93 80.62 70.79

74.00 75.44 74.00 72.72 74.00 62.28

76.31 76.58 76.51 74.41 75.60 66.97

93.46 93.49 93.46 93.49 93.46 88.71

81.25 83.73 80.58 82.80 81.33 75.20

45.89 58.21 32.91 27.87 45.89 52.16

91.90 92.72 91.43 91.77 92.14 91.46

84.04 84.24 84.04 82.27 84.05 82.18

95.33 94.74 95.33 94.67 95.33 93.78

71.00 71.42 70.90 70.00 70.90 58.98

72.10 73.88 72.00 72.86 71.80 72.07

61.12 68.15 58.77 63.13 60.24 52.34

75.39 76.37 75.91 74.52 74.88 64.61

93.45 96.33 93.45 96.33 93.45 95.07

81.79 84.35 78.38 81.79 80.36 80.29

86.61 89.90 85.97 87.41 86.62 88.24

69.52 73.81 69.05 69.75 70.21 64.74

95.41 95.84 95.41 95.81 95.41 94.35

92.40 96.57 91.27 95.94 93.54 96.70

94.93 95.57 94.93 95.57 94.93 94.76

91.11 92.96 91.11 92.59 93.33 94.07

ENN % RENN % AllKNN %

80.95 83.34 80.09 80.92 81.01 77.44

88.35 0.70 91.11 0.75

83.62 0.32 85.80 0.32

89.86 0.32 96.71 0.32

56.27 5.35 57.18 5.67

85.22 0.32 85.51 0.32

93.39 3.01 94.82 3.01

55.50 2.00 56.16 2.06

50.54 2.28 63.98 3.53

74.44 0.82 81.85 0.82

81.52 0.73 82.15 0.73

80.61 0.75 82.30 0.75

72.50 0.84 74.50 1.11

67.48 0.14 73.13 0.14

93.46 0.90 93.46 0.90

76.67 1.00 78.67 1.29

67.09 0.37 67.09 0.37

85.95 2.22 89.76 2.43

73.77 0.63 80.89 0.63

88.67 2.30 92.67 2.30

71.20 1.66 72.20 1.40

70.40 1.53 72.10 1.52

56.74 0.55 57.65 0.64

67.84 0.29 75.27 0.29

88.82 2.10 91.36 2.10

70.24 1.07 70.29 1.07

82.70 7.35 85.92 7.78

58.15 2.25 60.76 2.47

88.99 0.51 94.25 0.51

50.20 4.69 57.77 6.65

81.47 1.93 95.46 2.12

94.44 7.90 95.56 8.40

ELGrow % Explore %

75.68 1.83 79.24 2.01

 Table 1(c). Results for ENN, RENN, All k-NN, ELGrow, and Explore.

Algorithm Clean Size% Noisy Size%

kNN 82.11 100.00 78.93 100.00

CNN 76.48 26.69 68.14 38.29

SNN 75.44 31.63 74.60 48.60

IB2 76.58 26.64 67.80 38.27

IB3 78.85 16.13 72.09 18.85

DEL 80.65 16.88 78.16 8.57

DROP1 72.65 8.41 71.24 8.00

DROP2 81.07 14.03 79.99 14.75

DROP3 81.14 14.31 80.00 11.49

DROP4 81.11 17.30 79.57 14.74

DROP5 81.39 16.09 79.95 15.52

ENN 80.95 83.34 80.19 74.91

RENN 80.09 80.92 79.65 72.53

AllKNN 81.01 77.44 79.98 64.58

ELGrow 75.68 1.83 73.67 1.88

Explore 79.24 2.01 77.96 2.03

Average 79.06 32.54 76.36 32.83

Table 2. Average accuracy and storage requirements in the presence of 10% noise.

110

As can be seen from Table 2, the accuracy for the kNN algorithm dropped just over
3% on average. Note that some of the effect of noise is already handled by the use of
k = 3 in these experiments. Otherwise the drop in accuracy would be more on the
order of 8% (i.e., 10% of the 82% already classified correctly).

As expected, CNN and IB2 increased storage and suffered large reductions in
accuracy in the presence of noise. SNN dropped only slightly in accuracy when noise
was added, but it retained almost half of the instances in the training set due to its
strict (and noise intolerant) requirements as to which instances must be in S.

In agreement with Aha’s results [1992], IB3 had higher accuracy and lower
storage requirements in the presence of noise than IB2, though it still suffered a
dramatic decrease in accuracy (and a slight increase in storage) when compared to its
performance in the noise-free case. In our experiments we found that when the
number of instances in the training set was small, IB3 would occasionally end up with
an empty subset S, because none of the instances gets enough statistical strength to
be acceptable. This problem worsens in the presence of noise, and thus more training
data (or a modification of the algorithm) is required to handle small, noisy datasets.

DROP1 did not fall much in accuracy, but its accuracy was already poor to begin
with. However, all of the other DROP methods (DROP2-5) all achieved accuracy
higher than the kNN method, while using less than one-sixth of the original instances.
DROP3 had the highest accuracy of the DROP methods, and had the lowest storage of
the accurate ones (DROP2-5), using less than 12% of the original instances.

The ENN, RENN, and All k-NN methods also achieved higher accuracy than kNN,
since they were designed specifically for noise filtering. They also required about 10%
less storage than in the noise-free case, probably because they were throwing most of
the noisy instances (as well as a few good instances that were made to appear noisy
due to the added noise).

The encoding-length heuristic methods all dropped about 2% in accuracy when
noise was added leaving them closer to—but still below—the kNN method in terms of
accuracy. ELGrow had fairly poor accuracy compared to the others, but Explore was
within 1% of the kNN method in terms of accuracy while using only about 2% of the
instances for storage.

6. Conclusions and Future Research Directions

Many techniques have been proposed to reduce the number of instances used for
classification in distance-based learning algorithms. In experiments on 31 datasets,
the results make possible the division of the tested algorithms into several groups.
The first group consists of algorithms which had low generalization accuracy and are
thus mostly of historical significance. This group includes CNN, SNN, IB2 (which led
to the development of IB3) and DROP1 (which led to the more successful DROP
algorithms). These had low generalization even before noise was introduced, and
dropped further when it was. Of this group, only DROP1 kept less than 25% of the
instances on average, so the storage reduction did not make up for the lack of
accuracy.

The second group consists of the three similar noise-filtering algorithms: ENN,
RENN, and All k-NN. These had high accuracy but also kept most of the instances.
In the noise-free environment, they achieved slightly lower accuracy than kNN, but
when noise was added, their accuracy was higher than kNN, indicating that they are

111

successful in the situation for which they were designed. These algorithms are useful
when there noise is expected in the data and when it is reasonable to retain most of
the data. Of this group, All k-NN had the highest accuracy and lowest storage
requirements in the presence of noise.

The third group consists of two algorithms, ELGrow and Explore, that were able to
achieve reasonably good accuracy with only about 2% of the data. ELGrow had the
lowest storage (about 1.8%) but its accuracy was somewhat poor, especially in the
noisy domain. The Explore method had fairly good accuracy, especially in the noisy
arena, though it was not quite as accurate as the DROP methods. However, its
aggressive storage reduction would make this trade-off acceptable in many cases.

The final group consists of algorithms which had high accuracy and reasonably
good storage reduction. These include IB3, DROP2-5 and DEL. IB3 was designed to
overcome the noise-sensitivity of IB2, and in our experiments it had better accuracy
and storage reduction than IB2, especially in the noisy case. The algorithms DROP2-
DROP5 had even higher accuracy than IB3 and on average improved in terms of
storage reduction as well. They all had an accuracy within about 1% of kNN on the
original data, and were about 1% higher when noise was added, with storage ranging
from 11% to 18%. DEL had slightly lower accuracy, but also had lower storage in the
noisy domain.

This paper has reviewed much of the work done in the area of reducing storage
requirements in exemplar-based learning systems. The effect of noise on many of the
algorithms has also been observed on a collection of datasets. Other factors that
influence the successfulness of each algorithm must still be identified. Current
research is seeking to determine under what conditions each of these algorithms is
successful so that an appropriate algorithm can be chosen when needed. Current
research is also focused on combining the reduction techniques proposed here with
various weighting techniques in order to develop learning systems that can more
dynamically adapt to problems of interest.

Appendix

The on-line appendix contains the cost function for the encoding-length methods,
as well as the complete source code used for these experiments. It also contains a
copy of the datasets used in the experiments presented in this paper. It is available at

ftp://axon.cs.byu.edu/pub/randy/ml/appendix/

References

Aha, David W., Dennis Kibler, Marc K. Albert, (1991). “Instance-Based Learning Algorithms,”
Machine Learning, vol. 6, pp. 37-66.

Aha, David W., (1992). “Tolerating noisy, irrelevant and novel attributes in instance-based learning
algorithms,” International Journal of Man-Machine Studies, vol. 36, pp. 267-287.

Batchelor, Bruce G., (1978). Pattern Recognition: Ideas in Practice. New York: Plenum Press, pp.
71-72.

112

Biberman, Yoram, (1994). A Context Similarity Measure. In Proceedings of the European
Conference on Machine Learning (ECML-94). Catalina, Italy: Springer Verlag, pp. 49-63.

Brodley, Carla E., (1993). “Addressing the Selective Superiority Problem: Automatic
Algorithm/Model Class Selection,” Proceedings of the Tenth International Machine Learning
Conference, Amherst, MA, pp. 17-24.

Broomhead, D. S., and D. Lowe (1988). Multi-variable functional interpolation and adaptive
networks. Complex Systems, vol. 2, pp. 321-355.

Cameron-Jones, R. M., (1995). Instance Selection by Encoding Length Heuristic with Random
Mutation Hill Climbing. In Proceedings of the Eighth Australian Joint Conference on Artificial
Intelligence, pp. 99-106.

Carpenter, Gail A., and Stephen Grossberg, (1987). A Massively Parallel Architecture for a Self-
Organizing Neural Pattern Recognition Machine. Computer Vision, Graphics, and Image
Processing, vol. 37, pp. 54-115.

Chang, Chin-Liang, (1974). “Finding Prototypes for Nearest Neighbor Classifiers,” I E E E
Transactions on Computers, vol. 23, no. 11, November 1974, pp. 1179-1184.

Cover, T. M., and P. E. Hart, (1967). “Nearest Neighbor Pattern Classification,” Institute of
Electrical and Electronics Engineers Transactions on Information Theory, vol. 13, no. 1, January
1967, pp. 21-27.

Dietterich, Thomas G., (1989). Limitations on Inductive Learning. In Proceedings of the
Sixth International Conference on Machine Learning. San Mateo, CA: Morgan
Kaufmann, pp. 124-128.

Diday, Edwin, (1974). Recent Progress in Distance and Similarity Measures in Pattern Recognition.
Second International Joint Conference on Pattern Recognition, pp. 534-539.

Domingos, Pedro, (1995). “Rule Induction and Instance-Based Learning: A Unified Approach,” to
appear in The 1995 International Joint Conference on Artificial Intelligence (IJCAI-95).

Dudani, Sahibsingh A., (1976). “The Distance-Weighted k-Nearest-Neighbor Rule,” I E E E
Transactions on Systems, Man and Cybernetics, vol. 6, no. 4, April 1976, pp. 325-327.

Gates, G. W. (1972). “The Reduced Nearest Neighbor Rule,” IEEE Transactions on Information
Theory, vol. IT-18, no. 3, pp. 431-433.

Hart, P. E., (1968). “The Condensed Nearest Neighbor Rule,” Institute of Electrical and Electronics
Engineers Transactions on Information Theory, vol. 14, pp. 515-516.

Hecht-Nielsen, R., (1987). Counterpropagation Networks. Applied Optics, vol. 26, no. 23, pp.
4979-4984.

Kibler, D., and David W. Aha, (1987). “Learning representative exemplars of concepts: An initial
case study.” Proceedings of the Fourth International Workshop on Machine Learning, Irvine,
CA: Morgan Kaufmann, pp. 24-30.

Lowe, David G., (1995). “Similarity Metric Learning for a Variable-Kernel Classifier,” Neural
Computation., vol. 7, no. 1, pp. 72-85.

Merz, C. J., and P. M. Murphy, (1996). UCI Repository of Machine Learning Databases. Irvine,
CA: University of California Irvine, Department of Information and Computer Science. Internet:
http://www.ics.uci.edu/ ~mlearn/ MLRepository.html.

Michalski, Ryszard S., Robert E. Stepp, and Edwin Diday, (1981). A Recent Advance in Data
Analysis: Clustering Objects into Classes Characterized by Conjunctive Concepts. Progress in
Pattern Recognition, vol. 1, Laveen N. Kanal and Azriel Rosenfeld (Eds.). New York: North-
Holland, pp. 33-56.

Nadler, Morton, and Eric P. Smith, (1993). Pattern Recognition Engineering. New York: Wiley, pp.
293-294.

113

Papadimitriou, Christos H., and Jon Louis Bentley, (1980). A Worst-Case Analysis of Nearest
Neighbor Searching by Projection. Lecture Notes in Computer Science, vol. 85, Automata
Languages and Programming, pp. 470-482.

Papadimitriou, C. H., and Steiglitz, K., (1982). Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Englewood Cliffs, NJ.

Renals, Steve, and Richard Rohwer, (1989). Phoneme Classification Experiments Using Radial Basis
Functions. In Proceedings of the IEEE International Joint Conference on Neural Networks
(IJCNN’89), vol. 1, pp. 461-467.

Ritter, G. L., H. B. Woodruff, S. R. Lowry, and T. L. Isenhour, (1975). “An Algorithm for a
Selective Nearest Neighbor Decision Rule,” IEEE Transactions on Information Theory, vol. 21,
no. 6, November 1975, pp. 665-669.

Rumelhart, D. E., and J. L. McClelland, (1986). Parallel Distributed Processing, MIT Press, Ch. 8,
pp. 318-362.

Salzberg, Steven, (1991). “A Nearest Hyperrectangle Learning Method,” Machine Learning, vol. 6,
pp. 277-309.

Schaffer, Cullen, (1994). A Conservation Law for Generalization Performance. I n
Proceedings of the Eleventh International Conference on Machine Learning (ML’94),
Morgan Kaufmann, 1994.

Skalak, D. B., (1994). Prototype and Feature Selection by Sampling and Random Mutation Hill
Climbing Algorithms. In Proceedings of the Eleventh International Conference on Machine
Learning (ML94). Morgan Kaufmann, pp. 293-301.

Specht, Donald F., (1992). “Enhancements to Probabilistic Neural Networks,” in Proceedings
International Joint Conference on Neural Networks (IJCNN ’92), vol. 1, pp. 761-768.

Sproull, Robert F., (1991). Refinements to Nearest-Neighbor Searching in k-Dimensional Trees.
Algorithmica, vol. 6, pp. 579-589.

Stanfill, C., and D. Waltz, (1986). “Toward memory-based reasoning,” Communications of the
ACM, vol. 29, December 1986, pp. 1213-1228.

Tomek, Ivan, (1976). “An Experiment with the Edited Nearest-Neighbor Rule,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 6, no. 6, June 1976, pp. 448-452.

Tversky, Amos, (1977). Features of Similarity. Psychological Review, vol. 84, no. 4, pp. 327-352.

Wasserman, Philip D., (1993). Advanced Methods in Neural Computing. New York, NY: Van
Nostrand Reinhold, pp. 147-176.

Watson, I., and F. Marir, (1994). “Case-Based Reasoning: A Review,” The Knowledge Engineering
Review, vol. 9, no. 4.

Wettschereck, Dietrich, (1994). “A Hybrid Nearest-Neighbor and Nearest-Hyperrectangle
Algorithm”, To appear in the Proceedings of the 7th European Conference on Machine
Learning.

Wettschereck, Dietrich, and Thomas G. Dietterich, (1995). “An Experimental Comparison of Nearest-
Neighbor and Nearest-Hyperrectangle Algorithms,” Machine Learning, vol. 19, no. 1, pp. 5-28.

Wettschereck, Dietrich, David W. Aha, and Takao Mohri, (1995). “A Review and Comparative
Evaluation of Feature Weighting Methods for Lazy Learning Algorithms,” Technical Report
AIC-95-012, Washington, D.C.: Naval Research Laboratory, Navy Center for Applied Research
in Artificial Intelligence.

Wilson, D. Randall, and Tony R. Martinez, (1996). “Heterogeneous Radial Basis Functions,”
Proceedings of the International Conference on Neural Networks (ICNN’96), vol. 2, pp. 1263-
1267, June 1996.

Wilson, D. Randall, and Tony R. Martinez, (1997a). “Improved Heterogeneous Distance Functions,”
Journal of Artificial Intelligence Research (JAIR), vol. 6, no. 1, pp. 1-34.

114

Wilson, D. Randall, and Tony R. Martinez, (1997b). “Improved Center Point Selection for Radial
Basis Function Networks,” In Proceedings of the International Conference on Artificial Neural
Networks and Genetic Algorithms (ICANNGA’97).

Wilson, D. Randall, and Tony R. Martinez, (1997c). “Instance Pruning Techniques,” To appear in
Fisher, D., ed., Machine Learning: Proceedings of the Fourteenth International Conference
(ICML’97), Morgan Kaufmann Publishers, San Francisco, CA.

Wilson, Dennis L., (1972). “Asymptotic Properties of Nearest Neighbor Rules Using Edited Data,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 2, no. 3, pp. 408-421.

Wolpert, David H., (1993). On Overfitting Avoidance as Bias. Technical Report SFI TR 92-
03-5001. Santa Fe, NM: The Santa Fe Institute.

Zhang, Jianping, (1992). “Selecting Typical Instances in Instance-Based Learning,” Proceedings of the
Ninth International Conference on Machine Learning.

115

Part IV

Attribute and Vote Weighting
“Dieting doesn’t make you live longer. It just seems longer.”

Instance-based learning algorithms can be sensitive to irrelevant attributes, so it
is important to have some way of identifying and removing the effect of such
attributes. Chapter 8 presents an instance-based learning system that uses a genetic
algorithm to find attribute weights that maximize leave-one-out classification
accuracy on the training set. This chapter was published in

Wilson, D. Randall, and Tony R. Martinez, (1996). “Instance-Based Learning with
Genetically Derived Attribute Weights,” International Conference on Artificial
Intelligence, Expert Systems and Neural Networks (AIE’96), pp. 11-14.

Another criticism of the nearest neighbor algorithm is that once it stores the
training set, it has no ability to adjust the decision boundary. The attribute weights
derived in Chapter 8 provide one way to alter the concept description.

Chapter 9 presents another technique called the Fuzzy Instance-Based Learning
(FIBL) algorithm, which uses distance-weighted voting to provide more flexibility in
how the decision boundaries can be constructed and shows how a combination of
cross-validation and confidence can be used to tune parameters with more precision
than using either technique alone. This chapter has been submitted to

Wilson, D. Randall, and Tony R. Martinez, (1997). “Distance-Weighting and
Confidence in Instance-Based Learning,” submitted to Computational
Intelligence.

116

Chapter 8

Instance-Based Learning with Genetically Derived
Attribute Weights

“The gene pool could use a little chlorine.”

In Proceedings of the International Conference on Artificial Intelligence, Expert
Systems and Neural Networks (AIE’96), pp. 11-14, 1996.

Abstract

This paper presents an inductive learning system called the Genetic Instance-Based Learning
(GIBL) system. This system combines instance-based learning approaches with evolutionary
computation in order to achieve high accuracy in the presence of irrelevant or redundant
attributes. Evolutionary computation is used to find a set of attribute weights that yields a
high estimate of classification accuracy. Results of experiments on 16 data sets are shown,
and are compared with a non-weighted version of the instance-based learning system. The
results indicate that the generalization accuracy of GIBL is somewhat higher than that of the
non-weighted system on regular data, and is significantly higher on data with irrelevant or
redundant attributes.

