
Journal of Artificial Intelligence Research 6 (1997) 1-34 Submitted 5/96; published 1/97

© 1997 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Improved Heterogeneous Distance Functions

D. Randall Wilson RANDY@AXON.CS.BYU.EDU

Tony R. Martinez MARTINEZ@CS.BYU.EDU

Computer Science Department
Brigham Young University
Provo, UT 84602, USA

Abstract

Instance-based learning techniques typically handle continuous and linear input values well,
but often do not handle nominal input attributes appropriately. The Value Difference Metric
(VDM) was designed to find reasonable distance values between nominal attribute values, but it
largely ignores continuous attributes, requiring discretization to map continuous values into
nominal values. This paper proposes three new heterogeneous distance functions, called the
Heterogeneous Value Difference Metric (HVDM), the Interpolated Value Difference Metric
(IVDM), and the Windowed Value Difference Metric (WVDM). These new distance functions
are designed to handle applications with nominal attributes, continuous attributes, or both. In
experiments on 48 applications the new distance metrics achieve higher classification accuracy
on average than three previous distance functions on those datasets that have both nominal and
continuous attributes.

1. Introduction

Instance-Based Learning (IBL) (Aha, Kibler & Albert, 1991; Aha, 1992; Wilson & Martinez,
1993; Wettschereck, Aha & Mohri, 1995; Domingos, 1995) is a paradigm of learning in which
algorithms typically store some or all of the n available training examples (instances) from a
training set, T, during learning. Each instance has an input vector x, and an output class c.
During generalization, these systems use a distance function to determine how close a new
input vector y is to each stored instance, and use the nearest instance or instances to predict the
output class of y (i.e., to classify y). Some instance-based learning algorithms are referred to as
nearest neighbor techniques (Cover & Hart, 1967; Hart, 1968; Dasarathy, 1991), and memory-
based reasoning methods (Stanfill & Waltz, 1986; Cost & Salzberg, 1993; Rachlin et al., 1994)
overlap significantly with the instance-based paradigm as well. Such algorithms have had much
success on a wide variety of applications (real-world classification tasks).
 Many neural network models also make use of distance functions, including radial basis
function networks (Broomhead & Lowe, 1988; Renals & Rohwer, 1989; Wasserman, 1993),
counterpropagation networks (Hecht-Nielsen, 1987), ART (Carpenter & Grossberg, 1987), self-
organizing maps (Kohonen, 1990) and competitive learning (Rumelhart & McClelland, 1986).
Distance functions are also used in many fields besides machine learning and neural networks,
including statistics (Atkeson, Moore & Schaal, 1996), pattern recognition (Diday, 1974;
Michalski, Stepp & Diday, 1981), and cognitive psychology (Tversky, 1977; Nosofsky, 1986).

WILSON & MARTINEZ

2

There are many distance functions that have been proposed to decide which instance is
closest to a given input vector (Michalski, Stepp & Diday, 1981; Diday, 1974). Many of these
metrics work well for numerical attributes but do not appropriately handle nominal (i.e.,
discrete, and perhaps unordered) attributes.

The Value Difference Metric (VDM) (Stanfill & Waltz, 1986) was introduced to define an
appropriate distance function for nominal (also called symbolic) attributes. The Modified Value
Difference Metric (MVDM) uses a different weighting scheme than VDM and is used in the
PEBLS system (Cost & Salzberg, 1993; Rachlin et al., 1994). These distance metrics work well
in many nominal domains, but they do not handle continuous attributes directly. Instead, they
rely upon discretization (Lebowitz, 1985; Schlimmer, 1987), which can degrade generalization
accuracy (Ventura & Martinez, 1995).

Many real-world applications have both nominal and linear attributes, including, for
example, over half of the datasets in the UCI Machine Learning Database Repository (Merz &
Murphy, 1996). This paper introduces three new distance functions that are more appropriate
than previous functions for applications with both nominal and continuous attributes. These
new distance functions can be incorporated into many of the above learning systems and areas
of study, and can be augmented with weighting schemes (Wettschereck, Aha & Mohri, 1995;
Atkeson, Moore & Schaal, 1996) and other enhancements that each system provides.

The choice of distance function influences the bias of a learning algorithm. A bias is “a rule
or method that causes an algorithm to choose one generalized output over another” (Mitchell,
1980). A learning algorithm must have a bias in order to generalize, and it has been shown that
no learning algorithm can generalize more accurately than any other when summed over all
possible problems (Schaffer, 1994) (unless information about the problem other than the
training data is available). It follows then that no distance function can be strictly better than
any other in terms of generalization ability, when considering all possible problems with equal
probability.

However, when there is a higher probability of one class of problems occurring than another,
some learning algorithms can generalize more accurately than others (Wolpert, 1993). This is
not because they are better when summed over all problems, but because the problems on which
they perform well are more likely to occur. In this sense, one algorithm or distance function can
be an improvement over another in that it has a higher probability of good generalization than
another, because it is better matched to the kinds of problems that will likely occur.

Many learning algorithms use a bias of simplicity (Mitchell, 1980; Wolpert, 1993) to
generalize, and this bias is appropriate—meaning that it leads to good generalization
accuracy—for a wide variety of real-world applications, though the meaning of simplicity varies
depending upon the representational language of each learning algorithm. Other biases, such as
decisions made on the basis of additional domain knowledge for a particular problem (Mitchell,
1980), can also improve generalization.

In this light, the distance functions presented in this paper are more appropriate than those
used for comparison in that they on average yield improved generalization accuracy on a
collection of 48 applications. The results are theoretically limited to this set of datasets, but the
hope is that these datasets are representative of other problems that will be of interest (and occur
frequently) in the real world, and that the distance functions presented here will be useful in
such cases, especially those involving both continuous and nominal input attributes.

Section 2 provides background information on distance functions used previously. Section 3

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

3

introduces a distance function that combines Euclidean distance and VDM to handle both
continuous and nominal attributes. Sections 4 and 5 present two extensions of the Value
Difference Metric which allow for direct use of continuous attributes. Section 4 introduces the
Interpolated Value Difference Metric (IVDM), which uses interpolation of probabilities to avoid
problems related to discretization. Section 5 presents the Windowed Value Difference Metric
(WVDM), which uses a more detailed probability density function for a similar interpolation
process.

Section 6 presents empirical results comparing three commonly-used distance functions with
the three new functions presented in this paper. The results are obtained from using each of the
distance functions in an instance-based learning system on 48 datasets. The results indicate that
the new heterogeneous distance functions are more appropriate than previously used functions
on datasets with both nominal and linear attributes, in that they achieve higher average
generalization accuracy on these datasets. Section 7 discusses related work, and Section 8
provides conclusions and future research directions.

2. Previous Distance Functions

As mentioned in the introduction, there are many learning systems that depend upon a good
distance function to be successful. A variety of distance functions are available for such uses,
including the Minkowsky (Batchelor, 1978), Mahalanobis (Nadler & Smith, 1993), Camberra,
Chebychev, Quadratic, Correlation, and Chi-square distance metrics (Michalski, Stepp &
Diday, 1981; Diday, 1974); the Context-Similarity measure (Biberman, 1994); the Contrast
Model (Tversky, 1977); hyperrectangle distance functions (Salzberg, 1991; Domingos, 1995)
and others. Several of these functions are defined in Figure 1.

Although there have been many distance functions proposed, by far the most commonly
used is the Euclidean Distance function, which is defined as:

E(x, y) = (xa − ya)2

a=1

m

∑ (1)

where x and y are two input vectors (one typically being from a stored instance, and the other an
input vector to be classified) and m is the number of input variables (attributes) in the
application. The square root is often not computed in practice, because the closest instance(s)
will still be the closest, regardless of whether the square root is taken.

An alternative function, the city-block or Manhattan distance function, requires less
computation and is defined as:

M(x, y) = xa − ya
a=1

m

∑ (2)

The Euclidean and Manhattan distance functions are equivalent to the Minkowskian r-
distance function (Batchelor, 1978) with r = 2 and 1, respectively.

WILSON & MARTINEZ

4

Figure 1. Equations of selected distance functions.
(x and y are vectors of m attribute values).

D(x, y) = xi − yi
r

i=1

m

∑










1
r

D(x, y) = xi − yi()2

i=1

m

∑ D(x, y) = xi − yi
i=1

m

∑

D(x, y) =
xi − yi

xi + yii=1

m

∑ D(x, y) = max
i=1

m
xi − yi

D(x, y) = (x − y)T Q(x − y) = (xi − yi)qji
i=1

m

∑










j=1

m

∑ (x j − yj)

D(x, y) = 1
sumi

xi
sizex

− yi
sizey








2

i=1

m

∑

D(x, y) = 1 − 2
n(n −1)

sign(xi − x j)sign(yi − yj)
j=1

i−1

∑
i=1

m

∑

Minkowsky: Euclidean: Manhattan / city-block:

Camberra: Chebychev:

Quadratic:

Mahalanobis:

Correlation:

Chi-square:

Kendall’s Rank Correlation:

Q is a problem-specific positive
definite m × m weight matrix

V is the covariance matrix of A1..Am,
and Aj is the vector of values for
attribute j occuring in the training set
instances 1..n.

xi = yi and is the average value for
attribute i occuring in the training set.

sign(x)=-1, 0 or 1 if x < 0,
x = 0, or x > 0, respectively.

sumi is the sum of all values for attribute
i occuring in the training set, and sizex is
the sum of all values in the vector x.

D(x, y) = [detV]1/m(x − y)TV −1(x − y)

D(x, y) =
(xi − xi)(yi − yi)

i=1

m

∑

(xi − xi)
2

i=1

m

∑ (yi − yi)
2

i=1

m

∑

2.1. Normalization

One weakness of the basic Euclidean distance function is that if one of the input attributes has a
relatively large range, then it can overpower the other attributes. For example, if an application
has just two attributes, A and B, and A can have values from 1 to 1000, and B has values only
from 1 to 10, then B’s influence on the distance function will usually be overpowered by A’s
influence. Therefore, distances are often normalized by dividing the distance for each attribute
by the range (i.e., maximum-minimum) of that attribute, so that the distance for each attribute is
in the approximate range 0..1. In order to avoid outliers, it is also common to divide by the
standard deviation instead of range, or to “trim” the range by removing the highest and lowest
few percent (e.g., 5%) of the data from consideration in defining the range. It is also possible to
map any value outside this range to the minimum or maximum value to avoid normalized
values outside the range 0..1. Domain knowledge can often be used to decide which method is
most appropriate.

Related to the idea of normalization is that of using attribute weights and other weighting

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

5

schemes. Many learning systems that use distance functions incorporate various weighting
schemes into their distance calculations (Wettschereck, Aha & Mohri, 1995; Atkeson, Moore &
Schaal, 1996). The improvements presented in this paper are independent of such schemes, and
most of the various weighting schemes (as well as other enhancements such as instance pruning
techniques) can be used in conjunction with the new distance functions presented here.

2.2. Attribute Types

None of the distance functions shown in Figure 1, including Euclidean distance, appropriately
handle non-continuous input attributes.

An attribute can be linear or nominal, and a linear attribute can be continuous or discrete. A
continuous (or continuously-valued) attribute uses real values, such as the mass of a planet or
the velocity of an object. A linear discrete (or integer) attribute can have only a discrete set of
linear values, such as number of children.

It can be argued that any value stored in a computer is discrete at some level. The reason
continuous attributes are treated differently is that they can have so many different values that
each value may appear only rarely (perhaps only once in a particular application). This causes
problems for algorithms such as VDM (described in Section 2.4) that depend on testing two
values for equality, because two continuous values will rarely be equal, though they may be
quite close to each other.

A nominal (or symbolic) attribute is a discrete attribute whose values are not necessarily in
any linear order. For example, a variable representing color might have values such as red,
green, blue, brown, black and white, which could be represented by the integers 1 through 6,
respectively. Using a linear distance measurement such as (1) or (2) on such values makes little
sense in this case.

2.3. Heterogeneous Euclidean-Overlap Metric (HEOM)

One way to handle applications with both continuous and nominal attributes is to use a
heterogeneous distance function that uses different attribute distance functions on different
kinds of attributes. One approach that has been used is to use the overlap metric for nominal
attributes and normalized Euclidean distance for linear attributes.

For the purposes of comparison during testing, we define a heterogeneous distance function
that is similar to that used by IB1, IB2 and IB3 (Aha, Kibler & Albert, 1991; Aha, 1992) as well
as that used by Giraud-Carrier & Martinez (1995). This function defines the distance between
two values x and y of a given attribute a as:

da(x, y) =
1, if x or y is unknown, else

overlap(x, y), if a is nominal, else

rn_ diff a(x, y)






(3)

Unknown attribute values are handled by returning an attribute distance of 1 (i.e., a maximal
distance) if either of the attribute values is unknown. The function overlap and the range-
normalized difference rn_diff are defined as:

overlap(x, y) =
0, if x = y

1, otherwise




(4)

WILSON & MARTINEZ

6

rn_ diff a(x, y) = | x − y|
rangea

(5)

The value rangea is used to normalize the attributes, and is defined as:

 rangea= maxa- mina (6)

where maxa and mina are the maximum and minimum values, respectively, observed in the
training set for attribute a. This means that it is possible for a new input vector to have a value
outside this range and produce a difference value greater than one. However, such cases are
rare, and when they do occur, a large difference may be acceptable anyway. The normalization
serves to scale the attribute down to the point where differences are almost always less than one.

The above definition for da returns a value which is (typically) in the range 0..1, whether the
attribute is nominal or linear. The overall distance between two (possibly heterogeneous) input
vectors x and y is given by the Heterogeneous Euclidean-Overlap Metric function HEOM(x,y):

HEOM(x, y) = da(xa , ya)2

a=1

m

∑ (7)

This distance function removes the effects of the arbitrary ordering of nominal values, but its
overly simplistic approach to handling nominal attributes fails to make use of additional
information provided by nominal attribute values that can aid in generalization.

2.4. Value Difference Metric (VDM)

The Value Difference Metric (VDM) was introduced by Stanfill and Waltz (1986) to provide an
appropriate distance function for nominal attributes. A simplified version of the VDM (without
the weighting schemes) defines the distance between two values x and y of an attribute a as:

vdma(x, y) =
Na,x,c

Na,x
−

Na,y,c

Na,yc=1

C
∑

q

= Pa,x,c − Pa,y,c
q

c=1

C
∑ (8)

where
• Na,x is the number of instances in the training set T that have value x for attribute a;
• Na,x,c is the number of instances in T that have value x for attribute a and output class c;
• C is the number of output classes in the problem domain;
• q is a constant, usually 1 or 2; and
• Pa,x,c is the conditional probability that the output class is c given that attribute a has the

value x, i.e., P(c | xa). As can be seen from (8), Pa,x,c is defined as:

Pa,x,c =
Na,x,c

Na,x
(9)

where Na,x is the sum of Na,x,c over all classes, i.e.,

 Na,x = Na,x,c
c=1

C
∑ (10)

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

7

and the sum of Pa,x,c over all C classes is 1 for a fixed value of a and x.
Using the distance measure vdma(x,y), two values are considered to be closer if they have

more similar classifications (i.e., more similar correlations with the output classes), regardless
of what order the values may be given in. In fact, linear discrete attributes can have their values
remapped randomly without changing the resultant distance measurements.

For example, if an attribute color has three values red, green and blue, and the application is
to identify whether or not an object is an apple, red and green would be considered closer than
red and blue because the former two both have similar correlations with the output class apple.

The original VDM algorithm (Stanfill & Waltz, 1986) makes use of feature weights that are
not included in the above equations, and some variants of VDM (Cost & Salzberg, 1993;
Rachlin et al., 1994; Domingos, 1995) have used alternate weighting schemes. As discussed
earlier, the new distance functions presented in this paper are independent of such schemes and
can in most cases make use of similar enhancements.

One problem with the formulas presented above is that they do not define what should be
done when a value appears in a new input vector that never appeared in the training set. If
attribute a never has value x in any instance in the training set, then Na,x,c for all c will be 0, and
Na,x (which is the sum of Na,x,c over all classes) will also be 0. In such cases Pa,x,c = 0/0,
which is undefined. For nominal attributes, there is no way to know what the probability should
be for such a value, since there is no inherent ordering to the values. In this paper we assign
Pa,x,c the default value of 0 in such cases (though it is also possible to let Pa,x,c = 1/C, where C
is the number of output classes, since the sum of Pa,x,c for c = 1..C is always 1.0).

If this distance function is used directly on continuous attributes, the values can all
potentially be unique, in which case Na,x is 1 for every value x, and Na,x,c is 1 for one value of c
and 0 for all others for a given value x. In addition, new vectors are likely to have unique
values, resulting in the division by zero problem above. Even if the value of 0 is substituted for
0/0, the resulting distance measurement is nearly useless.

Even if all values are not unique, there are often enough different values for a continuous
attribute that the statistical sample is unreliably small for each value, and the distance measure
is still untrustworthy. Because of these problems, it is inappropriate to use the VDM directly on
continuous attributes.