1. Introduction

Much research has been directed at finding better ways of helping machines learn
from examples. When domain knowledge in a particular area is weak, solutions can
be expensive, time consuming and even impossible to derive using traditional
programming techniques. Inductive machine learning techniques attempt to give
machines the ability to learn from examples so that they can attain high accuracy at a
low cost.

This paper addresses the problem of classification, in which an inductive learning
system learns from a training set, T, which is a collection of examples, called
instances. Each instance I in T has an input vector x and an output class, c. An input
vector is made of m input values, labeled xi (1≤ i ≤ m), one for each of m input
variables (or attributes). The problem of classification in this context is to learn the
mapping from an input vector to an output class in order to generalize to new examples
it has not necessarily seen before.

Instance-based learning algorithms [Cover & Hart, 1967; Dasarathy, 1991; Aha,
1991; Aha, 1992; Cost & Salzberg, 1993; Domingos, 1995; Stanfill & Waltz, 1986] are
a class of supervised learning algorithms that retain some or all of the available
training examples (or instances) during learning. During execution, a new input vector
is compared to each stored instance. The class of the instance that is most similar to
the new vector (using some distance function) is used as the predicted output class.

Instance-based learning algorithms are intuitive and simple, learn very quickly,
and work well for many applications. However, they often have several drawbacks
that cause them to generalize poorly on certain applications. In particular, their

117

generalization accuracy usually degrades rapidly in the presence of irrelevant and
redundant attributes. A system that can successfully deal with such attributes
alleviates the need to carefully determine beforehand which attributes are needed in a
set of data.

This paper seeks to address the problem of irrelevant and redundant attributes by
using attribute weights to lessen the influence of such attributes. Section 2 discusses
instance-based learning and the distance function used in the GIBL system, and
provides motivation for finding attribute weights. Section 3 presents an evolutionary
algorithm used to find attribute weights. Section 4 presents experimental results
which indicate that attribute weights can significantly improve accuracy on data sets
with irrelevant and redundant attributes and improve accuracy on regular data sets as
well. Section 5 provides conclusions and several areas of future research.

2. Distance Function

Instance-based learning algorithms [Cover & Hart, 1967; Dasarathy, 1991; Aha,
1991; Aha, 1992; Cost & Salzberg, 1993; Domingos, 1995; Stanfill & Waltz, 1986]
need a distance function in order to determine which instance or instances are closest
to a given input vector.

The original nearest neighbor algorithm typically uses the Euclidean distance
function, which is defined as

E(x, y) = (xi − yi)
2

i=1

m

∑ (1)

2.1. Normalization

One weakness of the basic Euclidean distance function is that if one of the input
variables has a relatively large range, then it can overpower the other input variables.
For example, if an application has just two inputs, x and y, and x can have values from
1 to 1000, and y has values only from 1 to 10, then y’s influence on the distance
function will usually be overpowered by x’s influence. Therefore, distances are often
normalized by dividing the distance for each variable by the range (i.e., max-min) of
that attribute, so that the distance for each input variable is in the range 0..1.

Another weakness of the Euclidean distance function is that it is not appropriate
for some kinds of attributes. Therefore, the Genetic Instance-Based Learning system
(hereafter “GIBL”) uses a normalized heterogeneous distance function, as explained
below.

2.2. Heterogeneous Distance Function

An attribute can be linear, such as a person’s height or a temperature reading, or
nominal. A nominal (or symbolic) attribute is one that can have only a discrete set of
values, but whose values are not in any linear order. For example, a variable
representing symptoms might have possible values of headache, sore throat, chest
pains, stomach pains, ear ache, and blurry vision. Using a linear distance
measurement on such values makes little sense in this case, so a function is needed
that handles nominal inputs.

118

There are many applications that have both linear and nominal attributes and thus
require a heterogeneous distance function. GIBL uses a function similar to that in
Giraud-Carrier & Martinez [1995]. The distance between two values a and b of a
given attribute i is given as

di (a,b) =
overlap(a,b)

differencei (a,b)

if i is nominal

otherwise.




(2)

where overlap and difference are defined as

overlap(a,b) =
0

1




if a = b

otherwise
(3)

differencei (a,b) = |a − b|
range(i)

(4)

The function range is used to normalize the attributes, and is defined as

 range(i) = max(i) - min(i). (5)

where max(i) and min(i) are the maximum and minimum values, respectively,
observed in the training set for attribute i. This means that it is possible for a new
input vector to have a value outside this range and produce a difference value greater
than one. However, the normalization serves to scale the attribute down to the point
where differences are typically less than one.

The above definition for di returns a value which is (typically) in the range 0..1,
whether the attribute is nominal or linear. The overall distance between two (possibly
heterogeneous) input vectors x and y is given as

D(x, y) = widi (xi , yi)
2

i=1

m

∑ (6)

where m is the number of attributes, di is the distance function given in Equation 2 and
wi is an attribute weight used to weight the distance along each dimension.

The distance di for each attribute i is squared in order to make the distance
function behave like Euclidean distance in the presence of continuous attributes. Note
that the square root in Equation 6 is not performed in practice, because it does not
alter the ordering of closeness among neighbors.

Note that when the attribute weights are all equal (e.g., w1..m=1.0), this distance
function becomes equivalent to normalized Euclidean distance for linear attributes.
Normalization causes the weight of each attribute to become equal and removes the
arbitrary weighting due to scale. However, some attributes may be more useful in
others in determining the output class, and other attributes may even be damaging to
classification accuracy. Appropriate attribute weights can alter the decision
boundaries in the input space in order to reduce the damaging effect of irrelevant and
redundant attributes, while fine-tuning weights on useful attributes as well.

119

2.3. Irrelevant Attributes

When applying a learning system to a real application, it is not always obvious
which input attributes would be useful in finding a solution. It would often be
advantageous to provide as much information as possible on the problem and then
allow the learning system to automatically determine which attributes are relevant.

One problem with unweighted instance-based learning systems is that they are
very susceptible to irrelevant attributes. For example, consider an application in
which several measurements, including blood pressure, are taken on a patient, and the
system is to determine whether the patient has a particular disease. It may turn out
that blood pressure has little or nothing to do with the disease.

In such a case the irrelevant attribute adds a somewhat random value to the
measurement of distance between two instances or input vectors. This can make it so
that an instance or node which should appear close to an input vector (and thus
classify it correctly) may appear farther away, resulting in a more random
classification and lower classification accuracy.

Classification accuracy can often be restored by assigning irrelevant attributes
small weights to reduce their effect on the distance function. Reducing the weight of
an attribute all the way to zero would effectively remove it altogether.

2.4. Redundant Attributes

The effect of redundant attributes is more subtle than that of irrelevant attributes,
and has much in common with the scaling problem that necessitates normalization.
An attribute is redundant if it can be derived from the values of the remaining
attributes. The simplest example of a redundant attribute is one that is repeated one
or more times. For example, if an attribute were repeated 10 times in a data set, the
distances summed over these attributes would get 10 times the weight of the distance
along each of the remaining dimensions. This would result in the same classification
as using the repeated attribute once with a weight that is 10 times that of the other
attributes.

In real applications, attributes are not often repeated explicitly, but it is not
uncommon for some of the attributes to add no new information that cannot be derived
from the others. For example, one attribute can be the squared value of another
attribute, or the average of several other attributes. This causes too much credit to be
assigned to one aspect of the problem, even if the weights of the individual attributes
are equal.

It should be noted that it is not necessarily bad for one attribute to have a higher
weight than another. If one attribute is in fact more relevant or useful than another
then it may be quite useful to assign it a higher weight. However, giving an attribute a
higher weight just because it happened to be recorded twice in slightly different forms
(or some other form of redundancy) is an arbitrary policy. Just as normalization
overcomes the effect of arbitrary weighting due to differing ranges, it would typically
be better to correct for redundancy, and assign weights based on less arbitrary
criteria.

Redundant attributes often have a correlation with the output class and thus
cannot always be detected by some techniques that can identify irrelevant attributes
[Wilson, 1994]. However, one way to deal with irrelevant attributes and redundant
attributes is to find weight settings for each attribute that seems to improve

120

classification. Wettschereck, Aha and Takao [1995] provide an excellent review of
many attribute weighting schemes (as well as other kinds of weighting schemes).
One of their conclusions is that systems which use performance feedback to decide on
the values of weights tend to achieve higher accuracy than those that do not. Section 3
presents an evolutionary algorithm which uses performance feedback (in the form of
classification accuracy estimation) in order to find attribute weights for an instance-
based learning system.

3. Evolutionary Algorithm

This section presents a method of discovering and evaluating the attribute weights
wi of Equation 6 through evolutionary algorithms and instance-based techniques.

This problem can be viewed as an optimization problem. Specifically, the problem
is to find a vector w of real-valued weights w1..wm, such that classification accuracy is
as high as possible (where m is again the number of attributes in a given application
or data set). Unfortunately, the weight space is infinite (or nearly so, within precision
limits). Even if only a few (e.g., 10) different values are allowed for consideration for
each weight, the size of the weight space increases exponentially with the number of
attributes (e.g., 10m if 10 values are used).

Evolutionary Algorithms [Spears et al., 1993] provide heuristics which can aid in
searching an intractable space. A population of individuals is initialized to random
places in the search space, and each individual is evaluated and given a fitness score.
Those individuals with the highest fitness score are chosen to be parents of the next
generation of individuals. Genetic operators such as recombination and mutation are
used to modify or combine parents into new individuals that are similar enough to their
parents that they have a good chance of being as good as their parents, but different
enough that they also have a chance of being better.

The Genetic Instance-Based Learning (GIBL) Algorithm uses genetic operators
to guide the search through the weight space, and instance-based techniques to
evaluate each weight setting and determine its fitness. Figure 1 gives a pseudo-code
algorithm for the weight learning scheme used in GIBL.

GIBL uses a population size of 40, and initializes its population randomly with the
exception of one individual that has all of its weights set to 1.0. This allows one of the
starting points of the search through the weight space to be the “default” equally
weighted setting. The GIBL system uses a vector of real values as its
representation, and genetic operators work directly with these values.

The system allows individuals to survive for only one generation, and replaces the
entire generation with a new one after each evaluation of the population. However,
the best weight setting found by any individual in any generation (i.e., the one with the
highest fitness) is saved separately, and updated whenever another individual has an
even higher fitness. In this way the best solution is not lost because of the lack of
survival, and the entire population can be utilized for finding new weight vectors to
explore. GIBL continues until it has not improved upon its best weight setting for ten
generations.

121

 InitializePopulation(P);
 while (time_since_improvement < termination_criteria)
 { increment time_since_improvement;

 /* Evaluate population */
 for i=1 to population_size
 { EvaluateIndividual(P[i]);
 if P[i] is the best individual seen so far
 { save a copy of P[i]’s weights
 time_since_improvement=0;
 } /* if */
 } /* for */

 /* Create New Population C */
 for child = 1 to population_size
 { /* Create a new child in C */
 parent = PickParent(P);
 if (rnd()> recombination_rate)
 C[child] = Recombine(parent,PickParent(P))
 else C[child] = Mutate(parent);
 } /* for */

 /* Make child population the new parent population. */
 P = C;
 } /* while */

Figure 1. GIBL weight-learning algorithm.

3.1. Genetic Operators

Recombination and mutation are both used in GIBL as genetic operators. A
recombination rate (set to .3 in GIBL) is used to decide what proportion of selected
parents are combined with another parent by selecting each weight randomly from one
of the two parents and the remaining parents are mutated instead. For those parents
being mutated, a mutation rate (set at .5) is used to determine what the chance is of
each weight being mutated, and a step size (set at .2) is used as the standard
deviation of a normally distributed value (with a mean of 0) which is added to the
current weight.

3.2. Parent Selection

GIBL selects parents probabilistically, based on their fitness scores. That is,
those with higher fitness scores are more likely to be used in creating a new individual
than those with lower fitness scores. This allows each generation to be created
mostly from good individuals, thus guiding the search in positive directions. However,
it also allows each individual to have some chance at being selected, thus allowing
some diversity to remain in the population. This helps prevent the population from
becoming a collection of nearly identical individuals.

One drawback with using probabilistic parent selection is that if the individuals in
the population all start to have similar fitness scores, then the search is not strongly
directed towards more fit individuals, and will therefore take more random (and less
productive) search paths.

122

In order to make good individuals much more likely to be chosen than those that
are less fit, the fitness scores are passed through a spreading function which raises
the values to the fourth power. This function was found empirically to produce
reasonable results. Figure 2 shows how this affects the probability of 10 individuals
being chosen.

0.26
0.30
0.32
0.38
0.43
0.44
0.52
0.63
0.64
0.72

5.7 %
6.5 %
6.8 %
8.2 %
9.2 %
9.5 %

11.2 %
13.5 %
13.8 %
15.5 %

0.00483
0.00822
0.01026
0.02141
0.03428
0.03874
0.07482
0.15623
0.17077
0.27077

0.6 %
1.0 %
1.3 %
2.7 %
4.3 %
4.9 %
9.5 %

19.8 %
21.6 %
34.3 %

1
2
3
4
5
6
7
8
9

10

ID
Original
fitness

Probability
of selection New fitness

New probability
of selection

Figure 2. Spreading function modifying parent selection.

The individuals in Figure 2 are sorted by fitness score. On the left is shown the
original fitness scores along with the probability of each individual being chosen as a
parent during each parent selection. On the right is shown the new fitness score,
which is the old score raised to the fourth power. Figure 3 illustrates these same
percentages graphically.

5.7%
6.5%

6.8%

8.2%

9.2%

9.5%
11.2%

13.5%

13.8%

15.5% 0.6%
1.0% 1.3%

2.7%
4.3%

4.9%

9.5%

19.8%

21.6%

34.3%

Figure 3. Graphical representation of parent selection probabilities.

Before applying the spreading function, the probabilities of selection for each
individual are fairly evenly spaced. As can readily be seen, the spreading function
makes the best few individuals much more likely to be chosen than the remaining
individuals, though it does give each individual at least a small chance of being
selected.

123

3.3. Evaluation Function

The evaluation function is crucial to the operation of an evolutionary algorithm. It
assigns a fitness value to each individual, which in turn is used to decide which
individuals to use to create individuals in subsequent generations. The fitness value
does not necessarily need to be precise, because it is used to probabilistically choose
parents anyway, but it must be at least approximately correct most of the time in order
for the search to proceed effectively.

In the GIBL algorithm, the fitness represents an estimate of how accurate
classification will be on an application using a given weight vector. In order to test the
final, “best” weight settings, part of the available data, called the test set, must be
held out and not used by any portion of the learning algorithm, so it is not appropriate
to use the test set to evaluate a weight vector.

Therefore, weight vectors are tested using leave-one-out cross-validation on the
training set itself. That is, for each instance I in the training set T , the nearest
instance other than the instance itself, i.e., N ∈ (T − I), is found, using the weight
vector in question, to see if N is of the same class as I. The fitness is then the ratio
(raised to the fourth power, as explained above) of correct classifications to total
classification attempts. Pseudo-code for the evaluation function is given in Figure 4
below.

EvaluateIndividual(individual P[i])
{ /* Given an individual P[i], find its fitness value.*/
 for each instance t in training set T
 { nearest_neighbor = FindNearest(t,P[i].weights);
 if (SameClass(nearest_neighbor,t))
 then increment correct;
 increment total;
 } /* for */
 P[i].fitness = (correct / total)^4;
}

Figure 4. Evaluation function algorithm.

Unfortunately, the straightforward implementation of this evaluation function is an
O(n2) operation, where n is the number of instances in the training set. Since the
evaluation function is used on every individual in every generation, this can quickly
become a slow process as the number of instances grows.

One thing that can be done to speed up this evaluation is to simply limit the
number of training set instances used in the evaluation function, i.e., the number of
times the nearest neighbor of an instance is found. If the number of instances
available becomes quite large, it may not be necessary to use all of them before a
reasonably confident fitness score can be derived. Current research is seeking to
determine just how many instances are required to provide acceptable fitness
estimates. The results presented in this paper make use of all available instances,
but the GIBL system allows the user to specify what proportion of the available
instances to use in the evaluation function.

The GIBL system also uses a technique called projection [Papadimitriou &
Bentley, 1980] to reduce the number of distance calculations that must be performed
before the nearest neighbor can be found.

124

4. Experiments

The GIBL algorithm was designed to handle irrelevant and redundant attributes,
but it is important to make sure that it does not trade success in these areas for poor
performance on regular data. This section presents empirical results that indicate that
GIBL performs slightly better than a non-weighted version on regular data, and
significantly better on data with irrelevant or redundant attributes.

The GIBL algorithm was implemented and tested on 16 databases from the
Machine Learning Database Repository at the University of California Irvine [Murphy
& Aha, 1993]. Each test consisted of ten trials, each using one of ten partitions of the
data randomly selected from the data sets, i.e., 10-fold cross-validation. Each trial
consisted of building a training set using 90% of the available data, initializing the
population, and evaluating populations until 10 generations passed without any
improvement.

Australian Credit
Bridges
Credit Screening
Echocardiogram
Flag
Glass
Heart (Cleveland)
Heart (Hungarian)
Heart (Swiss)
Image Segmentation
Iris
Led-Creator
Liver Disorders
Pima Indians Diabetes
Vowel
Wine
Average:

80.72
59.18**
81.45
52.25
55.11**
78.57**
49.60
73.80
20.38
93.33
94.67
64.80**
67.25
70.05
98.10
96.60*
71.02

81.88
52.73
81.16
53.02
48.29
70.52
48.59
77.20**
28.40
93.57
95.33
51.80
63.47
70.31
98.86
95.46
69.64

GIBL
Non-

weightedDatabase

Figure 5. Experimental results on data sets
without irrelevant or redundant attributes.

The best weight setting found during the trial was then used in classifying each
instance in the test set (i.e., the remaining 10% of the data). The classification
accuracy on the test set for each trial was recorded and compared to the default
accuracy, i.e., that obtained by using no weights. The non-weighted algorithm uses
the same test sets and training sets, and the same distance function, except that all
weights are set to 1.0.

The average accuracy for each database over all trials is shown in Figure 5. One
asterisk (*) indicates that the higher value is statistically significantly higher at a 90%
confidence level, using a one-tailed paired t-test. Two asterisks (**) are used to
mark differences that are significant at a 95% confidence interval.

125

Note that these data sets do not necessarily have irrelevant or redundant
attributes, but are provided to see how the algorithm performs on regular data. GIBL
had a significantly higher accuracy in five out of the sixteen data sets, and was
significantly lower in only one case. This indicates that GIBL does somewhat better
than the non-weighted algorithm when there are no particularly irrelevant or
redundant attributes present.

4.1. Testing Irrelevant Attributes

In order to determine whether GIBL improves performance in the face of irrelevant
attributes, a real data set was artificially modified to see what effect this would have
on the accuracy of the default rule compared to GIBL.

Irrelevant attributes were added to the Glass database in order to see the effect
on classification accuracy. The original glass database has nine continuous input
attributes. As irrelevant (completely random) attributes are added to the database,
the classification accuracy is expected to fall for nearly any algorithm. However, the
rate at which the accuracy falls distinguishes algorithms which are robust in the
presence of irrelevant attributes from those which are sensitive to them. Figure 6
summarizes the results of these experiments.

As the number of irrelevant attributes is increased, the non-weighted algorithm
quickly degrades below the 50% accuracy level, while the GIBL system remains much
more accurate. After the addition of twenty irrelevant attributes, GIBL, too, dips in
accuracy to nearly the level of the unweighted algorithm.

As shown in Figure 6, the GIBL’s performance never drops as low as the default
rule, and is significantly higher than the non-weighted algorithm for most of the
settings.

78.57**
74.29**
72.01**
69.68**
65.91**
48.68
42.99
42.10
37.36

70.52
60.82
56.13
52.36
45.24
43.96
39.87
38.83
36.41

GIBL
Non-

weighted
Irrelevant
Attributes

0
1
2
3
4
8

12
16
20

Glass Database

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20
Number of Irrelevant Attributes

Pe
rc

en
t A

cc
ur

ac
y

GIBL

Non-Weighted

Figure 6. Glass data with irrelevant attributes.

126

4.2. Testing Redundant Attributes

To test the effect of redundant attributes, the glass database was again modified,
this time by repeating one of the attributes several times. The results of this series of
experiments is summarized in Figure 7.

GIBL was able to remain significantly more accurate than the default rule as
redundant attributes were added to the data. The added redundant attributes
contained valid data, as opposed to pure noise as in the case of irrelevant attributes.
Therefore, both GIBL and the non-weighted model were able to maintain higher
accuracy than in the presence of irrelevant attributes, even with the addition of many
(19) copies of the same attribute.

Figure 7. Glass data with redundant
attributes.

78.57**
75.22**
76.56**
76.15**
73.33**
74.76**
69.63**
71.49**
64.03*

70.52
70.04
68.66
68.66
67.79
65.00
64.50
64.03
60.80

GIBL
Non-

weighted
Redundant
Attributes

0
1
2
3
7

11
15
19
99

Glass Database

5. Conclusions & Future Research

The Genetic Instance Based Learning (GIBL) System presented in this paper was
designed to be robust in the presence of irrelevant and redundant attributes, and to
fine-tune weights in order to improve classification accuracy even on data sets
without such attributes. In the experiments presented in this paper, its classification
performance on regular data sets is somewhat higher that of the non-weighted
algorithm in the above experiments. Furthermore, on data sets with irrelevant and
redundant attributes, its accuracy remains significantly higher than the non-weighted
algorithm.

The improved accuracy is attained at the cost of increased processing time during
the learning phase of the algorithm. However, once the attribute weights are derived,
execution time proceeds at the same speed as the non-weighted instance-based
system. Current research includes the following:

• Determining how many instances need to be examined in the evaluation function
before the fitness value is reliable enough, in order to reduce training time;

• Finding out how many individuals are sufficient in the population;

127

• Discovering good settings for the various parameters in the system (namely,
the recombination rate, mutation rate, mutation step size);

• Combining new heterogeneous distance functions with the genetically derived
weights; and

• Examining methods of reducing the number of instances that need to be stored
while maintaining reasonable classification accuracy.

The results of this research are encouraging. They show that attribute weights
can be used to improve generalization accuracy and successfully resist the damaging
effects of irrelevant and redundant attributes in instance-based learning systems.

References

Aha, David W., (1992). “Tolerating noisy, irrelevant and novel attributes in instance-based learning
algorithms,” International Journal of Man-Machine Studies, vol. 36, pp. 267-287.

Aha, David W., Dennis Kibler, Marc K. Albert, (1991). “Instance-Based Learning Algorithms,”
Machine Learning, vol. 6, pp. 37-66.

Cost, Scott, and Steven Salzberg, (1993). “A Weighted Nearest Neighbor Algorithm for Learning
with Symbolic Features,” Machine Learning, vol. 10, pp. 57-78.

Cover, T. M., and P. E. Hart, (1967). “Nearest Neighbor Pattern Classification,” Institute of
Electrical and Electronics Engineers Transactions on Information Theory, vol. 13, no. 1,
January 1967, pp. 21-27.

Dasarathy, Belur V., (1991). Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques,
Los Alamitos, CA: IEEE Computer Society Press.

Domingos, Pedro, (1995). “Rule Induction and Instance-Based Learning: A Unified Approach,” to
appear in The 1995 International Joint Conference on Artificial Intelligence (IJCAI-95).

Giraud-Carrier, Christophe, and Tony Martinez, (1995). “An Efficient Metric for Heterogeneous
Inductive Learning Applications in the Attribute-Value Language,” Intelligent Systems, pp.
341-350.

Murphy, P. M., and D. W. Aha, (1993). UCI Repository of Machine Learning Databases. Irvine,
CA: University of California Irvine, Department of Information and Computer Science.

Papadimitriou, Christos H., and Jon Louis Bentley, (1980). “A Worst-Case Analysis of Nearest
Neighbor Searching by Projection,” Lecture Notes in Computer Science, vol. 85, Automata
Languages and Programming, pp. 470-482.

Spears, William M., Kenneth A. De Jong, Thomas Bäck, David B. Fogel, and Hugo de Garis, (1993).
“An Overview of Evolutionary Computation,” Proceedings of the European Conference on
Machine Learning, vol. 667, pp. 442-459.

Stanfill, C., and D. Waltz, (1986). “Toward memory-based reasoning,” Communications of the
ACM, vol. 29, December 1986, pp. 1213-1228.

Wettschereck, Dietrich, David W. Aha, and Takao Mohri, (1995). “A Review and Comparative
Evaluation of Feature Weighting Methods for Lazy Learning Algorithms,” Technical Report
AIC-95-012, Washington, D.C.: Naval Research Laboratory, Navy Center for Applied
Research in Artificial Intelligence.

Wilson, D. Randall, (1994). Prototype Styles of Generalization, Master’s Thesis, Brigham Young
University.

128

Chapter 9

Distance-Weighting and Confidence in
Instance-Based Learning

“I’m not afraid of heights. I’m afraid of widths.”
—Steven Wright.

Submitted to Computational Intelligence, 1997.

Abstract

Many extensions have been proposed to help instance-based learning algorithms perform
better on a wide variety of real-world applications. However, it is not trivial to decide what
parameters or options to use when applying an instance-based learning algorithm to a
particular problem. Traditionally, cross-validation has been used to choose some parameters
such as k in a k-nearest neighbor classifier. This paper points out why cross validation often
does not provide enough information to allow for fine-tuning the classifier, and how
confidence levels can be used to break ties that are all too common when cross-validation is
used. It proposes the Fuzzy Instance Based Learning (FIBL) algorithm that uses distance-
weighted voting with parameters set via a combination of cross-validation and confidence
levels. In experiments on 31 datasets, FIBL had higher average generalization accuracy than
using majority voting or using cross-validation alone to determine parameters.

1. Introduction

Instance-Based Learning (IBL) [Aha, Kibler & Albert, 1991; Aha, 1992] is a
paradigm of learning in which algorithms typically store some or all of the n available
training examples (instances) from a training set, T, during learning. Each instance
has an input vector x, and an output class c. During generalization, these systems use
a distance function to determine how close a new input vector y is to each stored
instance and use the nearest instance or instances to predict the output class of y
(i.e., to classify y). Some of the earliest instance-based learning algorithms are
referred to as nearest neighbor techniques [Cover & Hart, 1967; Dasarathy, 1991].
Related paradigms include memory-based reasoning methods [Stanfill & Waltz, 1986;
Cost & Salzberg, 1993; Rachlin et al., 1994], exemplar-based generalization
[Salzberg, 1991; Wettschereck & Dietterich, 1995], and case-based reasoning (CBR)
[Watson & Marir, 1994]. Such algorithms have had much success on a wide variety
of applications (real-world classification tasks).

The original nearest neighbor rule [Cover & Hart, 1967] uses the nearest instance
in T to a new input vector y to choose an output class. Cover & Hart [1967] also
mentioned the possibility of using the most commonly occurring class among the
nearest k neighbors to classify y instead of just using the single nearest neighbor.
The use of k > 1 can lessen the effect of noise in the system, but it also introduces a
parameter to the system which must be chosen.

129

Dudani [1976] proposed a distance-weighted nearest neighbor algorithm in which
neighbors nearer to the input vector get more weight. This can reduce the sensitivity
of the system to the parameter k, but a suitable value for k must still be found.

One of the most popular methods of choosing k or other parameters is through the
use of cross-validation (CV) [Schaffer, 1993; Moore & Lee, 1993; Kohavi, 1995]. In
J-fold cross-validation, the training set T is divided into J partitions, T1...TJ, and the
instances in each of the partitions are classified by the instances in the remaining
partitions using the proposed parameter value. The average accuracy of these J trials
is used to estimate what the generalization accuracy would be if the parameter value
was used. The parameter value that yields the highest estimated accuracy is then
chosen.

When J is equal to the number of instances in T, the result is leave-one-out cross-
validation (LCV), in which each instance i is classified by the instances in T-i, so that
almost all of the data is available for each classification attempt. LCV is often
described as being desirable but computationally expensive [Moore & Lee, 1993].
However, in our implementation (as described in Section 4), LCV is performed
efficiently during the learning stage in a way that actually makes it faster than using
larger partitions.

One problem with using CV or LCV to fine-tune a learning system (e.g., when
deciding whether to use k = 1 or k = 3, or when deciding what weight to give to an
input attribute) is that it can yield only a fixed number of discrete accuracy estimates.
Given n instances in a training set, CV will yield an accuracy estimation of 0 or 1 for
each instance, yielding an average estimate that is in the range 0..1, but only in
increments of 1/n. This is equivalent in its usefulness to receiving an integer r in the
range 0..n indicating how many of the instances are classified correctly using the
current parameter settings.

Usually a change in any given parameter will not change r by more than a small
value, so that the change in r given a change in parameter is usually a small integer
such as -3...3. Unfortunately, changes in parameters often have no effect on r, in
which case CV does not provide helpful information as to which alternative to choose.
This problem occurs quite frequently in some systems and limits the extent to which
CV can be used to fine-tune an instance-based learning model.

This paper presents a new instance-based learning system that uses distance-
weighted voting to produce confidence levels and to make decisions when LCV is
unable to do so. The combination of Cross-Validation and Confidence (CVC) is used
to decide on the value of k, how fast and in what shape the voting weight drops off
with distance and two other parameters as well.

Section 2 describes the Fuzzy Instance-Based Learning (FIBL) algorithm, and
introduces the various decisions that have to be made before using the system for
classification. Section 3 discusses how these decisions can be made using LCV
combined with confidence estimations. It also mentions how confidence values can
also be used during classification to indicate how confident the system is about its
decision. Section 4 presents experimental results which show that FIBL is able to
achieve higher average generalization accuracy than similar systems that either use
default values or use CV alone to make decisions. Section 5 provides conclusions and
future research directions.

130

2. Fuzzy Instance-Based Learning (FIBL) Algorithm

In the basic k-NN algorithm, the k nearest neighbors of an input vector each get 1
vote for their respective classes and the class that receives the most votes is chosen
as the output class for the new input vector. The Fuzzy Instance-Based Learning
(FIBL) algorithm, on the other hand, uses principles from fuzzy logic [Zadeh, 1965] to
find a class membership of the input vector for each class. The class with the highest
class membership is used as the output class, which is similar to using the majority
class in the k-NN scheme. However, the class membership can also be used to
indicate the confidence of classification and can be used to help tune parameters, as
discussed in Section 3.

The Fuzzy Instance-Based Learning (FIBL) algorithm uses distance-weighted k-
nearest neighbor voting, similar to that done by Dudani [1976], which allows decision
boundaries to be fine-tuned with more precision than is allowed with simple majority
voting. It also uses a heterogeneous distance function that is appropriate for domains
with nominal attributes, linear attributes, or both. This section elaborates on these
two topics.

2.1. Vote Weighting

Let y be the input vector to be classified and let n1...nk be the k nearest neighbors
of y in T . Let Dj be the distance from y to the jth neighbor using some distance
function D (such as the HVDM distance function presented in Section 2.2).

In the FIBL algorithm, the voting weight of each of the k nearest neighbors
depends on its distance from the input vector y. The weight is 1 when the distance is
0 and decreases as the distance grows larger. The way in which the weight decreases
as the distance grows depends on which shape function is used. The shapes used in
FIBL are: majority, linear, gaussian, and exponential.

In majority voting, all k neighbors get an equal vote of 1. With the other three
shapes, the voting weight of a neighbor nj is 1 when the distance to nj is 0 and drops
to the value of a parameter wk at a distance Dk, where Dk is the distance to the kth
nearest neighbor.

Given wk and Dk, the amount of voting weight wj for the jth neighbor that is a
distance Dj from the input vector for each shape is given in Equations 1-4.

(a) Majority: wj = 1 (1)

(b) Linear: wj = wk +
(1 − wk)(Dk − Dj)

Dk
(2)

(c) Gaussian: wj = wk
Dj

2 / Dk
2

(3)

(d) Exponential: wj = wk
Dj / Dk (4)

Note that the majority voting scheme does not require the wk parameter. Also
note that if k = 1 or wk = 1, then all four of these schemes are equivalent. As Dk
approaches 0, the weight in Equations (2)-(4) all approach 1. Therefore, if the
distance Dk is equal to 0, then a weight of 1 is used for consistency and to avoid
dividing by 0. These four shapes are illustrated in Figure 1.

131

V
ot

in
g

W
ei

gh
t

0 0.5 1 1.5 2
0

.2

.4

.6

.8

1

(c) Gaussian

0 0.5 1 1.5 2
0

.2

.4

.6

.8

1

(d) Exponential

DistanceDistance

V
ot

in
g

W
ei

gh
t

(a) Majority

0

.2

.4

.6

.8

1

0 0.5 1 1.5 2

(b) Linear

0 0.5 1 1.5 2
0

.2

.4

.6

.8

1

Figure 1. Distance-weighting shapes, shown with Dk = 2.0 and wk = .01.

Sometimes it is preferable to use the average distance of the k nearest neighbors
instead of the distance to the kth neighbor to determine how fast voting weight should
drop off. This can be done by computing what the distance ′Dk of the kth nearest
neighbor would be if the neighbors were distributed evenly. This can be done by
setting ′Dk to

′Dk =
2 ⋅ Di

i=1

k

∑
k +1

(5)

and using ′Dk in place of Dk in Equations (2)-(4). When k = 1, Equation 5 yields
′Dk = 2Dk/2 = Dk, as desired. When k > 1, this method can be more robust in the

presence of changes in the system such as changing parameters or the removal of
instances from the classifier.

132

2.2. Heterogeneous Distance Function

The distance function is critical to the success of an instance-based algorithm. A
variety of distance functions are available, including the Minkowsky [Batchelor, 1978],
Mahalanobis [Nadler & Smith, 1993], Camberra, Chebychev, Quadratic, Correlation
and Chi-square distance metrics [Michalski, Stepp & Diday, 1981; Diday, 1974]; the
Context-Similarity measure [Biberman, 1994]; the Contrast Model [Tversky, 1977];
hyperrectangle distance functions [Salzberg, 1991; Domingos, 1995] and others.

Although there have been many distance functions proposed, by far the most
commonly used is the Euclidean Distance function (which is a special case of the
Minkowsky metric). However, many applications have nominal (discrete, unordered)
attributes, and Euclidean distance and other linear metrics are not appropriate for such
attributes. For example, given an attribute color with values red, green, blue, and
brown, there is no linear relationship in the arbitrarily ordered values that would
indicate that red should be closer to green than to brown.

It is possible to use the overlap metric for nominal attributes, for which the
distance is 0 if the attribute values are equal and 1 if they are different [Giraud-Carrier
& Martinez, 1995; Aha, Kibler & Albert, 1991; Aha, 1992]. However, the overlap
metric fails to give any indication of how different two unequal values are.

The Value Difference Metric (VDM) [Stanfill & Waltz, 1986; Cost & Salzberg,
1993; Rachlin et al., 1994] is able to return a real-valued distance between each pair
of values for nominal attributes based on statistics gathered from the training set. On
the other hand, the VDM does not directly handle linear attributes but instead
requires discretization [Lebowitz, 1985], which can lead to inferior generalization
accuracy [Ventura & Martinez, 1995].

We previously introduced several new heterogeneous distance functions that
substantially improved average generalization accuracy on a collection of 48 different
datasets [Wilson & Martinez, 1997]. FIBL uses one of the most successful
functions, the Heterogeneous Value Difference Metric (HVDM). This distance
function is briefly defined below, and more details on this distance function are
available in [Wilson & Martinez, 1997].

The HVDM distance function defines the distance between two input vectors x
and y as

HVDM(x, y) = da(xa , ya)2

a=1

m

∑ (6)

where m is the number of attributes. The function da(x,y) returns a distance between
the two values x and y for attribute a and is defined as

da(x, y) =
1 if x or y is unknown; otherwise...

vdma(x, y) if a is nominal
x − y

4σa
if a is numeric













(7)

133

where σa is the sample standard deviation of the numeric values occurring for attribute
a. Since 95% of the values in a normal distribution fall within two standard deviations
of the mean, the difference between numeric values is divided by four standard
deviations to scale each value into a range that is usually of width 1. The function
vdma(x,y) returns the distance between two nominal attribute values x and y as
follows.

vdma(x, y) =
Na,x,c

Na,x
−

Na,y,c

Na,y






c=1

C

∑
2

(8)

In Equation 8, Na,x is the number of times attribute a had value x in the training set;
Na,x,c is the number of times attribute a had value x and the output class was c; and C
is the number of output classes. Using this distance measure, two nominal attribute
values are considered to be closer if they have more similar classifications, regardless
of the order of the values.

The HVDM distance function is used to find distances in the FIBL algorithm,
which in turn are used to weight voting and thus influence confidence, as discussed
further in Section 3.

3. Cross-Validation and Confidence (CVC)

In Section 2, the FIBL system was introduced, and several parameters were
mentioned without specifying how they are set. Specifically, for a given application,
the following parameters need to be set:

• k, the number of neighbors that vote on the class of a new input vector,
• shape, the shape of the distance-weighted voting function,
• avgk, the flag determining whether to use the average distance to the k nearest

neighbors rather than the kth distance.
• wk, the weight of the kth neighbor (except in majority voting).

When faced with a choice between two or more sets of parameter values, some
method is needed for deciding which is most likely to yield the best generalization.
This section describes how these parameters are set automatically, using a
combination of leave-one-out cross-validation and confidence levels.

3.1. Cross-Validation

With leave-one-out cross-validation (LCV), the generalization accuracy of a
model is estimated from the average accuracy attained when classifying each instance
i using all the instances in T except i itself. For each instance, the accuracy is 1 if the
instance is classified correctly and 0 if it is misclassified. Thus the average LCV
accuracy is r / n, where r is the number classified correctly and n is the number of
instances in T. Since r is an integer from 0 to n, there are only n + 1 accuracy values
possible with this measure, and often two different sets of parameter values will yield
the same accuracy because they will classify the same number of instances correctly.
This makes it difficult to tell which parameter values are better than another.

134

3.2. Confidence

An alternative method for estimating generalization accuracy is to use the
confidence with which each instance is classified. The average confidence over all n
instances in the training set can then be used to estimate which set of parameter
values will yield better generalization. The confidence for each instance is

conf = votescorrect

votesc
c=1

C

∑
(9)

where votescorrect is the sum of weighted votes received for the correct class and
votesc is the sum of weighted votes received for class c. In terms of fuzzy logic
[Zadeh, 1965], the confidence of each instance can also be thought of as its class
membership in the correct class.

When majority voting is used, votesc is simply a count of how many of the k
nearest neighbors were of class c, since the weights are all equal to 1. In this case,
the confidence will be an integer in the range 0..k, divided by k, and thus there will be
only k + 1 possible confidence values for each instance. This means that there will be
(k + 1)(n + 1) possible accuracy estimates using confidence instead of n + 1 as with
LCV, but it is still possible for small changes in parameters to yield no difference in
average confidence.

When distance-weighted voting is used, however, each vote is weighted according
to its distance and the current set of parameter values, and votesc is the sum of the
weighted votes for each class. Even a small change in the parameters will affect how
much weight each neighbor gets and thus will affect the average confidence.

After learning is complete, the confidence can be used to indicate how confident the
classifier is in its generalized output. In this case the confidence is the same as
defined in Equation 9, except that votescorrect is replaced with votesout, which is the
amount of voting weight received by the class that is chosen to be the output class by
the classifier. This is also equal to the maximum number of votes (or maximum sum of
voting weights) received by any class, since the majority class is chosen as the
output.