2.5. Discretization

One approach to the problem of using VDM on continuous attributes is discretization
(Lebowitz, 1985; Schlimmer, 1987; Ventura, 1995). Some models that have used the VDM or
variants of it (Cost & Salzberg, 1993; Rachlin et al., 1994; Mohri & Tanaka, 1994) have
discretized continuous attributes into a somewhat arbitrary number of discrete ranges, and then
treated these values as nominal (discrete unordered) values. This method has the advantage of
generating a large enough statistical sample for each nominal value that the P values have some
significance. However, discretization can lose much of the important information available in
the continuous values. For example, two values in the same discretized range are considered
equal even if they are on opposite ends of the range. Such effects can reduce generalization
accuracy (Ventura & Martinez, 1995).

In this paper we propose three new alternatives, which are presented in the following three
sections. Section 3 presents a heterogeneous distance function that uses Euclidean distance for
linear attributes and VDM for nominal attributes. This method requires careful attention to the

WILSON & MARTINEZ

8

problem of normalization so that neither nominal nor linear attributes are regularly given too
much weight.

In Sections 4 and 5 we present two distance functions, the Interpolated Value Difference
Metric (IVDM) and the Windowed Value Difference Metric (WVDM), which use discretization
to collect statistics and determine values of Pa,x,c for continuous values occurring in the training
set instances, but then retain the continuous values for later use. During generalization, the
value of Pa,y,c for a continuous value y is interpolated between two other values of P, namely,
Pa,x1,c and Pa,x2,c, where x1 ≤ y ≤ x2. IVDM and WVDM are essentially different techniques
for doing a nonparametric probability density estimation (Tapia & Thompson, 1978) to
determine the values of P for each class. A generic version of the VDM algorithm, called the
discretized value difference metric (DVDM) is used for comparisons with the two new
algorithms.

3. Heterogeneous Value Difference Metric (HVDM)

As discussed in the previous section, the Euclidean distance function is inappropriate for
nominal attributes, and VDM is inappropriate for continuous attributes, so neither is sufficient
on its own for use on a heterogeneous application, i.e., one with both nominal and continuous
attributes.

In this section, we define a heterogeneous distance function HVDM that returns the distance
between two input vectors x and y. It is defined as follows:

HVDM(x, y) = da
2(xa , ya)

a=1

m

∑ (11)

where m is the number of attributes. The function da(x,y) returns a distance between the two
values x and y for attribute a and is defined as:

da(x, y) =
1, if x or y is unknown; otherwise...

normalized_ vdma(x, y), if a is nominal

normalized_ diff a(x, y), if a is linear






(12)

The function da(x,y) uses one of two functions (defined below in Section 3.1), depending on
whether the attribute is nominal or linear. Note that in practice the square root in (11) is not
typically performed because the distance is always positive, and the nearest neighbor(s) will still
be nearest whether or not the distance is squared. However, there are some models (e.g.,
distance-weighted k-nearest neighbor, Dudani, 1976) that require the square root to be
evaluated.

Many applications contain unknown input values which must be handled appropriately in a
practical system (Quinlan, 1989). The function da(x,y) therefore returns a distance of 1 if either
x or y is unknown, as is done by Aha, Kibler & Albert (1991) and Giraud-Carrier & Martinez
(1995). Other more complicated methods have been tried (Wilson & Martinez, 1993), but with
little effect on accuracy.

The function HVDM is similar to the function HOEM given in Section 2.3, except that it

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

9

uses VDM instead of an overlap metric for nominal values and it also normalizes differently. It
is also similar to the distance function used by RISE 2.0 (Domingos, 1995), but has some
important differences noted below in Section 3.2.

Section 3.1 presents three alternatives for normalizing the nominal and linear attributes.
Section 3.2 presents experimental results which show that one of these schemes provides better
normalization than the other two on a set of several datasets. Section 3.3 gives empirical results
comparing HVDM to two commonly-used distance functions.

3.1. Normalization

As discussed in Section 2.1, distances are often normalized by dividing the distance for each
variable by the range of that attribute, so that the distance for each input variable is in the range
0..1. This is the policy used by HEOM in Section 2.3. However, dividing by the range allows
outliers (extreme values) to have a profound effect on the contribution of an attribute. For
example, if a variable has values which are in the range 0..10 in almost every case but with one
exceptional (and possibly erroneous) value of 50, then dividing by the range would almost
always result in a value less than 0.2. A more robust alternative in the presence of outliers is to
divide the values by the standard deviation to reduce the effect of extreme values on the typical
cases.

For the new heterogeneous distance metric HVDM, the situation is more complicated
because the nominal and numeric distance values come from different types of measurements:
numeric distances are computed from the difference between two linear values, normalized by
standard deviation, while nominal attributes are computed from a sum of C differences of
probability values (where C is the number of output classes). It is therefore necessary to find a
way to scale these two different kinds of measurements into approximately the same range to
give each variable a similar influence on the overall distance measurement.

Since 95% of the values in a normal distribution fall within two standard deviations of the
mean, the difference between numeric values is divided by 4 standard deviations to scale each
value into a range that is usually of width 1. The function normalized_diff is therefore defined
as shown below in Equation 13:

normalized_ diff a(x, y) =
x − y

4σa
(13)

where σa is the standard deviation of the numeric values of attribute a.
Three alternatives for the function normalized_vdm were considered for use in the

heterogeneous distance function. These are labeled N1, N2 and N3, and the definitions of each
are given below:

N1: normalized_ vdm1a(x, y) =
Na,x,c

Na,x
−

Na,y,c

Na,yc=1

C

∑ (14)

N2: normalized_ vdm2a(x, y) =
Na,x,c

Na,x
−

Na,y,c

Na,y

2

c=1

C

∑ (15)

WILSON & MARTINEZ

10

N3: normalized_ vdm3a(x, y) = C *
Na,x,c

Na,x
−

Na,y,c

Na,y

2

c=1

C

∑ (16)

The function N1 is Equation (8) with q=1. This is similar to the formula used in PEBLS
(Rachlin et al., 1994) and RISE (Domingos, 1995) for nominal attributes.

N2 uses q=2, thus squaring the individual differences. This is analogous to using Euclidean
distance instead of Manhattan distance. Though slightly more expensive computationally, this
formula was hypothesized to be more robust than N1 because it favors having all of the class
correlations fairly similar rather than having some very close and some very different. N1
would not be able to distinguish between these two. In practice the square root is not taken,
because the individual attribute distances are themselves squared by the HVDM function.

N3 is the function used in Heterogeneous Radial Basis Function Networks (Wilson &
Martinez, 1996), where HVDM was first introduced.

3.2. Normalization Experiments

In order to determine whether each normalization scheme N1, N2 and N3 gave unfair weight to
either nominal or linear attributes, experiments were run on 15 databases from the machine
learning database repository at the University of California, Irvine (Merz & Murphy, 1996). All
of the datasets for this experiment have at least some nominal and some linear attributes, and
thus require a heterogeneous distance function.

In each experiment, five-fold cross validation was used. For each of the five trials, the
distance between each instance in the test set and each instance in the training set was
computed. When computing the distance for each attribute, the normalized_diff function was
used for linear attributes, and the normalized_vdm function N1, N2, or N3 was used (in each of
the three respective experiments) for nominal attributes.

The average distance (i.e., sum of all distances divided by number of comparisons) was
computed for each attribute. The average of all the linear attributes for each database was
computed and these averages are listed under the heading “avgLin” in Table 1.

Table 1. Average attribute distance for linear and nominal attributes.

N1 N2 N3
Database avgLin avgNom avgNom avgNom #Nom. #Lin. #C
Anneal 0.427 0.849 0.841 0.859 29 9 6
Australian 0.215 0.266 0.188 0.266 8 6 2
Bridges 0.328 0.579 0.324 0.808 7 4 7
Crx 0.141 0.268 0.193 0.268 9 6 2
Echocardiogram 0.113 0.487 0.344 0.487 2 7 2
Flag 0.188 0.372 0.195 0.552 18 10 8
Heart 0.268 0.323 0.228 0.323 6 7 2
Heart.Cleveland 0.271 0.345 0.195 0.434 6 7 5
Heart.Hungarian 0.382 0.417 0.347 0.557 6 7 5
Heart.Long-Beach-VA 0.507 0.386 0.324 0.417 6 7 5
Heart.More 0.360 0.440 0.340 0.503 6 7 5
Heart.Swiss 0.263 0.390 0.329 0.421 6 7 5
Hepatitis 0.271 0.205 0.158 0.205 13 6 2
Horse-Colic 0.444 0.407 0.386 0.407 16 7 2
Soybean-Large 0.309 0.601 0.301 0.872 29 6 19
Average 0.299 0.422 0.313 0.492 11 7 5

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

11

Figure 4. Average distances for N3.