3.3. Cross-Validation and Confidence (CVC)

Average confidence has the attractive feature that it provides a continuously
valued metric for evaluating a set of parameter values. However, it also has
drawbacks that make it inappropriate for direct use on the parameters in FIBL.
Average confidence is increased whenever the ratio of votes for the correct class to
total votes is increased. Thus, this metric strongly favors k = 1 and wk = 0, regardless
of their effect on classification, since these settings give the nearest neighbor more
relative weight, and the nearest neighbor is of the same class more often than other
neighbors. This metric also tends to favor exponential weighting since it drops voting
weight more quickly than the other shapes.

Therefore, using confidence as the sole means of deciding between parameter
settings will favor any settings that weight nearer neighbors more heavily, even if
accuracy is degraded by doing so.

135

In order to avoid this problem, FIBL combines cross-validation and confidence into
a single metric called CVC. Using CVC, the accuracy estimate cvci of a single instance
i is

cvci = n ⋅ cv + conf

n +1
(10)

where n is the number of instances in the training set; conf is as defined in Equation 9;
and cv is 1 if instance i is classified correctly by its neighbors in T, or 0 otherwise.

This metric weights the cross-validation accuracy more heavily than the
confidence by a factor of n . This technique is equivalent to using
numCorrect + avgConf to make decisions, where numCorrect is the number of
instances correctly classified by their neighbors and is an integer in the range 0..n, and
avgConf is the average conf (from Equation 9) for all instances and is a real value in
the range 0..1. Thus, the LCV portion of CVC can be thought of as providing the
whole part of the score, with confidence providing the fractional part. Dividing
numCorrect + avgConf by n + 1 results in a score in the range 0..1, as would also be
obtained by averaging Equation 10 for all instances in T.

This metric gives LCV the ability to make decisions by itself unless multiple
parameter settings are tied, in which case the confidence makes the decision. There
will still be a bias towards giving the nearest neighbor more weight but only when
LCV cannot determine which parameter setting yields better leave-one-out accuracy.

4. FIBL Learning Algorithm

This section describes the learning algorithm used by the Fuzzy Instance-Based
Learning (FIBL) algorithm.

FIBL begins by finding the first k nearest neighbors of every instance i, where k is
set to maxk, the maximum value of k being considered. (In our experiments we used
maxk = 30 to leave a wide margin of error, and values of k greater than 10 were rarely
if ever chosen by the system.) The nearest neighbors of each instance i, notated
i.n1...i.nmaxk, are stored in a list ordered from nearest to furthest for each instance, so
that i.n1 is the nearest neighbor of i and i.nk is the kth nearest neighbor. The distance
i.dj to each of instance i’s neighbors is also stored to avoid continuously recomputing
this distance. This step takes O(mn2) time, where m is the number of input attributes
and n is the number of instances in the training set.

CVC is used in the FIBL system to automatically find good values for the
parameters k, wk, shape, and avgk. Note that none of these parameters affect the
distance between neighbors but only affect the amount of voting weight each neighbor
gets. Thus, changes in these parameters can be made without requiring a new search
for nearest neighbors or even an update to the stored distance to each neighbor. This
allows a set of parameter values to be evaluated in O(kn) time instead of the O(mn2)
time required by a naive application of leave-one-out cross-validation.

To evaluate a set of parameter values, cvci as defined in Equation 10 is computed
as follows. For each instance i, the voting weight for each of its k nearest neighbors
is found according to its stored distance and the current settings of k, wk, shape and
avgk, as described in Section 2. These weights are summed in their respective

136

classes, and the confidence of the correct class is found as in Equation 9. If the
majority class is the same as the true output class of instance i, cv in Equation 10 is 1.
Otherwise, it is 0. The average value of cvci over all n instances is used to determine
the fitness of the parameter values.

The search for parameter values proceeds in a greedy manner as follows. For each
iteration, one of the four parameters is chosen for adjustment, with the restriction that
no parameter can be chosen twice in a row, since doing so would simply rediscover the
same parameter value. The chosen parameter is set to various values as explained
below while the remaining parameters are held constant. For each setting of the
chosen parameter, the CVC fitness for the system is calculated, and the value that
achieves the highest fitness is chosen as the new value for the parameter.

At that point, another iteration begins, in which a different parameter is chosen at
random and the process is repeated until 10 attempts at tuning parameters does not
improve the best CVC fitness found so far. In practice, only a few iterations are
required to find good settings, after which improvements cease and the search soon
terminates. The set of parameters that yield the best CVC fitness found at any point
during the search are used by FIBL for classification. The four parameters are tuned
as follows.

1. Choosing k . To pick a value of k, all values from 2 to maxk (=30 in our
experiments) are tried, and the one that results in maximum CVC fitness is chosen.
Using the value k = 1 would make all of the other parameters irrelevant, thus
preventing the system from tuning them, so only values 2 through 30 are used until all
iterations are complete.

2. Choosing a shape function. Picking a vote-weighting shape function proceeds
in a similar manner. The shapes linear, gaussian, and exponential are tried, and the
shape that yields the highest CVC fitness is chosen. Using majority voting would
make the parameters wk and avgk irrelevant, so this setting is not used until all
iterations are complete. At that point, majority voting is tried with values of k from 1
to 30 to test both k = 1 and majority voting in general, to see if either can improve
upon the tuned set of parameters.

3. Setting avgk. Selecting a value for the flag avgk consists of simply trying both
settings, i.e., using Dk and ′Dk and seeing which yields higher CVC fitness.

4. Searching for wk. Finding a value for wk is more complicated because it is a
real-valued parameter. The search for a good value of wk begins by dividing the range
0..1 into ten subdivisions and trying all eleven endpoints of these divisions. For
example, on the first pass, the values 0, .1, .2, ..., .9, and 1.0 are used. The value that
yields the highest CVC fitness is chosen, and the range is narrowed to cover just one
division on either side of the chosen value, with the constraint that the range cannot
go outside of the range 0..1. For example, if .3 is chosen in the first round, then the
new range is from .2 to .4. The process is repeated three times, at which point the
effect on classification becomes negligible.

Pseudo-code for the parameter-finding portion of the learning algorithm is shown
in Figure 2. This routine assumes that the nearest maxk neighbors of each instance T
have been found and returns the parameters that yield the highest CVC fitness found

137

during the search. Once these parameters have been found, the neighbor lists can be
discarded, and only the raw instances and best parameters need to be retained for use
during subsequent classification.

Figure 2. Learning algorithm for FIBL.

FindParams(maxTime, training set T): bestParams
Assume that the maxk nearest neighbors have been

found for each instance i in T.
Let timeSinceImprovement=0.
Let bestCVC=0.
While timeSinceImprovement < maxTime

Choose a random parameter p to adjust.
If (p=“k”) try k=2..30, and set k to best value found.
If (p=“shape”) try linear, gaussian, and exponential.
If (p=“avgk”) try Dk and D'k.
If (p=“wk”)

Let min=0 and max=1
For iteration=1 to 3

Let width=(min-max)/10.
Try wk=min..max in steps of width.
Let min=best wk-width (if min<0, let min=0)
Let max=best wk+width (if max>1, let max=1)

Endfor
If bestCVC was improved during this iteration,

then let timeSinceImprovement=0,
and let bestParams=current parameter settings.

Endwhile.
Let shape=majority, and try k=1..30.
if bestCVC was improved during this search,

then let bestParams=current parameter settings.
Return bestParams.

In Figure 2, to “try” a parameter value means to set the parameter to that value,
find the CVC fitness of the system, and, if the fitness is better than any seen so far,
set bestCVC to this fitness, and remember the current set of parameter values in
bestParams.

Trying a parameter value takes kn time, and tuning k, shape, avgk, and wk test 29,
3, 2, and 30 values, respectively. The entire process takes O(knt) time, where t is the
number of iterations required before the stopping criterion is met. In practice t is small
(e.g., less than 20), since tuning each parameter once or twice is usually sufficient.
These time requirements are quite acceptable, especially compared to algorithms that
require repeated O(mn2) steps.

The time spent tuning parameters is done just once during learning, and is
dominated by the O(mn2) step required to find the nearest neighbors of each instance.
During execution, classification takes O(mn) time, which is the same as the basic
nearest neighbor rule.

5. Experimental Results

The Fuzzy Instance-Based Learning (FIBL) algorithm was implemented and
tested on 31 applications from the Machine Learning Database Repository at the
University of California, Irvine [Merz & Murphy, 1996]. FIBL was compared to a

138

static instance-based learning algorithm that is identical to FIBL except that it uses
k = 3 and majority voting and thus does not fine-tune parameters. FIBL was also
compared to an otherwise identical algorithm that uses leave-one-out cross-
validation (LCV) instead of CVC to decide on the various parameters.

For each dataset each algorithm was trained using 90% of the available data. The
remaining 10% of the data was classified using the instances in T and the best
parameter settings found during training. The average accuracy over 10 such trials
(i.e., 10-fold cross-validation accuracy) is reported for each dataset in Table 1.

Table 1. Generalization accuracy of IBL algorithms
using static majority voting (Static), cross-validation to

make decisions (LCV), and CVC as used in FIBL.

Dataset
Anneal
Australian
Breast Cancer(WI)
Bridges
Crx
Echocardiogram
Flag
Glass
Heart
Heart(Cleveland)
Heart(Hungarian)
Heart(Long Beach)
Heart(More)
Heart(Swiss)
Hepatitis
Horse Colic
Image Segmentation
Ionosphere
Iris
LED Creator+17
LED Creator
Liver (Bupa)
Pima Diabetes
Promoters
Sonar
Soybean (Large)
Vehicle
Voting
Vowel
Wine
Zoo
Average

Static
93.11
84.78
96.28
66.09
83.62
94.82
61.34
73.83
81.48
81.19
79.55
70.00
73.78
92.69
80.62
57.84
93.10
84.62
94.00
67.10
73.40
65.57
73.56
93.45
87.55
88.59
71.76
95.64
96.57
94.93
94.44
82.11

LCV
94.49
85.08
96.71
65.09
84.78
96.07
62.39
67.81
81.85
81.48
80.60
73.50
77.03
92.63
83.00
59.51
91.67
86.91
95.33
71.80
72.30
61.77
73.58
94.09
83.57
90.54
72.13
95.85
98.29
96.01
94.44
82.59

FIBL
94.62
85.36
96.42
65.09
85.07
96.07
63.37
69.20
83.34
83.15
80.93
73.00
78.52
92.63
81.79
65.15
91.91
86.62
95.33
71.90
72.90
61.41
75.26
93.09
84.10
90.86
71.54
95.85
98.29
97.71
97.78
83.17

FIBL (using CVC) had the highest generalization accuracy in 18 out of these 31
datasets, LCV was highest in 10 datasets and the static majority-voting algorithm

139

was highest in 7 cases. FIBL was an average of over 1% higher than the static
algorithm in generalization accuracy on these datasets. LCV fell almost exactly
halfway between the static and FIBL methods, indicating that CVC improves upon the
performance of LCV, which in turn improves upon the performance of default settings.
All of these algorithms have substantially higher generalization accuracy than the
basic nearest neighbor rule using a Euclidean distance function [Wilson & Martinez,
1997].

6. Related Work

The standard k-nearest neighbor algorithm uses majority voting. Dudani [1976]
proposed a distance-weighted nearest neighbor algorithm that uses linear voting
similar to Equation (2) with wk = 0, except that the denominator is Dk - D1, so that
the first nearest neighbor gets a weight of 1 regardless of its distance. Since the kth
neighbor gets 0 weight, Dudani’s model really uses at most k-1 neighbors to vote on
the output class.

Keller, Gray & Givens [1985] proposed a Fuzzy K-Nearest Neighbor Algorithm
that also uses a distance-weighted voting scheme. Their distance-weighting function
is

wi = Di
−2/(m−1) (11)

where m is a user-supplied parameter (they used m = 2 in their experiments). This is
similar in shape to the exponentially weighted function given in Equation (4).
However, it differs in that the rate of drop-off is not influenced by the data density, and
the weight approaches infinity as the distance approaches 0.

In the Fuzzy k-NN system the class membership in each class is the voting
weight for that class divided by the total voting weight for all classes, similar to the
confidence levels used by FIBL. They point out that the class membership can be
used to indicate how confident the system is in its output. However, if applied to the
selection of k and other parameters, the Fuzzy k-NN system would have the same
problem of favoring any parameters that increase the weight of nearer neighbors,
regardless of their effect on classification accuracy, as discussed in Section 3.2.

The IB4 algorithm [Aha, 1992] is an instance-based learning algorithm that was
designed to handle irrelevant attributes. It also finds class memberships similar to
FIBL. IB4 maintains a separate set of attribute weights for each output class, and
also maintains a separate subset Sc of the training set T for each output class c.
Instances are considered either “members” or “non-members” of each class, and IB4
computes class membership as

Membership(x,c) = Similarity(c, x,neg)
Similarity(c, x,neg) + Similarity(c, x, pos)

(12)

where x is the input being classified, c is the class, neg is the nearest “acceptable”
instance of a class other than c, and pos is the nearest “acceptable” instance of class
c. An instance is acceptable if it passes a statistical test based on how accurate it
has classified the instances seen so far.

140

7. Conclusions and Future Research Directions

The Fuzzy Instance-Based Learning (FIBL) system combines the use of cross-
validation accuracy and confidence to generate an evaluation function that returns
real-valued differences in fitness in response to even small changes in parameters. It
avoids the problem of frequent ties that occurs when using cross-validation alone. It
also does not suffer from the strong bias towards heavily weighting nearer neighbors
that occurs when using confidence alone.

In our experiments on a collection of 31 datasets, FIBL was able to successfully
use the new CVC evaluation method in conjunction with a distance-weighted voting
scheme to improve average accuracy over a static majority-voting algorithm or a
distance-weighted algorithm using only cross-validation to make decisions.

Future research will combine FIBL with instance pruning models to reduce storage
and improve classification speed.

References

Aha, David W., (1992). “Tolerating noisy, irrelevant and novel attributes in instance-based learning
algorithms,” International Journal of Man-Machine Studies, vol. 36, pp. 267-287.

Aha, David W., Dennis Kibler, Marc K. Albert, (1991). “Instance-Based Learning Algorithms,”
Machine Learning, vol. 6, pp. 37-66.

Batchelor, Bruce G., (1978). Pattern Recognition: Ideas in Practice. New York: Plenum Press, pp.
71-72.

Biberman, Yoram, (1994). A Context Similarity Measure. In Proceedings of the European
Conference on Machine Learning (ECML-94). Catalina, Italy: Springer Verlag, pp. 49-63.

Cost, Scott, and Steven Salzberg, (1993). “A Weighted Nearest Neighbor Algorithm for Learning
with Symbolic Features,” Machine Learning, vol. 10, pp. 57-78.

Cover, T. M., and P. E. Hart, (1967). “Nearest Neighbor Pattern Classification,” Institute of
Electrical and Electronics Engineers Transactions on Information Theory, vol. 13, no. 1, January
1967, pp. 21-27.

Dasarathy, Belur V., (1991). Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques,
Los Alamitos, CA: IEEE Computer Society Press.

Diday, Edwin, (1974). Recent Progress in Distance and Similarity Measures in Pattern Recognition.
Second International Joint Conference on Pattern Recognition, pp. 534-539.

Domingos, Pedro, (1995). “Rule Induction and Instance-Based Learning: A Unified Approach,” to
appear in The 1995 International Joint Conference on Artificial Intelligence (IJCAI-95).

Dudani, Sahibsingh A., (1976). “The Distance-Weighted k-Nearest-Neighbor Rule,” I E E E
Transactions on Systems, Man and Cybernetics, vol. 6, no. 4, April 1976, pp. 325-327.

Giraud-Carrier, Christophe, and Tony Martinez, (1995). “An Efficient Metric for Heterogeneous
Inductive Learning Applications in the Attribute-Value Language,” Intelligent Systems, pp. 341-
350.

Keller, James M., Michael R. Gray, and James A. Givens, Jr., (1985). “A Fuzzy K-Nearest Neighbor
Algorithm,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 15, no. 4, July/August
1985, pp. 580-585.

141

Kohavi, Ron, (1995). “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and
Model Selection,” In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI’95).

Lebowitz, Michael, (1985). “Categorizing Numeric Information for Generalization,” Cognitive
Science, vol. 9, pp. 285-308.

Merz, C. J., and P. M. Murphy, (1996). UCI Repository of Machine Learning Databases. Irvine,
CA: University of California Irvine, Department of Information and Computer Science. Internet:
http://www.ics.uci.edu/~mlearn/ MLRepository.html.

Michalski, Ryszard S., Robert E. Stepp, and Edwin Diday, (1981). A Recent Advance in Data
Analysis: Clustering Objects into Classes Characterized by Conjunctive Concepts. Progress in
Pattern Recognition, vol. 1, Laveen N. Kanal and Azriel Rosenfeld (Eds.). New York: North-
Holland, pp. 33-56.

Moore, Andrew W., and Mary S. Lee, (1993). “Efficient Algorithms for Minimizing Cross
Validation Error,” In Machine Learning: Proceedings of the Eleventh International Conference,
Morgan Kaufmann.

Nadler, Morton, and Eric P. Smith, (1993). Pattern Recognition Engineering. New York: Wiley, pp.
293-294.

Rachlin, John, Simon Kasif, Steven Salzberg, David W. Aha, (1994). “Towards a Better
Understanding of Memory-Based and Bayesian Classifiers,” in Proceedings of the Eleventh
International Machine Learning Conference, New Brunswick, NJ: Morgan Kaufmann, pp. 242-
250.

Salzberg, Steven, (1991). “A Nearest Hyperrectangle Learning Method,” Machine Learning, vol. 6,
pp. 277-309.

Schaffer, Cullen, (1993). “Selecting a Classification Method by Cross-Validation,” Machine
Learning, vol. 13, no. 1.

Stanfill, C., and D. Waltz, (1986). “Toward memory-based reasoning,” Communications of the
ACM, vol. 29, December 1986, pp. 1213-1228.

Tversky, Amos, (1977). Features of Similarity. Psychological Review, vol. 84, no. 4, pp. 327-352.

Ventura, Dan, and Tony R. Martinez (1995). “An Empirical Comparison of Discretization
Methods.” In Proceedings of the Tenth International Symposium on Computer and Information
Sciences, pp. 443-450.

Watson, I., and F. Marir, (1994). “Case-Based Reasoning: A Review,” The Knowledge Engineering
Review, vol. 9, no. 4.

Wettschereck, Dietrich, and Thomas G. Dietterich, (1995). “An Experimental Comparison of Nearest-
Neighbor and Nearest-Hyperrectangle Algorithms,” Machine Learning, vol. 19, no. 1, pp. 5-28.

Wilson, D. Randall, and Tony R. Martinez, (1997). “Improved Heterogeneous Distance Functions,”
Journal of Artificial Intelligence Research, vol. 6, no. 1, pp. 1-34.

Zadeh, Lotfi A., (1965). “Fuzzy Sets,” Information and Control, vol. 8, pp. 338-353.

142

Part V

Conclusion
“Better is the end of a thing than the beginning thereof.”

—Ecclesiastes 7:8

As discussed in the introduction in Chapter 1, the basic nearest neighbor algorithm
has had success in some domains but suffers from inadequate distance functions, large
storage requirements, slow execution speed, a sensitivity to noise, and an inability to
adjust decision boundaries after storing the data.

This dissertation includes several enhancements to the nearest neighbor algorithm
that address several of these problems individually. However, each enhancement has
been tested largely in absence of the other enhancements so that the effect of each
such modification could be more closely analyzed.