Nominal

Linear

0

.2

.4

.6

.8

1

A
ve

ra
ge

 d
is

ta
nc

e

Number of output classes
192 5 6 7 8 Avg2 2 2 2 2 5 5 5 5

Figure 3. Average distances for N2.

Nominal

Linear

0

.2

.4

.6

.8

1

A
ve

ra
ge

 d
is

ta
nc

e

192 5 6 7 8 Avg2 2 2 2 2 5 5 5 5
Number of output classes

Figure 2. Average distances for N1.

Nominal

Linear

0

.2

.4

.6

.8

1

A
ve

ra
ge

 d
is

ta
nc

e

Number of output classes
192 5 6 7 8 Avg2 2 2 2 2 5 5 5 5

The averages of all the nominal attributes for each of the three normalization schemes are
listed under the headings “avgNom” in Table 1 as well. The average distance for linear
variables is exactly the same regardless of whether N1, N2 or N3 is used, so this average is
given only once. Table 1 also lists the number of nominal (“#Nom.”) and number of linear
(“#Lin.”) attributes in each database, along with the number of output classes (“#C”).

As can be seen from the overall averages in the first four columns of the last row of
Table 1, N2 is closer than N1 or N3. However, it is important to understand the reasons behind
this difference in order to know if the normalization scheme N2 will be more robust in general.

Figures 2-4 graphically display the averages shown in Table 1 under the headings N1, N2
and N3, respectively, ordered from left to right by the number of output classes. We
hypothesized that as the number of output classes grows, the normalization would get worse for
N3 if it was indeed not appropriate to add the scaling factor C to the sum. The length of each
line indicates how much difference there is between
the average distance for nominal attributes and
linear attributes. An ideal normalization scheme
would have a difference of zero, and longer lines
indicate worse normalization.

As the number of output classes grows, the
difference for N3 between the linear distances and
the nominal distances grows wider in most cases.
N2, on the other hand, seems to remain quite close
independent of the number of output classes.
Interestingly, N1 does almost as poorly as N3, even
though it does not use the scaling factor C.
Apparently the squaring factor provides for a more
well-rounded distance metric on nominal attributes
similar to that provided by using Euclidean distance
instead of Manhattan distance on linear attributes.

The underlying hypothesis behind performing
normalization is that proper normalization will
typically improve generalization accuracy. A
nearest neighbor classifier (with k=1) was
implemented using HVDM as the distance metric.
The system was tested on the heterogeneous
datasets appearing in Table 1 using the three
different normalization schemes discussed above,
using ten-fold cross-validation (Schaffer, 1993), and
the results are summarized in Table 2. All the
normalization schemes used the same training sets
and test sets for each trial. Bold entries indicate
which scheme had the highest accuracy. An
asterisk indicates that the difference was greater that
1% over the next highest scheme.

As can be seen from the table, the normalization
scheme N2 had the highest accuracy, and N1 was

WILSON & MARTINEZ

12

 Table 2. Generalization accuracy

using N1, N2 and N3.

Database
Anneal
Australian
Bridges
Crx
Echocardiogram
Flag
Heart.Cleveland
Heart.Hungarian
Heart.Long-Beach-Va
Heart.More
Heart
Heart.Swiss
Hepatitis
Horse-Colic
Soybean-Large
Average

N3
94.99
81.59
59.55
81.01
94.82
51.50
71.61
75.82
70.00*
72.48
89.49
75.19
77.33
60.53
87.89
76.25

N2
94.61
81.45
59.64
80.87
94.82
55.82*
76.56*
76.85*
65.50
72.09
89.49
78.52*
76.67
60.53
90.88*
76.95

N1
93.98
71.30
43.36
70.29
70.36
28.95
73.88
70.75
65.50
60.03
88.46
74.81
73.50
64.75*
41.45
66.09

substantially lower than the other two. N2
and N3 each had the highest accuracy for
8 domains. More significantly, N2 was
over 1% higher 5 times compared to N1
being over 1% higher on just one dataset.
N3 was higher than the other two on just
one dataset, and had a lower average
accuracy than N2.

These results support the hypothesis
that the normalization scheme N2
achieves higher generalization accuracy
than N1 or N3 (on these datasets) due to
its more robust normalization though
accuracy for N3 is almost as good as N2.

Note that proper normalization will not
always necessarily improve generalization
accuracy. If one attribute is more
important than the others in classification, then giving it a higher weight may improve
classification. Therefore, if a more important attribute is given a higher weight accidentally by
poor normalization, it may actually improve generalization accuracy. However, this is a
random improvement that is not typically the case. Proper normalization should improve
generalization in more cases than not when used in typical applications.
 As a consequence of the above results, N2 is used as the normalization scheme for HVDM,
and the function normalized_vdm is defined as in (15).

3.3. Empirical Results of HVDM vs. Euclidean and HOEM
A nearest neighbor classifier (with k=1) using the three distance functions listed in Table 3 was
tested on 48 datasets from the UCI machine learning database repository. Of these 48 datasets,
the results obtained on the 35 datasets that have at least some nominal attributes are shown in
Table 3.

The results are approximately equivalent on datasets with only linear attributes, so the results
on the remaining datasets are not shown here, but can be found in Section 6. 10-fold cross-
validation was again used, and all three distance metrics used the same training sets and test sets
for each trial.

The results of these experiments are shown in Table 3. The first column lists the name of the
database (“.test” means the database was originally meant to be used as a test set, but was
instead used in its entirety as a separate database). The second column shows the results
obtained when using the Euclidean distance function normalized by standard deviation on all
attributes, including nominal attributes. The next column shows the generalization accuracy
obtained by using the HOEM metric, which uses range-normalized Euclidean distance for linear
attributes and the overlap metric for nominal attributes. The final column shows the accuracy
obtained by using the HVDM distance function which uses the standard-deviation-normalized
Euclidean distance (i.e., normalized_diff as defined in Equation 13) on linear attributes and the
normalized_vdm function N2 on nominal attributes.

The highest accuracy obtained for each database is shown in bold. Entries in the Euclid. and

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

13

Table 3. Generalization accuracy of the
Euclidean, HOEM, and HVDM distance functions.

Database
Anneal
Audiology
Audiology.Test
Australian
Bridges
Crx
Echocardiogram
Flag
Heart.Cleveland
Heart.Hungarian
Heart.Long-Beach-Va
Heart.More
Heart.Swiss
Hepatitis
Horse-Colic
House-Votes-84
Image.Segmentation
Led+17
Led-Creator
Monks-1.Test
Monks-2.Test
Monks-3.Test
Mushroom
Promoters
Soybean-Large
Soybean-Small
Thyroid.Allbp
Thyroid.Allhyper
Thyroid.Allhypo
Thyroid.Allrep
Thyroid.Dis
Thyroid.Hypothyroid
Thyroid.Sick-Euthyroid
Thyroid.Sick
Zoo
Average:

Euclid.
94.99
60.50
41.67
80.58
58.64
78.99
94.82
48.95
73.94
73.45
71.50
72.09
93.53
77.50
65.77
93.12
92.86
42.90
57.20
77.08
59.04
87.26

100.00
73.73
87.26

100.00
94.89
97.00
90.39
96.14
98.21
93.42
68.23
86.93
97.78
79.44

HOEM
94.61
72.00
75.00
81.16
53.73
81.01
94.82
48.84
74.96
74.47
71.00
71.90
91.86
77.50
60.82
93.12
93.57
42.90
57.20
69.43
54.65
78.49

100.00
82.09
89.20

100.00
94.89
97.00
90.39
96.14
98.21
93.42
68.23
86.89
94.44
80.11

HVDM
94.61
77.50
78.33
81.45
59.64
80.87
94.82
55.82
76.56
76.85
65.50
72.09
89.49
76.67
60.53
95.17
92.86
60.70
56.40
68.09
97.50

100.00
100.00
92.36
90.88

100.00
95.00
96.86
90.29
96.11
98.21
93.36
68.23
86.61
98.89
83.38

<
<

<

<

*

<

<
*

<
<

<
<

*

<

*

<

<
*

<
<

<

*

*

HOEM columns that are significantly
higher than HVDM (at a 90% or higher
confidence level, using a two-tailed
paired t test) are marked with an
asterisk (*). Entries that are
significantly lower than HVDM are
marked with a “less-than” sign (<).

As can be seen from Table 3, the
HVDM distance function’s overall
average accuracy was higher than that
of the other two metrics by over 3%.
HVDM achieved as high or higher
generalization accuracy than the other
two distance functions in 21 of the 35
datasets. The Euclidean distance
function was highest in 18 datasets,
and HOEM was highest in only 12
datasets.

HVDM was significantly higher
than the Euclidean distance function on
10 datasets, and significantly lower on
only 3. Similarly, HVDM was higher
than HOEM on 6 datasets, and
significantly lower on only 4.

These results support the hypothesis
that HVDM handles nominal attributes
more appropriately than Euclidean
distance or the heterogeneous
Euclidean-overlap metric, and thus
tends to achieve higher generalization
accuracy on typical applications.

4. Interpolated Value Difference Metric (IVDM)

In this section and Section 5 we introduce distance functions that allow VDM to be applied
directly to continuous attributes. This alleviates the need for normalization between attributes.
It also in some cases provides a better measure of distance for continuous attributes than linear
distance.

For example, consider an application with an input attribute height and an output class that
indicates whether a person is a good candidate to be a fighter pilot in a particular airplane.
Those individuals with heights significantly below or above the preferred height might both be
considered poor candidates, and thus it could be beneficial to consider their heights as more
similar to each other than to those of the preferred height, even though they are farther apart in a
linear sense.

WILSON & MARTINEZ

14

On the other hand, linear attributes for which linearly distant values tend to indicate different
classifications should also be handled appropriately. The Interpolated Value Difference Metric
(IVDM) handles both of these situations, and handles heterogeneous applications robustly.

A generic version of the VDM distance function, called the discretized value difference
metric (DVDM) will be used for comparisons with extensions of VDM presented in this paper.

4.1. IVDM Learning Algorithm

The original value difference metric (VDM) uses statistics derived from the training set
instances to determine a probability Pa,x,c that the output class is c given the input value x for
attribute a.

When using IVDM, continuous values are discretized into s equal-width intervals (though
the continuous values are also retained for later use), where s is an integer supplied by the user.
Unfortunately, there is currently little guidance on what value of s to use. A value that is too
large will reduce the statistical strength of the values of P, while a value too small will not allow
for discrimination among classes. For the purposes of this paper, we use a heuristic to
determine s automatically: let s be 5 or C , whichever is greatest, where C is the number of
output classes in the problem domain. Current research is examining more sophisticated
techniques for determining good values of s, such as cross-validation, or other statistical
methods (e.g., Tapia & Thompson, 1978, p. 67). (Early experimental results indicate that the
value of s may not be critical as long as s ≥ C and s « n, where n is the number of instances in
the training set.)

The width wa of a discretized interval for attribute a is given by:

wa =
maxa − mina

s
(17)

where maxa and mina are the maximum and minimum value, respectively, occurring in the
training set for attribute a.

As an example, consider the Iris database from the UCI machine learning databases. The
Iris database has four continuous input attributes, the first of which is sepal length. Let T be a
training set consisting of 90% of the 150 available training instances, and S be a test set
consisting of the remaining 10%.

In one such division of the training set, the values in T for the sepal length attribute ranged
from 4.3 to 7.9. There are only three output classes in this database, so we let s=5, resulting in a
width of |7.9 - 4.3| / 5 = 0.72. Note that since the discretization is part of the learning process, it
would be unfair to use any instances in the test set to help determine how to discretize the
values. The discretized value v of a continuous value x for attribute a is an integer from 1 to s,
and is given by:

v = discretizea(x) =
x, if a is discrete, else

s, if x = maxa , else

(x − mina) / wa  +1









(18)

After deciding upon s and finding wa, the discretized values of continuous attributes can be

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

15

used just like discrete values of nominal attributes in finding Pa,x,c. Figure 5 lists pseudo-code
for how this is done.

Figure 5. Pseudo code for finding Pa,x,c.

LearnP(training set T)
For each attribute a

For each instance i in T
Let x be the input value for attribute a of instance i.
v = discretizea(x) [which is just x if a is discrete]
Let c be the output class of instance i.
Increment Na,v,c by 1.
Increment Na,v by 1.

For each discrete value v (of attribute a)
For each class c

If Na,v=0
Then Pa,v,c=0

Else Pa,v,c = Na,v,c / Na,v
Return 3-D array Pa,v,c.

For the first attribute of the Iris database, the values of Pa,x,c are displayed in Figure 6. For
each of the five discretized ranges of x, the probability for each of the three corresponding
output classes are shown as the bar heights. Note that the heights of the three bars sum to 1.0
for each discretized range. The bold integers indicate the discretized value of each range. For
example, a sepal length greater than or equal to 5.74 but less than 6.46 would have a discretized
value of 3.

0

0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9

1.0

1. Iris
Setosa

2. Iris
Versicolor

3. Iris
Viginica

4.3 5.02 5.74 6.46 7.18 7.9

Sepal Length (in cm)

Pr
ob

ab
ili

ty

1 2 3 4 5
Bold =
discretized
range number.

.867

.100
.033

.485
.455

.061 .026

.474.500

0.0

.391

.609

1.0

0.0 0.0

Output Class:

Figure 6. Pa,x,c for a=1, x=1..5, c=1..3, on the first attribute of the Iris database.

4.2. IVDM and DVDM Generalization

Thus far the DVDM and IVDM algorithms learn identically. However, at this point the DVDM
algorithm need not retain the original continuous values because it will use only the discretized
values during generalization. On the other hand, the IVDM will use the continuous values.

During generalization, an algorithm such as a nearest neighbor classifier can use the distance
function DVDM, which is defined as follows:

DVDM(x, y) = vdma(discretizea(xa),discretizea(ya)) 2

a=1

m

∑ (19)

WILSON & MARTINEZ

16

where discretizea is as defined in Equation (18) and vdma is defined as in Equation (8), with
q=2. We repeat it here for convenience:

vdma(x, y) = Pa,x,c − Pa,y,c
2

c=1

C

∑ (20)

Unknown input values (Quinlan, 1989) are treated as simply another discrete value, as was done
in (Domingos, 1995).

Table 4. Example from the Iris database.

Input Attributes
 1 2 3 4 Output Class

A: 5.0 3.6 1.4 0.2 -> 1 (Iris Setosa)
B: 5.7 2.8 4.5 1.3 -> 2 (Iris Versicolor)

y: 5.1 3.8 1.9 0.4

As an example, consider two training instances A and B as shown in Table 4, and a new
input vector y to be classified. For attribute a=1, the discretized values for A, B, and y are 1, 2,
and 2, respectively. Using values from Figure 6, the distance for attribute 1 between y and A is:

|.867-.485|2 + |.1-.455|2 + |.033-.061|2 = .273

while the distance between y and B is 0, since they have the same discretized value.
Note that y and B have values on different ends of range 2, and are not actually nearly as

close as y and A are. In spite of this fact, the discretized distance function says that y and B are
equal because they happen to fall into the same discretized range.

IVDM uses interpolation to alleviate such problems. IVDM assumes that the Pa,x,c values
hold true only at the midpoint of each range, and interpolates between midpoints to find P for
other attribute values.

Figure 7 shows the P values for the second output class (Iris Versicolor) as a function of the
first attribute value (sepal length). The dashed line indicates what P value is used by DVDM,
and the solid line shows what IVDM uses.

0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9
1.0

0
4 4.3 5.02 5.74 6.46 7.18 7.9

Sepal Length (in cm)

1 2 3 4 5

Center
points

Bold =
discretized
range number.

DVDM

IVDM

Pr
ob

ab
ili

ty
 o

f
C

la
ss

 2

Figure 7. P1,x,2 values from the DVDM and IVDM for attribute 1, class 2 of the Iris database.

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

17

The distance function for the Interpolated Value Difference Metric is defined as:

IVDM(x, y) = ivdma(xa , ya)2

a=1

m

∑ (21)

where ivdma is defined as:

ivdma(x, y) =
vdma(x, y), if a is discrete

pa,c(x) − pa,c(y)
2
, otherwise

c=1

C

∑





(22)

The formula for determining the interpolated probability value pa,c(x) of a continuous value x
for attribute a and class c is:

pa,c(x) = Pa,u,c +
x − mida,u

mida,u+1 − mida,u







* (Pa,u+1,c − Pa,u,c) (23)

In this equation, mida,u and mida,u+1 are midpoints of two consecutive discretized ranges such
that mida,u ≤ x < mida,u+1. Pa,u,c is the probability value of the discretized range u, which is
taken to be the probability value of the midpoint of range u (and similarly for Pa,u+1,c). The
value of u is found by first setting u = discretizea(x), and then subtracting 1 from u if x < mida,u.
The value of mida,u can then be found as follows:

 mida,u = mina + widtha * (u+.5) (24)

Figure 8 shows the values of pa,c(x) for attribute a=1 of the Iris database for all three output
classes (i.e. c=1, 2, and 3). Since there are no data points outside the range mina..maxa, the
probability value Pa,u,c is taken to be 0 when u < 1 or u > s, which can be seen visually by the
diagonal lines sloping toward zero on the outer edges of the graph. Note that the sum of the
probabilities for the three output classes sum to 1.0 at every point from the midpoint of range 1
through the midpoint of range 5.