Chapter 10 presents the Integrated Decremental Instance-Based Learning
(IDIBL) algorithm, which combines the most successful elements of each of the
preceding chapters into a comprehensive learning system. This system is compared
to earlier, less enhanced versions of the algorithm to show that the combination of
improvements yields better generalization accuracy than the individual improvements
alone. Finally, IDIBL is compared to 16 other major machine learning and neural
network algorithms.

Since Chapter 10 combines enhancements from earlier chapters in the dissertation,
several sections are somewhat redundant and are optional reading for those familiar
with earlier chapters. Specifically, Section 2 presents the IVDM distance metric from
Chapter 5; Section 3 presents the DROP4 algorithm from Chapter 7; and Section 4
presents the distance-weighted voting and cross-validation/confidence level accuracy
estimation metric from Chapter 9. This redundancy is necessary to allow Chapter 10
to be published as a stand-alone document. However, it does show in Section 5 how
these individual techniques can be combined into a comprehensive system, and in
Section 6 provides new empirical results.

Chapter 10 can be referenced as

Wilson, D. Randall, and Tony R. Martinez, (1997). “Advances in Instance-Based
Learning,” submitted to Machine Learning Journal.

Chapter 11 provides overall conclusions to the dissertation and gives potential
areas for future research.

143

Chapter 10

Advances in Instance-Based Learning

“...then will I cause the good and bad to be gathered;
and the good will I preserve unto myself,

and the bad will I cast away into its own place.
And then cometh the season and the end....”

—Jacob 5:77

Submitted to Machine Learning Journal, 1997.

Abstract

The basic nearest-neighbor rule generalizes well in many domains but has several
shortcomings, including inappropriate distance functions, large storage requirements, slow
execution time, sensitivity to noise, and an inability to adjust its decision boundaries after
storing the training data. This paper proposes methods for overcoming each of these
weaknesses and combines these methods into a comprehensive learning system called the
Integrated Decremental Instance-Based Learning Algorithm (IDIBL) that seeks to reduce
storage, improve execution speed, and increase generalization accuracy, when compared to the
basic nearest neighbor algorithm and other learning models. In our experiments IDIBL
achieves higher generalization accuracy than other less comprehensive instance-based learning
algorithms, while requiring less than one-fifth the storage of the nearest neighbor algorithm
and improving execution speed by a corresponding factor. In experiments on 31 datasets,
IDIBL also achieves higher generalization accuracy than those reported for 16 major machine
learning and neural network models.

1. Introduction

The Nearest Neighbor algorithm [Cover & Hart, 1967; Dasarathy, 1991] is an
inductive learning algorithm that stores all of the n available training examples
(instances) from a training set, T, during learning. Each instance has an input vector
x, and an output class c. During generalization, these systems use a distance function
to determine how close a new input vector y is to each stored instance, and use the
nearest instance or instances to predict the output class of y (i.e., to classify y).

The nearest neighbor algorithm is intuitive and easy to understand, it learns
quickly, and it provides good generalization accuracy for a variety of real-world
classification tasks (applications).

However, in its basic form, the nearest neighbor algorithm has several
weaknesses:

• Its distance functions are often inappropriate or inadequate for applications with
both linear and nominal attributes.

144

• It has large storage requirements, because it stores all of the available training
data in the model.

• It is slow during execution, because all of the training instances must be
searched in order to classify each new input vector.

• Its accuracy degrades rapidly with the introduction of noise.

• Its accuracy degrades with the introduction of irrelevant attributes.

• It has no ability to adjust its decision boundaries after storing the training data.

Many researchers have developed extensions to the nearest neighbor algorithm,
which are commonly called instance-based learning algorithms [Aha, Kibler & Albert,
1991; Aha, 1992; Dasarathy, 1991]. Related paradigms include memory-based
reasoning methods [Stanfill & Waltz, 1986; Cost & Salzberg, 1993; Rachlin et al.,
1994], exemplar-based generalization [Salzberg, 1991; Wettschereck & Dietterich,
1995], and case-based reasoning (CBR) [Watson & Marir, 1994].

Some efforts in instance-based learning and related areas have focused on one or
more of the above problems without addressing them all in a comprehensive system.
Others have used solutions to some of the problems that were not as robust as those
used by others.

The authors have proposed several extensions to instance-based learning
algorithms as well [Wilson & Martinez, 1996, 1997a,b,c], and have purposely focused
on only one or only a few of the problems at a time so that the effect of each proposed
extension could be evaluated independently, based on its own merits.

This paper proposes a comprehensive learning system, called the Integrated
Decremental Instance-Based Learning (IDIBL) algorithm, that combines successful
extensions from earlier work to overcome the weaknesses of the basic nearest
neighbor rule mentioned above.

Section 2 discusses the need for a robust heterogeneous distance function and
describes the Interpolated Value Distance Metric. Section 3 presents a decremental
pruning algorithm (i.e., one that starts with the entire training set and removes
instances that are not needed) that reduces the number of instances stored in the
system and thus decreases storage requirements while increasing classification
speed. It also reduces the sensitivity of the system to noise. Section 4 presents a
distance-weighting scheme and shows how cross-validation and confidence can be
used to provide a more flexible concept description and to allow the system to be fine-
tuned. Section 5 presents the learning algorithm for IDIBL, and shows how it
operates during classification.

Section 6 presents empirical results that indicate how well IDIBL works in
practice. IDIBL is first compared to the basic nearest neighbor algorithm and several
extensions to it. It is then compared to results reported for 16 major machine learning
and neural network models on 31 datasets. IDIBL achieves the highest average
generalization accuracy of any of the models examined in these experiments.

2. Heterogeneous Distance Functions

There are many learning systems that depend upon a good distance function to be
successful, including the instance-based learning algorithms and the related models

145

mentioned in the introduction. In addition, many neural network models also make use
of distance functions, including radial basis function networks [Broomhead & Lowe,
1988; Renals & Rohwer, 1989; Wasserman, 1993], counterpropagation networks
[Hecht-Nielsen, 1987], ART [Carpenter & Grossberg, 1987], self-organizing maps
[Kohonen, 1990] and competitive learning [Rumelhart & McClelland, 1986]. Distance
functions are also used in many fields besides machine learning and neural networks,
including statistics [Atkeson, Moore & Schaal, 1996], pattern recognition [Diday,
1974; Michalski, Stepp & Diday, 1981], and cognitive psychology [Tversky, 1977;
Nosofsky, 1986].

2.1. Linear Distance Functions

A variety of distance functions are available for such uses, including the
Minkowsky [Batchelor, 1978], Mahalanobis [Nadler & Smith, 1993], Camberra,
Chebychev, Quadratic, Correlation, and Chi-square distance metrics [Michalski,
Stepp & Diday, 1981; Diday, 1974]; the Context-Similarity measure [Biberman,
1994]; the Contrast Model [Tversky, 1977]; hyperrectangle distance functions
[Salzberg, 1991; Domingos, 1995] and others.

Although there have been many distance functions proposed, by far the most
commonly used is the Euclidean Distance function, which is defined as

E(x, y) = (xa − ya)2

a=1

m

∑ (1)

where x and y are two input vectors (one typically being from a stored instance, and
the other an input vector to be classified) and m is the number of input variables
(attributes) in the application.

None of the above distance functions is designed to handle applications with both
linear and nominal attributes. A nominal attribute is a discrete attribute whose values
are not necessarily in any linear order. For example, a variable representing color
might have values such as red, green, blue, brown, black and white, which could be
represented by the integers 1 through 6, respectively. Using a linear distance
measurement such as Euclidean distance on such values makes little sense in this
case.

Some researchers have used the overlap metric for nominal attributes and
normalized Euclidean distance for linear attributes [Aha, Kibler & Albert, 1991; Aha,
1992; Giraud-Carrier & Martinez, 1995]. The overlap metric uses a distance of 1
between attribute values that are different, and a distance of 0 if the values are the
same. This metric loses much of the information that can be found from the nominal
attribute values themselves.

2.2. Value Difference Metric for Nominal Attributes

The Value Difference Metric (VDM) was introduced by Stanfill and Waltz [1986]
to provide an appropriate distance function for nominal attributes. A simplified version
of the VDM (without the weighting schemes) defines the distance between two
values x and y of an attribute a as

146

vdma(x, y) =
Na,x,c

Na,x
−

Na,y,c

Na,yc=1

C

∑
q

= Pa,x,c − Pa,y,c
q

c=1

C

∑ (2)

where

• Na,x is the number of instances in the training set T that have value x for
attribute a;

• Na,x,c is the number of instances in T that have value x for attribute a and
output class c;

• C is the number of output classes in the problem domain;
• q is a constant, usually 1 or 2; and
• Pa,x,c is the conditional probability that the output class is c given that

attribute a has the value x, i.e., P(c | xa). As can be seen from (2), Pa,x,c is
defined as

Pa,x,c =
Na,x,c

Na,x
(3)

where Na,x is the sum of Na,x,c over all classes, i.e.,

 Na,x = Na,x,c
c=1

C

∑ (4)

and the sum of Pa,x,c over all C classes is 1 for a fixed value of a and x.
Using the distance measure vdma(x,y), two values are considered to be closer if

they have more similar classifications (i.e., more similar correlations with the output
classes), regardless of what order the values may be given in. In fact, linear discrete
attributes can have their values remapped randomly without changing the resultant
distance measurements.

One problem with the formulas presented above is that they do not define what
should be done when a value appears in a new input vector that never appeared in the
training set. If attribute a never has value x in any instance in the training set, then
Na,x,c for all c will be 0, and Na,x (which is the sum of Na,x,c over all classes) will also
be 0. In such cases Pa,x,c = 0/0, which is undefined. For nominal attributes, there is
no way to know what the probability should be for such a value, since there is no
inherent ordering to the values. In this paper we assign Pa,x,c the default value of 0 in
such cases (though it is also possible to let Pa,x,c = 1/C, where C is the number of
output classes, since the sum of Pa,x,c for c = 1..C is always 1.0).

If this distance function is used directly on continuous attributes, the values can all
potentially be unique, in which case Na,x is 1 for every value x, and Na,x,c is 1 for one
value of c and 0 for all others for a given value x. In addition, new vectors are likely to
have unique values, resulting in the division by zero problem above. Even if the value
of 0 is substituted for 0/0, the resulting distance measurement is nearly useless.

Even if all values are not unique, there are often enough different values for a
continuous attribute that the statistical sample is unreliably small for each value, and

147

the distance measure is still untrustworthy. Because of these problems, it is
inappropriate to use the VDM directly on continuous attributes.

Previous systems such as PEBLS [Cost & Salzberg, 1993; Rachlin et al., 1994]
that have used VDM or modifications of it have typically relied on discretization
[Lebowitz, 1985], which can degrade accuracy [Wilson & Martinez, 1997a].

2.3. Interpolated Value Difference Metric

Since the Euclidean distance function is inappropriate for nominal attributes, and
the VDM function is inappropriate for direct use on continuous attributes, neither is
appropriate for applications with both linear and nominal attributes. This section
presents the Interpolated Value Difference Metric (IVDM) [Wilson & Martinez,
1997a] that allows VDM to be applied directly to continuous attributes.

The original value difference metric (VDM) uses statistics derived from the
training set instances to determine a probability Pa,x,c that the output class is c given
the input value x for attribute a.

When using IVDM, continuous values are discretized into s equal-width intervals
(though the continuous values are also retained for later use), where s is chosen to be
5 or C, whichever is greatest, where C is the number of output classes in the problem
domain.

The width wa of a discretized interval for attribute a is given by

wa =
maxa − mina

s
(5)

where maxa and mina are the maximum and minimum value, respectively, occurring in
the training set for attribute a. The discretized value v of a continuous value x for
attribute a is an integer from 1 to s, and is given by

v = discretizea(x) =
x, if a is discrete, else

s, if x = maxa , else

(x − mina) / wa  +1









(6)

After deciding upon s and finding wa, the discretized values of continuous
attributes can be used just like discrete values of nominal attributes in finding Pa,x,c.
Figure 1 lists pseudo-code for how this is done.

The distance function for the Interpolated Value Difference Metric is defined as

IVDM(x, y) = ivdma(xa , ya)2

a=1

m

∑ (7)

where ivdma is defined as

ivdma(x, y) =
vdma(x, y) if a is discrete

pa,c(x) − pa,c(y)
2

c=1

C

∑ otherwise






(8)

148

Figure 1. Pseudo code for finding Pa,x,c.

FindProbabilities(training set T)
For each attribute a

For each instance i in T
Let x be the input value for attribute a of instance i.
v = discretizea(x) [which is just x if a is discrete]
Let c be the output class of instance i.
Increment Na,v,c by 1.
Increment Na,v by 1.

For each discrete value v (of attribute a)
For each class c

If Na,v=0
Then Pa,v,c=0
Else Pa,v,c = Na,v,c / Na,v

Return 3-D array Pa,v,c.

Unknown input values [Quinlan, 1989] are treated as simply another discrete value,
as was done in [Domingos, 1995]. The formula for determining the interpolated
probability value pa,c(x) of a continuous value x for attribute a and class c is

pa,c(x) = Pa,u,c +
x − mida,u

mida,u+1 − mida,u







* (Pa,u+1,c − Pa,u,c) (9)

In this equation, mida,u and mida,u+1 are midpoints of two consecutive discretized
ranges such that mida,u ≤ x < mida,u+1. P a,u,c is the probability value of the
discretized range u, which is taken to be the probability value of the midpoint of range
u (and similarly for Pa,u+1,c). The value of u is found by first setting u = discretizea(x),
and then subtracting 1 from u if x < mida,u. The value of mida,u can then be found as
follows.

 mida,u = mina + widtha * (u+.5) (10)

Figure 2 shows the values of pa,c(x) for attribute a=1 of the Iris database for all
three output classes (i.e. c=1, 2, and 3). Since there are no data points outside the
range mina..maxa, the probability value Pa,u,c is taken to be 0 when u < 1 or u > s,
which can be seen visually by the diagonal lines sloping toward zero on the outer
edges of the graph. Note that the sum of the probabilities for the three output classes
sum to 1.0 at every point from the midpoint of range 1 through the midpoint of range 5.

In experiments reported by the authors [Wilson & Martinez, 1997a] on 48
datasets from the UCI machine learning databases [Merz & Murphy, 1996], a nearest
neighbor classifier using IVDM was able to achieve almost 5% higher generalization
accuracy on average over a nearest neighbor classifier using either Euclidean distance
or the Euclidean-Overlap metric mentioned in Section 2.1. It also achieved higher
accuracy than a classifier that used discretization on continuous attributes in order to
use the VDM distance function.

149

Bold =
discretized
range number.4 4.3 5.02 5.74 6.46 7.18 7.9

Sepal Length (in cm)

1 2 3 4 5

1. Iris Setosa

2. Iris Versicolor

3. Iris Viginica

Output Class:

Pr
ob

ab
ili

ty
 o

f
C

la
ss

0.1
0.2
0.3
0.4
0.5
0.6

0.7
0.8
0.9
1.0

0

Figure 2. Interpolated probability values for attribute 1 of the Iris database.

3. Instance Pruning Techniques

One of the main disadvantages of the basic nearest neighbor rule is that it has
large storage requirements because it stores all n instances in the training set T in
memory. It also has slow execution speed because it must find the distance between
a new input vector and each of the n instances in order to find the nearest neighbor(s)
of the new input vector, which is necessary for classification. In addition, since it
stores every instance in the training set, noisy instances (i.e., those with errors in the
input vector or output class, or those not representative of typical cases) are stored as
well, which can degrade generalization accuracy.

3.1. Speeding Classification

It is possible to use k -dimensional trees (“k -d trees”) [Wess, Althoff &
Derwand, 1994; Sproull, 1991; Deng & Moore, 1995] to find the nearest neighbor in
O(logn) time in the best case. However, as the dimensionality grows, the search time
can degrade to that of the basic nearest neighbor rule.

Another technique used to speed the search is projection [Papadimitriou &
Bentley, 1980], where instances are sorted once by each dimension, and new
instances are classified by searching outward along each dimension until it can be sure
the nearest neighbor has been found. Again, an increase in dimensionality reduces the
effectiveness of the search.

Even when these techniques are successful in reducing execution time, they do not
reduce storage requirements. Also, they do nothing to reduce the sensitivity of the
classifier to noise.

3.2. Reduction Techniques

One of the most straightforward ways to speed classification in a nearest-
neighbor system is by removing some of the instances from the instance set. This
also addresses another of the main disadvantages of nearest-neighbor classifiers—
their large storage requirements. In addition, it is sometimes possible to remove
noisy instances from the instance set and actually improve generalization accuracy.

150

A large number of such reduction techniques have been proposed, including the
Condensed Nearest Neighbor Rule [Hart, 1968], Selective Nearest Neighbor Rule
[Ritter et. al., 1975], the Reduced Nearest Neighbor Rule [Gates, 1972], the Edited
Nearest Neighbor [Wilson, 1972], the All k-NN method [Tomek, 1976], IB2 and IB3
[Aha, Kibler & Albert, 1991; Aha, 1992], the Typical Instance Based Learning Zhang
[1992], random mutation hill climbing [Skalak, 1994; Papadimitriou & Steiglitz, 1982],
and instance selection by encoding length heuristic [Cameron-Jones, 1995]. Other
techniques exist that modify the original instances and use some other representation
to store exemplars, such as prototypes [Chang, 1974]; rules, as in RISE 2.0
[Domingos, 1995]; hyperrectangles, as in EACH [Salzberg, 1991]; and hybrid models
[Dasarathy, 1979; Wettschereck, 1994].

These and other reduction techniques are surveyed in depth in [Wilson &
Martinez, 1997c], along with several new reduction techniques called DROP1-DROP5.

3.3. DROP4 Reduction Algorithm

This section presents an algorithm called the Decremental Reduction Optimization
Procedure 4 (DROP4) [Wilson & Martinez, 1997c] that is used by IDIBL to reduce
the number of instances that must be stored in the final system and to correspondingly
decrease classification time. DROP4 also makes IDIBL more robust in the presence
of noise. This procedure is decremental, meaning that it begins with the entire training
set, and then removes instances that are deemed unneccesary. This is different than
the incremental approaches that begin with an empty subset S and add instances to it,
as is done by IB3 [Aha, Kibler & Albert, 1991] and several other instance-based
algorithms.

DROP4 uses the following basic rule to decide if it is safe to remove an instance i
from the instance set S (where S = T originally).

 Remove instance i from S if at least as many of its associates in T
would be classified correctly without i.

To see if an instance i can be removed using this rule, each associate (i.e., each
instance that has i as one of its neighbors) is checked to see what effect the removal
of i would have on it.

Removing i causes each associate i.aj to use its k+1st nearest neighbor (i.aj.nk+1)
in S in place of i. If i has the same class as i.aj, and i.aj.nk+1 has a different class than
i.aj, this weakens its classification and could cause i.aj to be misclassified by its
neighbors. On the other hand, if i is a different class than i.aj and i.aj.nk+1 is the same
class as i.aj, the removal of i could cause a previously misclassified instance to be
classified correctly.

In essence, this rule tests to see if removing i would degrade leave-one-out
cross-validation accuracy, which is an estimate of the true generalization ability of the
resulting classifier. An instance is removed when it results in the same level of
generalization with lower storage requirements. By maintaining lists of k+1 neighbors
and an average of k+1 associates (and their distances), the leave-one-out cross-
validation can be computed in O(k) time for each instance instead of the usual O(mn)
time, where n is the number of instances in the training set and m is the number of
input attributes. An O(mn) step is only required once an instance is selected for
removal.

The algorithm for DROP4 proceeds as shown in Figure 3.

151

Figure 3: Pseudo-code for DROP4.

 1 DROP4(Training set T): Instance set S.
 2 Let S = T.
 3 For each instance i in S:
 4 (Assume we know i.n1...i.nk+1, the k+1 nearest neighbors of i in S.)
 5 Add i to each of its neighbors’ lists of associates.
 6 For each instance i in S:
 7 Let with = # of associates of i classified correctly with i as a neighbor.
 8 Let without = # of associates of i classified correctly without i.
 9 If (without - with) ≥ 0
10 Remove i from S.
11 For each associate a of i
12 Remove i from a’s list of nearest neighbors
13 Find a new nearest neighbor for a.
14 Add a to its new neighbor’s list of associates.
15 Endif
16 Return S.

This algorithm assumes that a list of nearest neighbors for each instance has
already been found (as explained in Section 5), and begins by making sure each
neighbor has a list of its associates. Then each instance in S is removed if its removal
does not hurt the classification of the instances remaining in S. When an instance i is
removed, all of its associates must remove i from their list of nearest neighbors and
then must find a new nearest neighbor a.nj so that they still have k+1 neighbors in
their list. When they find a new neighbor a.nj, they also add themselves to a.nj’s list
of associates so that at all times every instance has a current list of neighbors and
associates.

Each instance i in the original training set T continues to maintain a list of its k + 1
nearest neighbors in S, even after i is removed from S. This in turn means that
instances in S have associates that are both in and out of S, while instances that have
been removed from S have no associates (because they are no longer a neighbor of
any instance).

This algorithm removes noisy instances, because a noisy instance i usually has
associates that are mostly of a different class, and such associates will be at least as
likely to be classified correctly without i. DROP4 also removes an instance i in the
center of a cluster because associates there are not near instances of other classes,
and thus continue to be classified correctly without i.

Near the border, the removal of some instances can cause others to be classified
incorrectly because the majority of their neighbors can become enemies. Thus this
algorithm tends to keep non-noisy border points. At the limit, there is typically a
collection of border instances such that the majority of the k nearest neighbors of each
of these instances is the correct class.

The order of removal can be important to the success of a reduction algorithm.
DROP4 initially sorts the instances in S by the distance to their nearest enemy, which
is the nearest neighbor of a different class. Instances are then checked for removal
beginning at the instance furthest from its nearest enemy. This tends to remove
instances furthest from the decision boundary first, which in turn increases the chance
of retaining border points.

However, noisy instances are also “border” points, so they can cause the order of
removal to be drastically changed. In addition, it is often desirable to remove the

152

noisy instances before any of the others so that the rest of the algorithm is not
influenced as heavily by the noise.

DROP4 therefore uses a noise-filtering pass before sorting the instances in S.
This is done using a rule similar to the Edited Nearest Neighbor rule [Wilson, 1972],
which states that any instance misclassified by its k nearest neighbors is removed. In
DROP4, however, the noise-filtering pass removes each instance only if it is (1)
misclassified by its k nearest neighbors, and (2) it does not hurt the classification of
its associates. This noise-filtering pass removes noisy instances, as well as close
border points, which can in turn smooth the decision boundary slightly. This helps to
avoid “overfitting” the data, i.e., using a decision surface that goes beyond modeling
the underlying function and starts to model the data sampling distribution as well.

After removing noisy instances from S in this manner, the instances are sorted by
distance to their nearest enemy remaining in S, and thus points far from the real
decision boundary are removed first. This allows points internal to clusters to be
removed early in the process, even if there were noisy points nearby.

In experiments reported by the authors [Wilson & Martinez, 1997c] on 31
datasets from the UCI machine learning database repository, DROP4 was compared
to a kNN classifier that used 100% of the training instances for classification. DROP4
was able to achieve an average generalization accuracy that was just 1% below the
kNN classifier while retaining only 16% of the original instances. Furthermore, when
10% noise was added to the output class in the training set, DROP4 was able achieve
higher accuracy than kNN while using even less storage than before. DROP4 also
compared favorably with the algorithms mentioned in Section 3.2 [Wilson & Martinez,
1997c].

4. Distance-Weighting and Confidence Levels

One disadvantage of the basic nearest neighbor classifier is that it cannot make
adjustments to its decision surface after storing the data. This allows it to learn
quickly, but prevents it from generalizing accurately in some cases.

Several researchers have proposed extensions that add more flexibility to
instance-based systems. One of the first extensions [Cover & Hart, 1967] was the
introduction of the parameter k, the number of neighbors that vote on the output of an
input vector. A variety of other extensions have also been proposed, including various
attribute-weighting schemes [Wettschereck, Aha, and Mohri, 1995; Aha, 1992; Aha
& Goldstone, 1992; Mohri & Tanaka, 1994; Lowe, 1995; Wilson & Martinez, 1996],
exemplar weights [Cost & Salzberg, 1993; Rachlin et al., 1994; Salzberg, 1991;
Wettschereck & Dietterich, 1995], and distance-weighed voting [Dudani, 1976;
Keller, Gray & Givens, 1985].

The value of k and other parameters are often found using cross-validation
[Schaffer, 1993; Moore & Lee, 1993; Kohavi, 1995]. In leave-one-out cross-
validation (LCV), each instance i is classified by the instances in the training set T
other than i itself, so that almost all of the data is available for each classification
attempt.

One problem with using CV or LCV to fine-tune a learning system (e.g., when
deciding whether to use k = 1 or k = 3, or when deciding what weight to give to an
input attribute) is that it can yield only a fixed number of discrete accuracy estimates.
Given n instances in a training set, CV will yield an accuracy estimation of 0 or 1 for

153

each instance, yielding an average estimate that is in the range 0..1, but only in
increments of 1/n. This is equivalent in its usefulness to receiving an integer r in the
range 0..n indicating how many of the instances are classified correctly using the
current parameter settings.

Usually a change in any given parameter will not change r by more than a small
value, so the change in r given a change in parameter, is usually a small integer such
as -3...3. Unfortunately, changes in parameters often have no effect on r, in which
case CV does not provide helpful information as to which alternative to choose. This
problem occurs quite frequently in some systems and limits the extent to which CV
can be used to fine-tune an instance-based learning model.

The authors proposed the Fuzzy Instance-Based Learning (FIBL) algorithm
[Wilson & Martinez, 1997d] that uses a combination of LCV and confidence to tune
parameters in a distance-weighted voting scheme. IDIBL adopts these extensions,
which are explained in this section.

4.1. Distance-Weighted Voting

Let y be the input vector to be classified and let n1...nk be the k nearest neighbors
of y in a subset S (found via the pruning technique DROP4) of the training set T. Let
Dj be the distance from the jth neighbor using the IVDM distance function.

In the IDIBL algorithm, the voting weight of each of the k nearest neighbors
depends on its distance from the input vector y. The weight is 1 when the distance is
0 and decreases as the distance grows larger. The way in which the weight decreases
as the distance grows depends on which shape function is used. The shapes used in
FIBL are: majority, linear, gaussian, and exponential.

In majority voting, all k neighbors get an equal vote of 1. With the other three
shapes, the weight is 1 when the distance is 0 and drops to the value of a parameter
wk when the distance is Dk, which is the distance to the kth nearest neighbor.

The amount of voting weight wj for the jth neighbor is

wj (Dj , Dk ,wk ,shape) =

1

wk +
(1 − wk)(Dk − Dj)

Dk

wk
Dj

2 Dk
2

wk
Dj Dk

if shape = majority

if shape = linear

if shape = gaussian

if shape = exponential














(11)

where wk is the parameter that determines how much weight the kth neighbor
receives; Dj is the distance of the jth nearest neighbor; Dk is the distance to the kth
neighbor; and shape is the parameter that determines which vote-weighting function
to use.

Note that the majority voting scheme does not require the wk parameter. Also
note that if k = 1 or wk = 1, then all four shapes are equivalent. As Dk approaches 0,
the weight in Equation (11) approaches 1, regardless of the shape. Therefore, if the
distance Dk is equal to 0, then a weight of 1 is used for the sake of consistency and to
avoid dividing by 0. These shapes are illustrated in Figure 4.

154

V
ot

in
g

W
ei

gh
t

0 0.5 1 1.5 2
0

.2

.4

.6

.8

1

(c) Gaussian

0 0.5 1 1.5 2
0

.2

.4

.6

.8

1

(d) Exponential

DistanceDistance

V
ot

in
g

W
ei

gh
t

(a) Majority

0

.2

.4

.6

.8

1

0 0.5 1 1.5 2

(b) Linear

0 0.5 1 1.5 2
0

.2

.4

.6

.8

1

Figure 4. Distance-weighting shapes, shown with Dk = 2.0 and wk = .01.

Sometimes it is preferable to use the average distance of the k nearest neighbors
instead of the distance to the kth neighbor to determine how fast voting weight should
drop off. This can be done by computing what the distance ′Dk of the kth nearest
neighbor would be if the neighbors were distributed evenly. This can be done by
setting ′Dk to

′Dk =
2 ⋅ Di

i=1

k

∑
k +1

(12)

and using ′Dk in place of Dk in Equation 11. When k = 1, Equation 12 yields ′Dk
 = 2Dk / 2 = Dk, as desired. When k > 1, this method can be more robust in the
presence of changes in the system such as changing parameters or the removal of
instances from the classifier. The flag avgk will be used to determine whether to use

′Dk instead of Dk.

155

4.2. Cross-Validation and Confidence (CVC)

Given the distance-weighted voting scheme described in Section 4.1., IDIBL must
set the following parameters:

• k, the number of neighbors that vote on the class of a new input vector.
• shape, the shape of the distance-weighted voting function.
• avgk, the flag determining whether to use the average distance to the k nearest

neighbors rather than the kth distance.
• wk, the weight of the kth neighbor (except in majority voting).

When faced with a choice between two or more sets of parameter values, some
method is needed for deciding which is most likely to yield the best generalization.
This section describes how these parameters are set automatically, using a
combination of leave-one-out cross-validation and confidence levels.

4.2.1. CROSS-VALIDATION

With leave-one-out cross-validation (LCV), the generalization accuracy of a
model is estimated from the average accuracy attained when classifying each instance
i using all the instances in T except i itself. For each instance, the accuracy is 1 if the
instance is classified correctly, and 0 if it is misclassified. Thus the average LCV
accuracy is r / n, where r is the number classified correctly and n is the number of
instances in T. Since r is an integer from 0 to n, there are only n + 1 accuracy values
possible with this measure, and often two different sets of parameter values will yield
the same accuracy because they will classify the same number of instances correctly.
This makes it difficult to tell which parameter values to use.

4.2.2. CONFIDENCE

An alternative method for estimating generalization accuracy is to use the
confidence with which each instance is classified. The average confidence over all n
instances in the training set can then be used to estimate which set of parameter
values will yield better generalization. The confidence for each instance is

conf = votescorrect

votesc
c=1

C

∑
(13)

where votesc is the sum of weighted votes received for class c and votescorrect is the
sum of weighted votes received for the correct class. In terms of fuzzy logic [Zadeh,
1965], the confidence of each instance can also be thought of as its class membership
in the correct class.

When majority voting is used, votesc is simply a count of how many of the k
nearest neighbors were of class c, since the weights are all equal to 1. In this case,
the confidence will be an integer in the range 0..k, divided by k, and thus there will be
only k + 1 possible confidence values for each instance. This means that there will be
(k + 1)(n + 1) possible accuracy estimates using confidence instead of n + 1 as with
LCV, but it is still possible for small changes in parameters to yield no difference in
average confidence.

156

When distance-weighted voting is used, however, each vote is weighted according
to its distance and the current set of parameter values, and votesc is the sum of the
weighted votes for each class. Even a small change in the parameters will affect how
much weight each neighbor gets and thus will affect the average confidence.

After learning is complete, the confidence can be used to indicate how confident the
classifier is in its generalized output. In this case the confidence is the same as
defined in Equation 13, except that votescorrect is replaced with votesout, which is the
amount of voting weight received by the class that is chosen to be the output class by
the classifier. This is also equal to the maximum number of votes (or maximum sum of
voting weights) received by any class, since the majority class is chosen as the
output.

4.2.3. CROSS-VALIDATION AND CONFIDENCE (CVC)

Average confidence has the attractive feature that it provides a continuously
valued metric for evaluating a set of parameter values. However, it also has
drawbacks that make it inappropriate for direct use on the parameters in IDIBL.
Average confidence is increased whenever the ratio of votes for the correct class to
total votes is increased. Thus, this metric strongly favors k = 1 and wk = 0, regardless
of their effect on classification, since these settings give the nearest neighbor more
relative weight, and the nearest neighbor is of the same class more often than other
neighbors. This metric also tends to favor exponential weighting since it drops voting
weight more quickly than the other shapes.

Therefore, using confidence as the sole means of deciding between parameter
settings will favor any settings that weight nearer neighbors more heavily, even if
accuracy is degraded by doing so.

In order to avoid this problem, IDIBL combines cross-validation and confidence
into a single metric called CVC. Using CVC, the accuracy estimate cvci of a single
instance i is

cvci = n ⋅ cv + conf

n +1
(14)

where n is the number of instances in the training set T; conf is as defined in Equation
13; and cv is 1 if instance i is classified correctly by its neighbors in S, or 0 otherwise.

This metric weights the cross-validation accuracy more heavily than the
confidence by a factor of n . This technique is equivalent to using
numCorrect + avgConf to make decisions, where numCorrect is the number of
instances in T correctly classified by their neighbors in S and is an integer in the range
0..n, and avgConf is the average conf (from Equation 13) for all instances and is a real
value in the range 0..1. Thus, the LCV portion of CVC can be thought of as providing
the whole part of the score, with confidence providing the fractional part. Dividing
numCorrect + avgConf by n + 1 results in a score in the range 0..1, as would also be
obtained by averaging Equation 14 for all instances in T.

This metric gives LCV the ability to make decisions by itself unless multiple
parameter settings are tied, in which case the confidence makes the decision. There
will still be a bias towards giving the nearest neighbor more weight, but only when
LCV cannot determine which parameter settings yield better leave-one-out accuracy.

157

4.3. Parameter Tuning

This section describes the learning algorithm used by IDIBL to find the parameters
k, wk, avgk, and shape, as described in Sections 4.1 and 4.2. The parameter-tuning
algorithm assumes that for each instance i in T, the nearest maxk neighbors in S have
been found. Parameter tuning takes place both before and after pruning is done. S is
equal to T prior to pruning, and S is a subset of T after pruning has taken place.

The neighbors of each instance i, notated as i.n1...i.nmaxk, are stored in a list
ordered from nearest to furthest for each instance, so that i.n1 is the nearest neighbor
of i and i.nk is the kth nearest neighbor. The distance i.Dj to each of instance i’s
neighbor i.nj is also stored to avoid continuously recomputing this distance.

In our experiments, maxk was set to 30 before pruning to find an initial value of k.
After pruning, maxk was set to this initial value of k since increasing the size of k
does not make much sense after instances have been removed. In addition, the
pruning process leaves the list of k (but not maxk) neighbors intact, so this strategy
avoids the lengthy search to find every instance’s nearest neighbors again. In our
experiments IDIBL rarely if ever chose a value of k greater than 10, but we used
maxk = 30 to leave a wide margin of error since not much time was required to test
each value of k.

CVC is used by IDIBL to automatically find good values for the parameters k, wk,
shape, and avgk. Note that none of these parameters affect the distance between
neighbors but only the amount of voting weight each neighbor gets. Thus, changes in
these parameters can be made without requiring a new search for nearest neighbors or
even an update to the stored distance to each neighbor. This allows a set of
parameter values to be evaluated in O(kn) time instead of the O(mn2) time required
by a naive application of leave-one-out cross-validation.

To evaluate a set of parameter values, cvci as defined in Equation 13 is computed
as follows. For each instance i, the voting weight for each of its k nearest neighbors
i.nj is found according to wj(i.Dj, Dk, wk, shape) defined in Equation 11, where dk is
i.Dk if avgk is false, or ′Dk as defined in Equation 12 if avgk is true. These weights are
summed in their separate respective classes, and the confidence of the correct class is
found as in Equation 13. If the majority class is the same as the true output class of
instance i, cv in Equation 13 is 1. Otherwise, it is 0. The average value of cvci over
all n instances is used to determine the fitness of the parameter values.

The search for parameter values proceeds in a greedy manner as follows. For each
iteration, one of the four parameters is chosen for adjustment, with the restriction that
no parameter can be chosen twice in a row, since doing so would simply rediscover the
same parameter value. The chosen parameter is set to various values as explained
below while the remaining parameters are held constant. For each setting of the
chosen parameter, the CVC fitness for the system is calculated, and the value that
achieves the highest fitness is chosen as the new value for the parameter.

At that point, another iteration begins, in which a different parameter is chosen at
random and the process is repeated until several attempts at tuning parameters does
not improve the best CVC fitness found so far. In practice, only a few iterations are
required to find good settings, after which improvements cease and the search soon
terminates. The set of parameters that yield the best CVC fitness found at any point
during the search are used by IDIBL for classification. The four parameters are tuned
as follows.

158

1. Choosing k . To pick a value of k, all values from 2 to maxk (=30 in our
experiments) are tried, and the one that results in maximum CVC fitness is chosen.
Using the value k = 1 would make all of the other parameters irrelevant, thus
preventing the system from tuning them, so only values 2 through 30 are used until all
iterations are complete.

2. Choosing a shape function. Picking a vote-weighting shape function proceeds
in a similar manner. The shapes linear, gaussian, and exponential are tried, and the
shape that yields the highest CVC fitness is chosen. Using majority voting would
make the parameters wk and avgk irrelevant, so this setting is not used until all
iterations are complete. At that point, majority voting is tried with values of k from 1
to 30 to test both k = 1 and majority voting in general, to see if either can improve
upon the tuned set of parameters.

3. Setting avgk. Selecting a value for the flag avgk consists of simply trying both
settings, i.e., using Dk and ′Dk and seeing which yields higher CVC fitness.

4. Searching for wk. Finding a value for wk is more complicated because it is a
real-valued parameter. The search for a good value of wk begins by dividing the range
0..1 into ten subdivisions and trying all eleven endpoints of these divisions. For
example, for the first pass, the values 0, .1, .2, ..., .9, and 1.0 are used. The value that
yields the highest CVC fitness is chosen, and the range is narrowed to cover just one
division on either side of the chosen value, with the constraint that the range cannot
go outside of the range 0..1. For example, if .3 is chosen in the first round, then the
new range is from .2 to .4. The process is repeated three times, at which point the
effect on classification becomes negligible.

IDIBL tunes each parameter separately in a random order until several attempts
at tuning parameters does not improve the best CVC fitness found so far. After each
pass, if the CVC fitness is the best found so far, the current parameter settings are
saved. The parameters that resulted in the best fitness during the entire search are
then used.

Tuning each parameter takes O(kn) time, so the entire process takes O(knt) time,
where t is the number of iterations required before the stopping criterion is met. In
practice t is small (e.g., less than 20), since tuning each parameter once or twice is
usually sufficient. These time requirements are quite acceptable, especially compared
to algorithms that require repeated O(mn2) steps.

Pseudo-code for the parameter-finding portion of the learning algorithm is shown
in Figure 5. This algorithm assumes that the nearest maxk neighbors of each instance
T have been found and returns the parameters that produce the highest CVC fitness of
any tried. Once these parameters have been found, the neighbor lists can be
discarded, and only the raw instances and best parameters need to be retained for use
during subsequent classification.

In Figure 5, to “try” a parameter value means to set the parameter to that value,
find the CVC fitness of the system, and, if the fitness is better than any seen so far,
set bestCVC to this fitness, and remember the current set of parameter values in
bestParams.

159

Figure 5. Pseudo-code for parameter-finding algorithm.