Bold =
discretized
range number.4 4.3 5.02 5.74 6.46 7.18 7.9

Sepal Length (in cm)

1 2 3 4 5

1. Iris Setosa

2. Iris Versicolor

3. Iris Viginica

Output Class:

Pr
ob

ab
ili

ty
 o

f
C

la
ss

0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9
1.0

0

Figure 8. Interpolated probability values for attribute 1 of the Iris database.

WILSON & MARTINEZ

18

Table 6. Generalization for DVDM vs. IVDM.

Database
Annealing
Australian
Bridges
Credit Screening
Echocardiogram
Flag
Glass
Heart Disease
Heart (Cleveland)
Heart (Hungarian)
Heart (Long-Beach-Va)
Heart (More)
Heart (Swiss)
Hepatitis
Horse-Colic
Image Segmentation
Ionosphere
Iris
Liver Disorders
Pima Indians Diabetes
Satellite Image
Shuttle
Sonar
Thyroid (Allbp)
Thyroid (Allhyper)
Thyroid (Allhypo)
Thyroid (Allrep)
Thyroid (Dis)
Thyroid (Hypothyroid)
Thyroid (Sick)
Thyroid (Sick-Euthyroid)
Vehicle
Vowel
Wine
Average:

DVDM
94.99
83.04
56.73
80.14

100.00
58.76
56.06
80.37
79.86
81.30
71.00
72.29
88.59
80.58
76.75
92.38
92.60
92.00
55.04
71.89
87.06
96.17
78.45
94.86
96.93
89.36
96.86
98.29
93.01
88.24
88.82
63.72
91.47
94.38
83.08

IVDM
96.11
80.58
60.55
80.14

100.00
57.66
70.54
81.85
78.90
80.98
66.00
73.33
87.88
82.58
76.78
92.86
91.17
94.67
58.23
69.28
89.79
99.77
84.17
95.32
97.86
96.07
98.43
98.04
98.07
95.07
96.86
69.27
97.53
97.78
85.22

*

*

*
*

*
*
*

*
*
*
*
*
*

*

Table 5. Example of ivdm vs. vdm.

value p1,1(v) p1,2(v) p1,3(v) ivdm1(v,y) vdm1(v,y)
A 5.0 .687 .268 .046 .005 .273
B 5.7 .281 .463 .256 .188 0

y 5.1 .634 .317 .050

Using IVDM on the example instances in Table 4, the values for the first attribute are not
discretized as they are with DVDM, but are used to find interpolated probability values. In that
example, y has a value of 5.1, so p1,c(x) interpolates between midpoints 1 and 2, returning the
values shown in Table 5 for each of the three classes. Instance A has a value of 5.0, which also
falls between midpoints 1 and 2, but instance B has a value of 5.7, which falls between
midpoints 2 and 3.

As can be seen from Table 5, IVDM (using the single-attribute distance function ivdm)
returns a distance which indicates that y is closer to A than B (for the first attribute), which is
certainly the case here. DVDM (using the
discretized vdm), on the other hand, returns
a distance which indicates that the value of
y is equal to that of B, and quite far from A,
illustrating the problems involved with
using discretization.

The IVDM and DVDM algorithms were
implemented and tested on 48 datasets
from the UCI machine learning databases.
The results for the 34 datasets that contain
at least some continuous attributes are
shown in Table 6. (Since IVDM and
DVDM are equivalent on domains with
only discrete attributes, the results on the
remaining datasets are deferred to Section
6.) 10-fold cross-validation was again
used, and the average accuracy for each
database over all 10 trials is shown in
Table 6. Bold values indicate which value
was highest for each dataset. Asterisks (*)
indicates that the difference is statistically
significant at a 90% confidence level or
higher, using a two-tailed paired t-test.

On this set of datasets, IVDM had a
higher average generalization accuracy
overall than the discretized algorithm.
IVDM obtained higher generalization
accuracy than DVDM in 23 out of 34
cases, 13 of which were significant at the
90% level or above. DVDM had a higher

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

19

Define:
instance[a][1..n] as the list of all n instances in T sorted in ascending order by attribute a.
instance[a][i].val[a] as the value of attribute a for instance[a][i].
x as the center value of the current window, i.e., x=instance[a][i].val[a].
p[a][i][c] as the probability Pa,x,c that the output class is c given the input value x for

attribute a. Note that i is an index, the not value itself.
N[c] as the number Na,x,c of instances in the current window with output class c.
N as the total number Na,x of instances in the current window.
instance[a][in] as the first instance in the window.
instance[a][out] as the first instance outside the window. (i.e., the window contains

instances instance[a][in..out-1]).
w[a] as the window width for attribute a.

LearnWVDM(training set T)
For each continuous attribute a

Sort instance[a][1..n] in ascending order by attribute a, using a quicksort.
Initialize N and N[c] to 0, and in and out to 1 (i.e., start with an empty window).
For each i=1..n

Let x=instance[a][i].val[a].
// Expand window to include all instances in range
While (out < n) and (instance[a][out].val[a] < (x + w[a]/2))

Increment N[c], where c=the class of instance[a][out].
Increment N.
Increment out.

// Shrink window to exclude instances no longer in range
While (in < out) and (instance[a][in].val[a] < (x - w[a]/2))

Decrement N[c], where c=the class of instance[a][in].
Decrement N.
Increment in.

// Compute the probability value for each class from the current window
for each class c=1..C

p[a][i][c] = N[c] / N. (i.e., Pa,x,c = Na,x,c / Na,x).
Return the 3-D array p[a][i][c].

Figure 9. Pseudo code for the WVDM learning algorithm.

accuracy in 9 cases, but only one of those had a difference that was statistically significant.
These results indicate that the interpolated distance function is typically more appropriate

than the discretized value difference metric for applications with one or more continuous
attributes. Section 6 contains further comparisons of IVDM with other distance functions.

5. Windowed Value Difference Metric (WVDM)

The IVDM algorithm can be thought of as sampling the value of Pa,u,c at the midpoint mida,u of
each discretized range u. P is sampled by first finding the instances that have a value for
attribute a in the range mida,u ± wa / 2. Na,u is incremented once for each such instance, and
N a,u,c is also incremented for each instance whose output class is c , after which
Pa,u,c = Na,u,c / Na,u is computed. IVDM then interpolates between these sampled points to
provide a continuous but rough approximation to the function pa,c(x). It is possible to sample P
at more points and thus provide a closer approximation to the function pa,c(x), which may in
turn provide for more accurate distance measurements between values.

Figure 9 shows pseudo-code for the Windowed Value Difference Metric (WVDM). The
WVDM samples the value of Pa,x,c at each value x occurring in the training set for each

WILSON & MARTINEZ

20

attribute a, instead of only at the midpoints of each range. In fact, the discretized ranges are not
even used by WVDM on continuous attributes, except to determine an appropriate window
width, wa, which is the same as the range width used in DVDM and IVDM. The pseudo-code
for the learning algorithm used to determine Pa,x,c for each attribute value x is given in Figure 9.

For each value x occurring in the training set for attribute a, P is sampled by finding the
instances that have a value for attribute a in the range x ± wa / 2, and then computing Na,x,
Na,x,c, and Pa,x,c = Na,x,c / Na,x as before. Thus, instead of having a fixed number s of sampling
points, a window of instances, centered on each training instance, is used for determining the
probability at a given point. This technique is similar in concept to shifted histogram estimators
(Rosenblatt, 1956) and to Parzen window techniques (Parzen, 1962).

For each attribute the values are sorted (using an O(nlogn) sorting algorithm) so as to allow a
sliding window to be used and thus collect the needed statistics in O(n) time for each attribute.
The sorted order is retained for each attribute so that a binary search can be performed in O(log
n) time during generalization.

Values occurring between the sampled points are interpolated just as in IVDM, except that
there are now many more points available, so a new value will be interpolated between two
closer, more precise values than with IVDM.