FindParams(maxTime, training set T): bestParams
Assume that the maxk nearest neighbors have been

found for each instance i in T.
Let timeSinceImprovement=0.
Let bestCVC=0.
While timeSinceImprovement < maxTime

Choose a random parameter p to adjust.
If (p=“k”) try k=2..30, and set k to best value found.
If (p=“shape”) try linear, gaussian, and exponential.
If (p=“avgk”) try Dk and D'k.
If (p=“wk”)

Let min=0 and max=1
For iteration=1 to 3

Let width=(min-max)/10.
Try wk=min..max in steps of width.
Let min=best wk-width (if min<0, let min=0)
Let max=best wk+width (if max>1, let max=1)

Endfor
If bestCVC was improved during this iteration,

then let timeSinceImprovement=0,
and let bestParams=current parameter settings.

Endwhile.
Let shape=majority, and try k=1..30.
if bestCVC was improved during this search,

then let bestParams=current parameter settings.
Return bestParams.

In experiments on 31 datasets from the UCI machine learning database repository,
an algorithm using the CVC method to tune parameters achieved higher average
accuracy than the same algorithm using only cross-validation to tune the parameters,
which in turn had higher accuracy than an identical algorithm that used majority voting
[Wilson & Martinez, 1997d].

5. IDIBL Learning Algorithm

Sections 2-4 present several independent extensions that can be applied to
instance-based learning algorithms. This section shows how these pieces fit together
in the Integrated Decremental Instance-Based Learning (IDIBL) algorithm. The
learning algorithm proceeds according to the following five steps.

Step 1. Find IVDM Probabilities. IDIBL begins by calling FindProbabilities as
described in Section 2.3 and outlined in Figure 1. This builds the probability values
needed by the IVDM distance function. This distance function is used in all
subsequent steps. This step takes O(mn) time, where n is the number of instances in
the training set and m is the number of input attributes in the domain.

Step 2. Find Neighbors. IDIBL then finds the nearest maxk (=30 in our
implementation) neighbors of each instance i in the training set T. These neighbors
are stored in a list as described in Section 4, along with their distances to i, such that

160

the nearest neighbor is at the head of the list. This step takes O(mn2) time and is
typically the most time-intensive part of the algorithm.

Step 3. Tune Parameters. Once the neighbors are found, IDIBL initializes the
parameters with some default values (wk = 0.2, shape = linear, avgk = true, k = 3) and
calls FindParameters, with S = T, as described in Section 4.3 and outlined in Figure 5.
It actually forces the first iteration to tune the parameter k, since that parameter can
have such a large effect on the behavior of the others. It continues until four iterations
yield no further improvement in CVC fitness, at which point each of the four
parameters has had a fairly good chance of being tuned without yielding improvement.
This step takes O(kn) time.

Step 4. Prune the Instance Set. At that point, DROP4 is called in order to find a
subset S of T to use in subsequent classification. DROP4 uses the best parameters
found in the previous step in all of its operations. This step takes O(mn2) time,
though in practice it is several times faster than Step 2, since the O(mn) step must
only be done when an instance is pruned, rather than for every instance, and only the
instances in S must be searched when the O(mn) step is required.

Step 5. Retune Parameters. Finally, IDIBL calls FindParameters one more
time, except that this time all of the instances in T have neighbors only in S. Also,
maxk is set to the value of k found in step 4 instead of the original larger value.
FindParameters continues until eight iterations yield no further improvement in CVC
fitness. Step 3 is used to get the parameters in a generally good area so that pruning
will work properly, but Step 5 tunes the parameters for more iterations before giving
up in order to find the best set of parameters reasonably possible.

LearnIDIBL(training set T):S, bestParams, Pa,v,c
Pa,v,c = FindProbabilities(T)
For each instance i in T

Find nearest maxk (=30) neighbors of instance i.
bestParams = FindParameters(4,T)
S = DROP4(T)
Let maxk = k from bestParams
bestParams = FindParameters(8,T)
Return S, bestParams, and Pa,v,c

Figure 6. Pseudo-code for the IDIBL learning algorithm.

High-level pseudo-code for the IDIBL learning algorithm is given in Figure 6,
using pseudo-code for FindProbabilities from Figure 1, DROP4 from Figure 3, and
FindParameters from Figure 5.

At this point, IDIBL is ready to classify new input vectors it has not seen before.
The lists of neighbors maintained by each instance can be disposed of, as can all
pruned instances (unless later updates to the model are anticipated). Only the subset
S of instances, the four tuned parameters, and the probability values Pa,v,c required by
IVDM need be retained.

When a new input vector y is presented to IDIBL for classification, IDIBL finds
the distance between y and each instance in S using IVDM. The nearest k neighbors
(using the best value of k found in Step 5) vote using the other tuned parameters in
the distance-weighted voting scheme, and the output class that has the highest

161

confidence is used as the output class of y. The confidence achieved indicates how
confident IDIBL is in its classification.

The learning algorithm is dominated by the O(mn2) step required to build the list of
nearest neighbors for each instance, where n is the number of instances in T and m is
the number of input attributes. Classifying an input vector takes only O(rm) time,
where r is the number of instances in the reduced set S, compared to the O(nm) time
required by the basic nearest neighbor algorithm. This learning step is done just once,
while subsequent classification is done indefinitely, so the time complexity of the
algorithm is less than that of the nearest neighbor rule in the long run.

6. Empirical Results

IDIBL was implemented and tested on 44 datasets from the UCI machine learning
database repository.

Each test consists of ten trials, each using one of ten partitions of the data
randomly selected from the data sets, i.e., 10-fold cross-validation. For each trial,
90% of the available training instances were used for the training set T , and the
remaining 10% of the instances were classified using only the instances remaining in
the subset S. The average generalization accuracy over the ten trials is reported for
each test.

In order to see how the extensions in IDIBL affect generalization accuracy, results
for several instance-based learning algorithms are given for comparison. The kNN
algorithm is a basic k-nearest neighbor algorithm that uses k=3 and majority voting.
The kNN algorithm uses normalized Euclidean distance for linear attributes and the
overlap metric for nominal attributes.

The IVDM column gives results for a kNN classifier that uses IVDM as the
distance function instead of the Euclidean/overlap metric. The DROP4 column shows
the accuracy when the kNN classifier using the IVDM distance function is pruned
using the DROP4 reduction technique.

Finally, the column labeled IDIBL adds the distance-weighting and parameter-
tuning steps. The “(size)” column appearing after the DROP4 and IDIBL columns
indicate what percentage of the instances were retained for use during classification
for each dataset. For the kNN and IVDM columns, 100% of the instances in the
training set are used for classification.

As can be seen from Table 1, each enhancement raises the average generalization
accuracy on these datasets, including DROP4, which reduces storage from 100% to
14.14%. Though these datasets are not particularly noisy, in experiments where noise
was added to the output class in the training set, DROP4 was more noise-tolerant
than the unpruned system due to its noise-filtering pass [Wilson & Martinez, 1997c].

The IDIBL system achieves the highest accuracy of any of the methods, indicating
that each enhancement yields an improvement that is independent of the others. It
does sacrifice some degree of storage reduction when compared to the DROP4
column. When distance-weighted voting is used and parameters are tuned to improve
CVC fitness, a more precise decision boundary is found that may not allow for quite as
many border instances to be removed. In addition, the parameter-tuning step can
choose values for k larger the default value of k = 3 used by the other algorithms,
which can also prevent DROP4 in IDIBL from removing as many instances.

162

Dataset kNN IVDM DROP4 (size) IDIBL (size)

Annealing 94.61 96.11 94.49 9.30 95.96 7.67
Audiology 72.00 77.50 70.87 25.81 72.14 22.86
Australian 81.16 80.58 85.37 7.59 85.36 11.60
Breast Cancer (WI) 95 .28 95.57 96.28 3.85 97.00 5.63
Bridges 53.73 60.55 59.55 24.00 63.18 34.89
Credit Screening 81.01 80.14 85.94 6.96 85.35 11.29
Echocardiogram 94.82 100.00 100.00 13.07 100.00 9.91
Flag 48.84 57.66 61.29 21.82 57.66 32.07
Glass 70.52 70.54 69.59 25.49 70.56 38.68
Heart Disease 75.56 81.85 83.71 15.43 83.34 24.28
Heart (Cleveland) 74.96 78.90 80.81 15.44 83.83 29.37
Heart (Hungarian) 74.47 80.98 80.90 12.96 83.29 18.06
Heart (Long-Beach-VA) 71.00 66.00 72.00 7.11 74.50 14.78
Heart (More) 71.90 73.33 76.57 14.56 78.39 20.46
Heart (Swiss) 91 .86 87.88 93.46 2.44 93.46 5.78
Hepatitis 77 .50 82.58 79.29 12.83 81.88 18.43
Horse-Colic 60 .82 76.78 76.46 19.79 73.80 26.73
Image Segmentation 93.57 92.86 93.81 10.87 94.29 15.50
Ionosphere 86.33 91.17 90.88 6.52 87.76 21.18
I r i s 95 .33 94.67 95.33 8.30 96.00 10.15
LED+17 noise 42.90 60.70 70.50 15.20 73.60 40.09
LED 57.20 56.40 72.10 12.83 74.88 43.89
Liver Disorders 63.47 58.23 63.27 27.44 62.93 43.92
Monks-1 69.43 68.09 85.42 19.45 87.74 23.20
Monks-2 54.65 97.50 82.06 34.49 87.15 36.32
Monks-3 78.49 100.00 100.00 3.86 100.00 2.60
Pima Indians Diabetes 70.31 69.28 72.40 18.29 75.79 29.28
Promoters 82.09 92.36 85.91 18.34 88.64 21.80
Sonar 86.60 84.17 81.64 23.56 84.12 50.10
Soybean (Large) 89.20 92.18 86.29 27.32 87.60 31.03
Soybean (Small) 100.00 100.00 100.00 28.37 100.00 18.92
Thyroid (Allbp) 94 .89 95.32 96.00 2.58 96.11 2.89
Thyroid (Allhyper) 97 .00 97.86 97.50 2.53 97.10 3.51
Thyroid (Allhypo) 90.39 96.07 95.50 4.63 95.71 5.31
Thyroid (Allrep) 96 .14 98.43 97.82 2.32 98.29 3.07
Thyroid (Dis) 98 .21 98.04 97.71 2.41 97.97 2.53
Thyroid (Hypothyroid) 93 .42 98.07 98.42 1.87 98.45 2.34
Thyroid (Sick) 86 .89 96.86 96.68 2.71 96.75 3.11
Thyroid (Sick-Euthyroid) 68 .23 95.07 95.38 4.74 95.08 6.08
Vehicle 70.22 69.27 68.57 25.86 72.62 37.31
Voting 93.12 95.17 96.08 6.05 95.62 11.34
Vowel 98 .86 97.53 86.92 41.65 90.53 33.57
Wine 95.46 97.78 95.46 9.92 93.76 8.74
Zoo 94.44 98.89 92.22 21.61 92.22 22.22

Average: 8 0 . 3 8 8 4 . 9 8 8 5 . 4 6 14.14 8 6 . 3 7 19.60

Table 1. Generalization accuracy of a basic kNN classifier, one enhanced with IVDM,
IVDM enhanced with DROP4, and the full IDIBL system.

163

In order to see how IDIBL compares with other popular machine learning models,
the results of running IDIBL on 35 datasets were compared with results reported by
Zarndt [1995]. Zarndt’s results are also based on 10-fold cross-validation. He
reported results for 16 learning algorithms, from which we have selected one
representative learning algorithm from each general class of algorithms. Where more
than one algorithm was available in a class (e.g., several decision tree models were
available), the one that achieved the highest results in Zarndt’s experiments is
reported here.

Results for IDIBL are compared to those achieved by the following algorithms:

• C4.5 [Quinlan, 1993], an inductive decision tree algorithm. Zarndt also
reported results for ID3 [Quinlan, 1986], C4, C4.5 using induced rules
[Quinlan, 1993], Cart [Breiman et al., 1984], and two decision tree algorithms
using minimum message length [Buntine, 1992].

• CN2 (using ordered lists) [Clark & Niblett, 1989], which combines aspects of
the AQ rule-inducing algorithm [Michalski, 1969] and the ID3 decision tree
algorithm [Quinlan, 1986]. Zarndt also reported results for CN2 using
unordered lists [Clark & Niblett, 1989].

• a “naive” Bayesian classifier [Langley, Iba & Thompson, 1992; Michie,
Spiegelhalter & Taylor, 1994] (Bayes).

• the Perceptron [Rosenblatt, 1959] single-layer neural network (Per).

• the Backpropagation [Rumelhart & McClelland, 1986] neural network (BP).

• IB1-4 [Aha, Kibler & Albert, 1991; Aha, 1992], four instance-based learning
algorithms.

All of the instance-based models reported by Zarndt were included since they are
most similar to IDIBL. IB1 is a simple nearest neighbor classifier with k=1. IB2
prunes the training set, and IB3 extends IB2 to be more robust in the presence of
noise. IB4 extends IB3 to handle irrelevant attributes. All four use the
Euclidean/overlap metric.

The results of these comparisons are presented in Table 2. The highest accuracy
achieved for each dataset is shown in bold type. The average over all datasets is
shown in the bottom row. We exclude results for several of the datasets that appear
in Table 1 for which the results are not directly comparable.

As can be seen from the results in the table, no algorithm had the highest accuracy
on all of the datasets, due to the selective superiority [Brodley, 1993] of each
algorithm, i.e., the degree to which each bias [Mitchell, 1980] is appropriately matched
for each dataset [Dietterich, 1989; Wolpert, 1993; Schaffer, 1994; Wilson & Martinez,
1997e]. However, IDIBL had the highest accuracy of any of the algorithms for more of
the datasets than any of the other models and had the highest overall average
generalization accuracy.

The results are theoretically limited to this set of applications, and the accuracy for
some algorithms might be improved by a more careful tuning of system parameters,
but the results indicate that IDIBL is a robust learning system that can be
successfully applied to a variety of real-world problems.

164

Dataset C 4 . 5 CN2 Bayes P e r B P I B 1 I B 2 I B 3 I B 4 I D I B L
Annealing 94.5 98.6 92.1 96.3 9 9 . 3 95.1 96.9 93.4 84.0 96.0
Audiology 77.5 81.1 8 5 . 4 76.7 81.9 77.5 72.2 63.3 68.2 72.1
Australian 8 5 . 4 82.0 83.1 84.9 84.5 81.0 74.2 83.2 84.5 8 5 . 4
Breast Cancer 94 .7 95.2 93.6 93.0 96.3 96.3 91.0 95.0 94.1 9 7 . 0
Bridges 56.5 58.2 66.1 64.0 6 7 . 6 60.6 51.1 56.8 55.8 63.2
Credit Screening 83.5 83.0 82.2 83.6 85.1 81.3 74.1 82.5 84.2 8 5 . 4
Echocardiogram 90.1 83.2 90.0 87.0 89.3 84.0 80.2 83.9 80.2 1 0 0
Flag 56.2 51.6 52.5 45.3 5 8 . 2 56.6 52.5 53.1 53.7 57.7
Glass 65.8 59.8 7 1 . 8 56.4 68.7 71.1 67.7 61.8 64.0 70.6
Heart Disease 73.4 78.2 75.6 80.8 82.6 79.6 73.7 72.6 75.9 8 3 . 3
Hepatitis 55 .7 63.3 57.5 67.3 68.5 66.6 65.8 63.5 54.1 8 1 . 9
Horse-Colic 70 .0 65.1 68.6 60.1 66.9 64.8 59.9 56.1 62.0 7 3 . 8
Ionosphere 90.9 82.6 85.5 82.0 9 2 . 0 86.3 84.9 85.8 89.5 87.8
I r i s 94 .0 92.7 94.7 95.3 96.0 95.3 92.7 95.3 9 6 . 6 96.0
LED+17 noise 66.5 61.0 64.5 60.5 62.0 43.5 39.5 39.5 64.0 7 3 . 6
LED 70.0 68.5 68.5 70.0 69.0 68.5 63.5 68.5 68.0 7 4 . 9
Liver Disorders 62.6 58.0 64.6 66.4 6 9 . 0 62.3 61.7 53.6 61.4 62.9
Monks-1 98.9 1 0 0 90.5 72.3 1 0 0 99.5 87.5 71.4 76.1 87.7
Monks-2 64.5 86.5 79.0 61.6 1 0 0 76.2 67.4 57.9 55.6 87.2
Monks-3 98.9 97.7 98.7 98.2 98.7 96.6 90.6 89.9 89.7 1 0 0
Pima Indians Diabetes 72.7 65.1 72.2 74.6 75.8 70.4 63.9 71.7 70.6 7 5 . 8
Promoters 77.3 87.8 78.2 75.9 87.9 82.1 72.3 77.2 79.2 8 8 . 6
Sonar 73.0 55.4 73.1 73.2 76.4 8 6 . 5 85.0 71.1 71.1 84.1
Soybean (Small) 98 .0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 97.8 97.8 1 0 0
Thyroid (Allbp) 97 .3 95.5 9 7 . 4 96.3 96.7 96.2 93.8 91.3 90.0 96.1
Thyroid (Allhyper) 9 8 . 9 97.3 98.8 97.9 98.1 97.5 95.5 93.9 94.1 97.1
Thyroid (Allhypo) 9 9 . 5 93.8 9 9 . 5 93.7 93.7 91.4 84.7 79.9 79.4 95.7
Thyroid (Allrep) 9 9 . 2 96.5 9 9 . 2 96.6 97.5 96.5 95.0 90.7 90.2 98.3
Thyroid (Dis) 9 8 . 9 98.3 98.8 97.9 98.6 98.1 96.0 90.6 92.9 98.0
Thyroid (Hypothyroid) 99 .2 95.2 9 9 . 3 98.0 97.5 97.0 92.0 89.9 90.3 98.5
Thyroid (Sick) 98 .8 93.6 9 9 . 0 96.6 95.3 95.8 93.2 91.8 90.3 96.8
Thyroid (Sick-Euthyroid) 9 7 . 8 90.5 97.5 93.8 93.1 92.8 88.4 88.9 86.6 95.1
Voting 96.8 93.8 9 5 . 9 94.5 95.0 92.4 91.2 90.6 92.4 95.6
Wine 93.3 90.9 94.4 9 8 . 3 98.3 94.9 93.2 91.5 92.7 93.8
Zoo 93.3 96.7 9 7 . 8 96.7 95.6 96.7 95.6 94.5 91.1 92.2
Average: 8 4 . 1 8 2 . 8 8 4 . 7 8 2 . 4 8 6 . 7 8 3 . 7 7 9 . 6 7 8 . 2 7 9 . 2 8 6 . 9

Table 2. Generalization accuracy of IDIBL and several well-known machine learning models.

7. Conclusions and Future Research

The basic nearest neighbor algorithm has had success in some domains but suffers
from inadequate distance functions, large storage requirements, slow execution speed,
a sensitivity to noise, and an inability to fine-tune its concept description.

The Integrated Decremental Instance-Based Learning (IDIBL) algorithm combines
solutions to each of these problems into a comprehensive learning system. IDIBL
uses the Interpolated Value Difference Metric (IVDM) to provide an appropriate
distance measure between input vectors that can have both linear and nominal
attributes. It uses the DROP4 reduction technique to reduce storage requirements,
improve classification speed, and reduce sensitivity to noise. It also uses a distance-
weighted voting scheme with parameters that are tuned using a combination of cross-

165

validation accuracy and confidence in order to provide a more flexible concept
description.

In experiments on 44 datasets, IDIBL improved upon the generalization accuracy
of similar algorithms that did not include all of the enhancements. When compared
with results reported for other popular learning algorithms, IDIBL achieved higher
average generalization accuracy than any of the others.

Since each algorithm is better suited for some problems than others, a key area of
future research is to understand under what conditions each algorithm—including
IDIBL—is successful, so that an appropriate algorithm can be chosen for particular
applications, thus increasing the chance of achieving high generalization accuracy in
practice.

References

Aha, David W., and Robert L. Goldstone, (1992). “Concept Learning and Flexible Weighting,” in
Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society,
Bloomington, IN: Lawrence Erlbaum, pp. 534-539.