WVDM_Find_P(attribute a,continuous value x)
// Find Pa,x,c for c=1..C, given a value x for attribute a.
Find i such that instance[a][i].val[a] ≤ x ≤ instance[a][i+1].val[a] (binary search).
x1 = instance[a][i].val[a] (unless i<1, in which case x1=min[a] - (w[a] / 2))
x2 = instance[a][i+1].val[a] (unless i>n, in which case x2=max[a] + (w[a] / 2))
For each class c=1..C

p1=p[a][i][c] (unless i<1, in which case p1=0)
p2=p[a][i+1][c] (unless i>n, in which case p2=0)
Pa,x,c = p1 + ((x-x1)/(x2-x1)) * (p2 - p1)

Return array Pa,x,1..C.

Figure 10. Pseudo-code for the WVDM probability interpolation (see Figure 9 for definitions).

The pseudo-code for the interpolation algorithm is given in Figure 10. This algorithm takes
a value x for attribute a and returns a vector of C probability values Pa,x,c for c=1..C. It first
does a binary search to find the two consecutive instances in the sorted list of instances for
attribute a that surround x. The probability for each class is then interpolated between that
stored for each of these two surrounding instances. (The exceptions noted in parenthesis handle
outlying values by interpolating towards 0 as is done in IVDM.)

Once the probability values for each of an input vector’s attribute values are computed, they
can be used in the vdm function just as the discrete probability values are.

The WVDM distance function is defined as:

WVDM(x, y) = wvdma(xa , ya)2

a=1

m

∑ (25)

and wvdma is defined as:

wvdma(x, y) =
vdma(x, y), if a is discrete

Pa,x,c − Pa,y,c
2
, otherwise

c=1

C

∑





(26)

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

21

Table 7. Generalization of WVDM vs. DVDM.

Database
Annealing
Australian
Bridges
Credit Screening
Echocardiogram
Flag
Glass
Heart Disease
Heart (Cleveland)
Heart (Hungarian)
Heart (Long-Beach-Va)
Heart (More)
Heart (Swiss)
Hepatitis
Horse-Colic
Image Segmentation
Ionosphere
Iris
Liver Disorders
Pima Indians Diabetes
Satellite Image
Shuttle
Sonar
Thyroid (Allbp)
Thyroid (Allhyper)
Thyroid (Allhypo)
Thyroid (Allrep)
Thyroid (Dis)
Thyroid (Hypothyroid)
Thyroid (Sick)
Thyroid (Sick-Euthyroid)
Vehicle
Vowel
Wine
Average:

DVDM
94.99
83.04
56.73
80.14

100.00
58.76
56.06
80.37
79.86
81.30
71.00
72.29
88.59
80.58
76.75
92.38
92.60
92.00
55.04
71.89
87.06
96.17
78.45
94.86
96.93
89.36
96.86
98.29
93.01
88.24
88.82
63.72
91.47
94.38
83.08

*

*
*

*
*
*
*
*
*

WVDM
95.87
82.46
56.64
81.45
98.57
58.74
71.49
82.96
80.23
79.26
68.00
73.33
88.72
79.88
74.77
93.33
91.44
96.00
57.09
70.32
89.33
99.61
84.19
95.29
97.50
90.18
97.07
98.00
96.96
97.11
94.40
65.37
96.21
97.22
84.68

Figure 11. Example of the WVDM probability landscape.

4 5 6 7 8

Pr
ob

ab
ili

ty
 o

f
C

la
ss 1. Iris Setosa

2. Iris Versicolor

3. Iris Viginica

Output Class:

Sepal Length (in cm)

0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8
0.9
1.0

0

where Pa,x,c is the interpolated probability value for the continuous value x as computed in
Figure 10. Note that we are typically finding the distance between a new input vector and an
instance in the training set. Since the
instances in the training set were used to
define the probability at each of their attribute
values, the binary search and interpolation is
unnecessary for training instances because
they can immediately recall their stored
probability values, unless pruning techniques
have been used.

One drawback to this approach is the
increased storage needed to retain C
probability values for each attribute value in
the training set. Execution time is not
significantly increased over IVDM or
DVDM. (See Section 6.2 for a discussion on
efficiency considerations).

Figure 11 shows the probability values for
each of the three classes for the first attribute
of the Iris database again, this time using the
windowed sampling technique. Comparing
Figure 11 with Figure 8 reveals that on this
attribute IVDM provides approximately the
same overall shape, but misses much of the
detail. For example, the peak occurring for
output class 2 at approximately sepal
length=5.75. In Figure 8 there is a flat line
which misses this peak entirely, due mostly to
the somewhat arbitrary position of the
midpoints at which the probability values are
sampled.

Table 7 summarizes the results of testing

WILSON & MARTINEZ

22

the WVDM algorithm on the same datasets as DVDM and IVDM. A bold entry again indicates
the highest of the two accuracy measurements, and an asterisk (*) indicates a difference that is
statistically significant at the 90% confidence level, using a two-tailed paired t-test.

On this set of databases, WVDM was an average of 1.6% more accurate than DVDM
overall. WVDM had a higher average accuracy than DVDM on 23 out of the 34 databases, and
was significantly higher on 9, while DVDM was only higher on 11 databases, and none of those
differences were statistically significant.

Section 6 provides further comparisons of WVDM with other distance functions, including
IVDM.

6. Empirical Comparisons and Analysis of Distance Functions

This section compares the distance functions discussed in this paper. A nearest neighbor
classifier was implemented using each of six different distance functions: Euclidean
(normalized by standard deviation) and HOEM as discussed in Section 2; HVDM as discussed
in Section 3; DVDM and IVDM as discussed in Section 4; and WVDM as discussed in Section
5. Figure 12 summarizes the definition of each distance function.

Figure 12. Summary of distance function definitions.

Continuous
Distance
Function

D(x, y) = da(xa , ya)2

a=1

m

∑

Linear
Discrete Nominal

xa − ya
σa

xa − ya
rangea

xa − ya
4σa

vdma(disca(xa),disca(ya))

ivdma(xa,ya)

Interpolate probabilities
from range midpoints.

wvdma(xa,ya)

Interpolate probabilities
from adjacent values.

WVDM

All functions use the same
overall distance function:

Euclidean

HOEM

HVDM

IVDM

DVDM

xa − ya
σa

0 if xa = ya
1 if xa ≠ ya

Definition of da(xa,ya) for each attribute type:

vdma(xa , ya)

where rangea = maxa − mina , and vdma(x, y) = Pa,x,c − Pa,y,c
2

c=1

C

∑

vdma(xa , ya)

vdma(xa , ya)

vdma(xa , ya)

Each distance function was tested on 48 datasets from the UCI machine learning databases,

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

23

again using 10-fold cross-validation. The average accuracy over all 10 trials is reported for
each test in Table 8. The highest accuracy achieved for each dataset is shown in bold. The
names of the three new distance functions presented in this paper (HVDM, IVDM and WVDM)
are also shown in bold to identify them.

Table 8 also lists the number of instances in each database (“#Inst.”), and the number of
continuous (“Con”), integer (“Int”, i.e., linear discrete), and nominal (“Nom”) input attributes.

 D i s t a n c e F u n c t i o n # of inputs
Database Euclid HOEM HVDM DVDM IVDM WVDM #Inst. Con Int Nom

Annealing 94.99 94.61 94.61 94.99 96.11 95.87 798 6 3 29
Audiology 60.50 72.00 77.50 77.50 77.50 77.50 200 0 0 69
Audiology (test) 41.67 75.00 78.33 78.33 78.33 78.33 26 0 0 69

Australian 80.58 81.16 81.45 83.04 80.58 82.46 690 6 0 8
Breast Cancer 94.99 95.28 94.99 95.57 95.57 95.57 699 0 9 0
Bridges 58.64 53.73 59.64 56.73 60.55 56.64 108 1 3 7
Credit Screening 78.99 81.01 80.87 80.14 80.14 81.45 690 6 0 9
Echocardiogram 94.82 94.82 94.82 100.00 100.00 98.57 132 7 0 2
Flag 48.95 48.84 55.82 58.76 57.66 58.74 194 3 7 18
Glass 72.36 70.52 72.36 56.06 70.54 71.49 214 9 0 0
Heart Disease 72.22 75.56 78.52 80.37 81.85 82.96 270 5 2 6
Heart (Cleveland) 73.94 74.96 76.56 79.86 78.90 80.23 303 5 2 6
Heart (Hungarian) 73.45 74.47 76.85 81.30 80.98 79.26 294 5 2 6
Heart (Long-Beach-Va) 71.50 71.00 65.50 71.00 66.00 68.00 200 5 2 6
Heart (More) 72.09 71.90 72.09 72.29 73.33 73.33 1541 5 2 6
Heart (Swiss) 93.53 91.86 89.49 88.59 87.88 88.72 123 5 2 6
Hepatitis 77.50 77.50 76.67 80.58 82.58 79.88 155 6 0 13
Horse-Colic 65.77 60.82 60.53 76.75 76.78 74.77 301 7 0 16
House-Votes-84 93.12 93.12 95.17 95.17 95.17 95.17 435 0 0 16
Image Segmentation 92.86 93.57 92.86 92.38 92.86 93.33 420 18 0 1
Ionosphere 86.32 86.33 86.32 92.60 91.17 91.44 351 34 0 0
Iris 94.67 95.33 94.67 92.00 94.67 96.00 150 4 0 0
LED+17 noise 42.90 42.90 60.70 60.70 60.70 60.70 10000 0 0 24
LED 57.20 57.20 56.40 56.40 56.40 56.40 1000 0 0 7
Liver Disorders 62.92 63.47 62.92 55.04 58.23 57.09 345 6 0 0
Monks-1 77.08 69.43 68.09 68.09 68.09 68.09 432 0 0 6
Monks-2 59.04 54.65 97.50 97.50 97.50 97.50 432 0 0 6
Monks-3 87.26 78.49 100.00 100.00 100.00 100.00 432 0 0 6
Mushroom 100.00 100.00 100.00 100.00 100.00 100.00 8124 0 1 21
Pima Indians Diabetes 71.09 70.31 71.09 71.89 69.28 70.32 768 8 0 0
Promoters 73.73 82.09 92.36 92.36 92.36 92.36 106 0 0 57
Satellite Image 90.21 90.24 90.21 87.06 89.79 89.33 4435 36 0 0
Shuttle 99.78 99.78 99.78 96.17 99.77 99.61 9253 9 0 0

Sonar 87.02 86.60 87.02 78.45 84.17 84.19 208 60 0 0
Soybean (Large) 87.26 89.20 90.88 92.18 92.18 92.18 307 0 6 29
Soybean (Small) 100.00 100.00 100.00 100.00 100.00 100.00 47 0 6 29
Thyroid (Allbp) 94.89 94.89 95.00 94.86 95.32 95.29 2800 6 0 22
Thyroid (Allhyper) 97.00 97.00 96.86 96.93 97.86 97.50 2800 6 0 22
Thyroid (Allhypo) 90.39 90.39 90.29 89.36 96.07 90.18 2800 6 0 22
Thyroid (Allrep) 96.14 96.14 96.11 96.86 98.43 97.07 2800 6 0 22

Thyroid (Dis) 98.21 98.21 98.21 98.29 98.04 98.00 2800 6 0 22
Thyroid (Hypothyroid) 93.42 93.42 93.36 93.01 98.07 96.96 3163 7 0 18
Thyroid (Sick-Euthyroid) 68.23 68.23 68.23 88.24 95.07 94.40 3163 7 0 18

Thyroid (Sick) 86.93 86.89 86.61 88.82 96.86 97.11 2800 6 0 22
Vehicle 70.93 70.22 70.93 63.72 69.27 65.37 846 18 0 0
Vowel 99.24 98.86 99.24 91.47 97.53 96.21 528 10 0 0
Wine 95.46 95.46 95.46 94.38 97.78 97.22 178 13 0 0
Zoo 97.78 94.44 98.89 98.89 98.89 98.89 90 0 0 16
Average: 80.78 81.29 83.79 84.06 85.56 85.24

Table 8. Summary of Generalization Accuracy

WILSON & MARTINEZ

24

On this set of 48 datasets, the three new distance functions (HVDM, IVDM and WVDM) did
substantially better than Euclidean distance or HOEM. IVDM had the highest average accuracy
(85.56%) and was almost 5% higher on average than Euclidean distance (80.78%), indicating
that it is a more robust distance function on these datasets, especially those with nominal
attributes. WVDM was only slightly lower than IVDM with 85.24% accuracy. Somewhat
surprisingly, DVDM was slightly higher than HVDM on these datasets, even though it uses
discretization instead of a linear distance on continuous attributes. All four of the VDM-based
distance functions outperformed Euclidean distance and HOEM.

Out of the 48 datasets, Euclidean distance had the highest accuracy 11 times; HOEM was
highest 7 times; HVDM, 14; DVDM, 19; IVDM, 25 and WVDM, 18.

For datasets with no continuous attributes, all four of the VDM-based distance functions
(HVDM, DVDM, IVDM and WVDM) are equivalent. On such datasets, the VDM-based
distance functions achieve an average accuracy of 86.6% compared to 78.8% for HOEM and
76.6% for Euclidean, indicating a substantial superiority on such problems.

For datasets with no nominal attributes, Euclidean and HVDM are equivalent, and all the
distance functions perform about the same on average except for DVDM, which averages about
4% less than the others, indicating the detrimental effects of discretization. Euclidean and
HOEM have similar definitions for applications without any nominal attributes, except that
Euclidean is normalized by standard deviation while HOEM is normalized by the range of each
attribute. It is interesting that the average accuracy over these datasets is slightly higher for
Euclidean than HOEM, indicating that the standard deviation may provide better normalization
on these datasets. However, the difference is small (less than 1%), and these datasets do not
contain many outliers, so the difference is probably negligible in this case.

One disadvantage with scaling attributes by the standard deviation is that attributes which
almost always have the same value (e.g., a boolean attribute that is almost always 0) will be
given a large weight—not due to scale, but because of the relative frequencies of the attribute
values. A related problem can occur in HVDM. If there is a very skewed class distribution
(i.e., there are many more instances of some classes than others), then the P values will be quite
small for some classes and quite large for others, and in either case the difference |Pa,x,c - Pa,y,c|
will be correspondingly small, and thus nominal attributes will get very little weight when
compared to linear attributes. This phenomenon was noted by Ting (1994, 1996), where he
recognized such problems on the hypothyroid dataset. Future research will address these
normalization problems and look for automated solutions. Fortunately, DVDM, IVDM and
WVDM do not suffer from either problem, because all attributes are scaled by the same amount
in such cases, which may in part account for their success over HVDM in the above
experiments.

For datasets with both nominal and continuous attributes, HVDM is slightly higher than
Euclidean distance on these datasets, which is in turn slightly higher than HOEM, indicating
that the overlap metric may not be much of an improvement on heterogeneous databases.
DVDM, IVDM and WVDM are all higher than Euclidean distance on such datasets, with
IVDM again in the lead.

6.1. Effects of Sparse Data

Distance functions that use VDM require some statistics to determine distance. We therefore
hypothesized that generalization accuracy might be lower for VDM-based distance functions

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

25

than for Euclidean distance or HOEM when there was very little data available, and that VDM-
based functions would increase in accuracy more slowly than the others as more instances were
made available, until a sufficient number of instances allowed a reasonable sample size to
determine good probability values.

Figure 13. Average accuracy as the amount of data increases.

%Instances Used

%
A

ve
ra

g
e

G
en

er
al

iz
at

io
n

 A
cc

u
ra

cy

55.00

60.00

65.00

70.00

75.00

80.00

85.00

0 20 40 60 80 100

Euclidean

HOEM

HVDM

DVDM

IVDM

WVDM

To test this hypothesis, the experiments used to obtain the results shown in Table 8 were
repeated using only part of the available training data. Figure 13 shows how the generalization
accuracy on the test set improves as the percentage of available training instances used for
learning and generalization is increased from 1% to 100%. The generalization accuracy values
shown are the averages over all 48 of the datasets in Table 8.

Surprisingly, the VDM-based distance functions increased in accuracy as fast or faster than
Euclidean and HOEM even when there was very little data available. It may be that when there
is very little data available, the random positioning of the sample data in the input space has a
greater detrimental affect on accuracy than does the error in statistical sampling for VDM-based
functions.

It is interesting to note from Figure 13 that the six distance functions seem to pair up into
three distinct pairs. The interpolated VDM-based distance functions (IVDM and WVDM)
maintain the highest accuracy, the other two VDM-based functions are next, and the functions
based only on linear and overlap distance remain lowest from very early in the graph.

WILSON & MARTINEZ

26

6.2. Efficiency Considerations

This section considers the storage requirements, learning speed, and generalization speed of
each of the algorithms presented in this paper.

6.2.1. STORAGE

All of the above distance functions must store the entire training set, requiring O(nm) storage,
where n is the number of instances in the training set and m is the number of input attributes in
the application, unless some instance pruning technique is used. For the Euclidean and HOEM
functions, this is all that is necessary, but even this amount of storage can be restrictive as n
grows large.

For HVDM, DVDM, and IVDM, the probabilities Pa,x,c for all m attributes (only discrete
attributes for HVDM) must be stored, requiring O(mvC) storage, where v is the average number
of attribute values for the discrete (or discretized) attributes and C is the number of output
classes in