Aha, David W., (1992). “Tolerating noisy, irrelevant and novel attributes in instance-based learning
algorithms,” International Journal of Man-Machine Studies, vol. 36, pp. 267-287.

Aha, David W., Dennis Kibler, Marc K. Albert, (1991). “Instance-Based Learning Algorithms,”
Machine Learning, vol. 6, pp. 37-66.

Atkeson, Chris, (1989). Using local models to control movement. In D. S. Touretzky (Ed.),
Advances in Neural Information Processing Systems 2. San Mateo, CA: Morgan Kaufmann.

Batchelor, Bruce G., (1978). Pattern Recognition: Ideas in Practice. New York: Plenum Press, pp.
71-72.

Biberman, Yoram, (1994). A Context Similarity Measure. In Proceedings of the European
Conference on Machine Learning (ECML-94). Catalina, Italy: Springer Verlag, pp. 49-63.

Breiman, Leo, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone, (1984). Classification
and Regression Trees, Wadsworth International Group, Belmont, CA.

Brodley, Carla E., (1993). “Addressing the Selective Superiority Problem: Automatic
Algorithm/Model Class Selection,” Proceedings of the Tenth International Machine Learning
Conference, Amherst, MA, pp. 17-24.

Broomhead, D. S., and D. Lowe (1988). Multi-variable functional interpolation and adaptive
networks. Complex Systems, vol. 2, pp. 321-355.

Buntine, Wray, (1992). “Learning Classification Trees,” Statistics and Computing, vol. 2, pp. 63-73.

Cameron-Jones, R. M., (1995). Instance Selection by Encoding Length Heuristic with Random
Mutation Hill Climbing. In Proceedings of the Eighth Australian Joint Conference on Artificial
Intelligence, pp. 99-106.

Carpenter, Gail A., and Stephen Grossberg, (1987). “A Massively Parallel Architecture for a Self-
Organizing Neural Pattern Recognition Machine,” Computer Vision, Graphics, and Image
Processing, vol. 37, pp. 54-115.

Chang, Chin-Liang, (1974). “Finding Prototypes for Nearest Neighbor Classifiers,” I E E E
Transactions on Computers, vol. 23, no. 11, November 1974, pp. 1179-1184.

Clark, Peter, and Tim Niblett, (1989). “The CN2 Induction Algorithm,” Machine Learning, vol. 3,
pp. 261-283.

Cost, Scott, and Steven Salzberg, (1993). “A Weighted Nearest Neighbor Algorithm for Learning
with Symbolic Features,” Machine Learning, vol. 10, pp. 57-78.

166

Cover, T. M., and P. E. Hart, (1967). “Nearest Neighbor Pattern Classification,” Institute of
Electrical and Electronics Engineers Transactions on Information Theory, vol. 13, no. 1, January
1967, pp. 21-27.

Dasarathy, Belur V., and Belur V. Sheela, (1979). “A Composite Classifier System Design: Concepts
and Methodology,” Proceedings of the IEEE, vol. 67, no. 5, May 1979, pp. 708-713.

Dasarathy, Belur V., (1991). Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques,
Los Alamitos, CA: IEEE Computer Society Press.

Deng, Kan, and Andrew W. Moore, (1995). “Multiresolution Instance-Based Learning,” to appear in
The Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’95).

Diday, Edwin, (1974). Recent Progress in Distance and Similarity Measures in Pattern Recognition.
Second International Joint Conference on Pattern Recognition, pp. 534-539.

Dietterich, Thomas G., (1989). Limitations on Inductive Learning. In Proceedings of the Sixth
International Conference on Machine Learning. San Mateo, CA: Morgan Kaufmann, pp. 124-
128.

Domingos, Pedro, (1995). “Rule Induction and Instance-Based Learning: A Unified Approach,” to
appear in The 1995 International Joint Conference on Artificial Intelligence (IJCAI-95).

Dudani, Sahibsingh A., (1976). “The Distance-Weighted k-Nearest-Neighbor Rule,” I E E E
Transactions on Systems, Man and Cybernetics, vol. 6, no. 4, April 1976, pp. 325-327.

Gates, G. W. (1972). “The Reduced Nearest Neighbor Rule,” IEEE Transactions on Information
Theory, vol. IT-18, no. 3, pp. 431-433.

Giraud-Carrier, Christophe, and Tony Martinez, (1995). “An Efficient Metric for Heterogeneous
Inductive Learning Applications in the Attribute-Value Language,” Intelligent Systems, pp. 341-
350.

Hart, P. E., (1968). “The Condensed Nearest Neighbor Rule,” Institute of Electrical and Electronics
Engineers Transactions on Information Theory, vol. 14, pp. 515-516.

Hecht-Nielsen, R., (1987). Counterpropagation Networks. Applied Optics, vol. 26, no. 23, pp.
4979-4984.

Keller, James M., Michael R. Gray, and James A. Givens, Jr., (1985). “A Fuzzy K-Nearest Neighbor
Algorithm,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 15, no. 4, July/August
1985, pp. 580-585.

Kohavi, Ron, (1995). “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and
Model Selection,” In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI’95).

Kohonen, Teuvo, (1990). The Self-Organizing Map. In Proceedings of the IEEE, vol. 78, no. 9, pp.
1464-1480.

Langley, Pat, Wayne Iba, and Kevin Thompson, (1992). “An Analysis of Bayesian Classifiers,” In
Proceedings of the 10th National Conference on Artificial Intelligence, (AAAI-92), AAAI
Press/MIT Press, Cambridge, Massachusetts, pp. 223-228.

Lebowitz, Michael, (1985). “Categorizing Numeric Information for Generalization,” Cognitive
Science, vol. 9, pp. 285-308.

Lowe, David G., (1995). “Similarity Metric Learning for a Variable-Kernel Classifier,” to appear in
Neural Computation., vol. 7, no. 1, pp. 72-85.

Merz, C. J., and P. M. Murphy, (1996). UCI Repository of Machine Learning Databases. Irvine,
CA: University of California Irvine, Department of Information and Computer Science. Internet:
http://www.ics.uci.edu/~mlearn/ MLRepository.html.

Michalski, Ryszard S., (1969). “On the quasi-minimal solution of the general covering problem,”
Proceedings of the Fifth International Symposium on Information Processing, Bled, Yugoslavia,
pp. 12-128.

167

Michalski, Ryszard S., Robert E. Stepp, and Edwin Diday, (1981). A Recent Advance in Data
Analysis: Clustering Objects into Classes Characterized by Conjunctive Concepts. Progress in
Pattern Recognition, vol. 1, Laveen N. Kanal and Azriel Rosenfeld (Eds.). New York: North-
Holland, pp. 33-56.

Michie, D., D. Spiegelhalter, and C. Taylor, (1994). Machine Learning, Neural and Statistical
Classification, Ellis Horwood, Hertfordshire, England. Book 19.

Mohri, Takao, and Hidehiko Tanaka, “An Optimal Weighting Criterion of Case Indexing for Both
Numeric and Symbolic Attributes. In D. W. Aha (Ed.), Case-Based Reasoning: Papers from the
1994 Workshop, Technical Report WS-94-01. Menlo Park, CA: AIII Press, pp. 123-127.

Moore, Andrew W., and Mary S. Lee, (1993). “Efficient Algorithms for Minimizing Cross
Validation Error,” In Machine Learning: Proceedings of the Eleventh International Conference,
Morgan Kaufmann.

Nadler, Morton, and Eric P. Smith, (1993). Pattern Recognition Engineering. New York: Wiley, pp.
293-294.

Nosofsky, Robert M., (1986). Attention, Similarity, and the Identification-Categorization
Relationship. Journal of Experimental Psychology: General, vol. 115, no. 1, pp. 39-57.

Papadimitriou, C. H., and Steiglitz, K. (1982). Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, Englewood Cliffs, NJ.

Papadimitriou, Christos H., and Jon Louis Bentley, (1980). “A Worst-Case Analysis of Nearest
Neighbor Searching by Projection,” Lecture Notes in Computer Science, vol. 85, Automata
Languages and Programming, pp. 470-482.

Quinlan, J. R., (1986). “Induction of Decision Trees”, Machine Learning, vol. 1, pp. 81-106.

Quinlan, J. R., (1989). “Unknown Attribute Values in Induction,” Proceedings of the 6th
International Workshop on Machine Learning, San Mateo, CA: Morgan Kaufmann, pp. 164-168.

Quinlan, J. R., (1993). C4.5: Programs for Machine Learning, San Mateo, CA: Morgan Kaufmann.

Rachlin, John, Simon Kasif, Steven Salzberg, David W. Aha, (1994). “Towards a Better
Understanding of Memory-Based and Bayesian Classifiers,” in Proceedings of the Eleventh
International Machine Learning Conference, New Brunswick, NJ: Morgan Kaufmann, pp. 242-
250.

Renals, Steve, and Richard Rohwer, (1989). “Phoneme Classification Experiments Using Radial Basis
Functions,” Proceedings of the IEEE International Joint Conference on Neural Networks
(IJCNN’89), vol. 1, pp. 461-467.

Ritter, G. L., H. B. Woodruff, S. R. Lowry, and T. L. Isenhour, (1975). “An Algorithm for a
Selective Nearest Neighbor Decision Rule,” IEEE Transactions on Information Theory, vol. 21,
no. 6, November 1975, pp. 665-669.

Rosenblatt, Frank, (1959). Principles of Neurodynamics, New York, Spartan Books.

Rumelhart, D. E., and J. L. McClelland, Parallel Distributed Processing, MIT Press, 1986.

Salzberg, Steven, (1991). “A Nearest Hyperrectangle Learning Method,” Machine Learning, vol. 6,
pp. 277-309.

Schaffer, Cullen, (1994). A Conservation Law for Generalization Performance. In Proceedings of the
Eleventh International Conference on Machine Learning (ML’94), Morgan Kaufmann, 1994.

Schaffer, Cullen, (1993). “Selecting a Classification Method by Cross-Validation,” Machine
Learning, vol. 13, no. 1.

Skalak, David B., (1994). “Prototype and Feature Selection by Sampling and Random Mutation Hill
Climbing Algorithms,” Proceedings of the Eleventh International Conference on Machine
Learning (ML’94).

Sproull, Robert F., (1991). “Refinements to Nearest-Neighbor Searching in k-Dimensional Trees,”
Algorithmica, vol. 6, pp. 579-589.

168

Stanfill, C., and D. Waltz, (1986). “Toward memory-based reasoning,” Communications of the
ACM, vol. 29, December 1986, pp. 1213-1228.

Tomek, Ivan, (1976). “An Experiment with the Edited Nearest-Neighbor Rule,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 6, no. 6, June 1976, pp. 448-452.

Tversky, Amos, (1977). Features of Similarity. Psychological Review, vol. 84, no. 4, pp. 327-352.

Wasserman, Philip D., (1993). Advanced Methods in Neural Computing, New York, NY: Van
Nostrand Reinhold, pp. 147-176.

Watson, I., and F. Marir, (1994). “Case-Based Reasoning: A Review,” The Knowledge Engineering
Review, vol. 9, no. 4.

Wess, Stefan, Klaus-Dieter Althoff and Guido Derwand, (1994). “Using k-d Trees to Improve the
Retrieval Step in Case-Based Reasoning,” Stefan Wess, Klaus-Dieter Althoff, & M. M. Richter
(Eds.), Topics in Case-Based Reasoning. Berlin: Springer-Verlag, pp. 167-181.

Wettschereck, Dietrich, (1994). “A Hybrid Nearest-Neighbor and Nearest-Hyperrectangle
Algorithm”, To appear in the Proceedings of the 7th European Conference on Machine
Learning.

Wettschereck, Dietrich, and Thomas G. Dietterich, (1995). “An Experimental Comparison of Nearest-
Neighbor and Nearest-Hyperrectangle Algorithms,” Machine Learning, vol. 19, no. 1, pp. 5-28.

Wettschereck, Dietrich, David W. Aha, and Takao Mohri, (1995). “A Review and Comparative
Evaluation of Feature Weighting Methods for Lazy Learning Algorithms,” Technical Report
AIC-95-012, Washington, D.C.: Naval Research Laboratory, Navy Center for Applied Research
in Artificial Intelligence.

Wilson, D. Randall, and Tony R. Martinez, (1996). “Instance-Based Learning with Genetically
Derived Attribute Weights,” International Conference on Artificial Intelligence, Expert Systems
and Neural Networks (AIE’96), pp. 11-14.

Wilson, D. Randall, and Tony R. Martinez, (1997a). “Improved Heterogeneous Distance Functions,”
Journal of Artificial Intelligence Research, vol. 6, no. 1, pp. 1-34.

Wilson, D. Randall, and Tony R. Martinez, (1997b). “Instance Pruning Techniques,” To appear in
Fisher, D., ed., Machine Learning: Proceedings of the Fourteenth International Conference
(ICML’97), Morgan Kaufmann Publishers, San Francisco, CA.

Wilson, D. Randall, and Tony R. Martinez, (1997c). “Reduction Techniques for Exemplar-Based
Learning Algorithms,” submitted to Machine Learning Journal.

Wilson, D. Randall, and Tony R. Martinez, (1997d). “Distance-Weighting and Confidence in
Instance-Based Learning,” submitted to Computational Intelligence, 1997.

Wilson, D. Randall, and Tony R. Martinez, (1997e). “Bias and the Probability of Generalization,”
submitted to International Conference on Intelligent Information Systems (IIS’97).

Wilson, Dennis L., (1972). “Asymptotic Properties of Nearest Neighbor Rules Using Edited Data,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 2, no. 3, July 1972, pp. 408-421.

Wolpert, David H., (1993). On Overfitting Avoidance as Bias. Technical Report SFI TR 92-03-5001.
Santa Fe, NM: The Santa Fe Institute.

Zadeh, Lotfi A., (1965). “Fuzzy Sets,” Information and Control, vol. 8, pp. 338-353.

Zarndt, Frederick, (1995). A Comprehensive Case Study: An Examination of Connectionist and
Machine Learning Algorithms, Master’s Thesis, Brigham Young University.

Zhang, Jianping, (1992). “Selecting Typical Instances in Instance-Based Learning,” Proceedings of the
Ninth International Conference on Machine Learning.

169

Chapter 11

Conclusions & Future Research Directions

“Whew!”—D. R. Wilson

This dissertation began with the goal of taking the basic nearest neighbor
algorithm, which had already been successful on a variety of applications, and
overcoming its weaknesses in order to create a flexible, robust learning model. This
chapter summarizes how the dissertation succeeded in this goal and outlines future
research directions.

1. Summary and Contributions

Chapter 1 identifies several weaknesses of the basic nearest neighbor algorithm,
including the following:

• Its distance functions are typically inappropriate for applications with both linear
and nominal attributes.

• It has large storage requirements because it stores all available training data in
the model.

• It is slow during execution because all of the training instances must be
searched in order to classify each new input vector.

• Its accuracy degrades rapidly with the introduction of noise.

• Its accuracy degrades with the introduction of irrelevant attributes.

• It has no ability to adjust its decision boundaries after storing the training data.

After the review in Chapter 2 of related work, the dissertation presented a
theoretical basis for the belief that learning algorithms really could be “improved” in
practice. It then set about addressing each of the above weaknesses.

Chapters 4 and 5 introduce heterogeneous distance functions that yield
significantly improved generalization accuracy on applications that have both
continuous and nominal attributes. These distance functions can be used in instance-
based learning systems, other learning algorithms with distance functions, as well as
a variety of other fields such as statistics and cognitive psychology (see Chapter 5 for
details).

Chapters 6 and 7 introduce pruning techniques that reduce the storage
requirements of instance-based systems and provide a corresponding increase in
classification speed. The most successful reduction methods also reduce the
sensitivity of the system to noise. These reduction techniques were applied to
instance-based learning systems as well as probabilistic neural networks and
introduce concepts that may be applied in related areas as well.

170

Chapter 8 presents a genetic algorithm used to find attribute weights for an
instance-based system in order to avoid the detrimental effects of irrelevant
attributes.

Chapter 9 introduces a distance-weighted instance-based learning algorithm that
allows for a more flexible concept description. It combines the use of cross-validation
and confidence to yield an accuracy estimation metric that allows for more precise
fine-tuning of parameters. This accuracy metric can be used to adjust other
parameters in instance-based learning systems beyond those used in the systems in
this dissertation. The metric can also be used in related systems such as probabilistic
neural networks.

Chapter 10 combines the most successful elements of the earlier chapters into a
comprehensive system called the Integrated Decremental Instance-Based Learning
(IDIBL) algorithm that achieves higher generalization accuracy than any of the
previous systems. It also achieves higher generalization accuracy in our experiments
than that reported for a variety of other popular machine learning and neural network
models.

The dissertation was successful in helping to overcome each of the noted
weaknesses of the basic nearest neighbor rule. The techniques used to overcome
each weakness are in most cases applicable to other instance-based learning
systems. In many cases the enhancements can be extended beyond the field of
instance-based learning systems into other machine learning algorithms, artificial
neural networks, and other fields.

The various enhancements to the basic nearest neighbor rule increase learning
time in most cases but yield improved accuracy, reduced storage and/or improved
classification time over the original algorithm. The price paid for these improvements
is paid just once during learning and the benefits last throughout the life of the
classifier.

The learning systems presented in this dissertation all perform classification, in
which the output value is always a discrete class. However, many of the
enhancements presented herein can also be applied to systems that perform
regression, where the output value is continuously valued.

Most of this dissertation has been either published or submitted for publication, so
the contributions of each chapter are distributed in a form such that they are available
to a wide audience. Source code for some of the systems is available on-line for use
by other researchers.

2. Future Research Directions

The IDIBL algorithm does not include the genetically derived attribute weights as
used in Chapter 8. While global attribute weights can be successful at identifying
completely irrelevant attributes, they are often not helpful—and sometimes harmful—
to generalization accuracy when an application does not have irrelevant attributes.

Some researchers have suggested that global attribute weights are not flexible
enough to aid generalization in many cases. Aha & Goldstone [1992] presented a
system in which a set of attribute weights for each instance was derived, in addition to
a set of global attribute weights. Depending on the distance of an input vector from a
particular instance, the weight for each attribute is then interpolated between the local

171

and global attribute weight. Such flexible weighting schemes have potential to further
improve accuracy.

As can be seen from the various tables of results presented in this dissertation, no
single algorithm performs best on all of the applications in any of our experiments. In
order to further improve generalization accuracy, it is important to understand the
conditions under which each algorithm fails as well as when it works well.

By identifying areas of strength and weakness among different algorithms, it
becomes possible to improve algorithms or choose between them in such a way that
generalization accuracy can be further improved.

Future research will focus on how to identify such strengths and weaknesses. It
will also focus on developing learning algorithms for local as well as global weighting
schemes in order to create learning algorithms that are able to adapt even more
effectively to individual problems.

Advances in Instance Based Learning Algorithms

D. Randall Wilson

Department of Computer Science

Ph. D. Degree, August 1997

ABSTRACT

The nearest neighbor algorithm and its derivatives, which are often referred to
collectively as instance-based learning algorithms, have been successful on a variety
of real-world applications. However, in its basic form, the nearest neighbor algorithm
suffers from inadequate distance functions, large storage requirements, slow execution
speed, a sensitivity to noise and irrelevant attributes, and an inability to adjust its
decision surfaces after storing the data. This dissertation presents a collection of
papers that seek to overcome each of these disadvantages. The most successful
enhancements are combined into a comprehensive system called the Integrated
Decremental Instance-Based Learning algorithm, which in experiments on 44
applications achieves higher generalization accuracy than other instance-based
learning algorithms. It also yields higher generalization accuracy than that reported
for 16 major machine learning and neural network models.

COMMITTEE APPROVAL:

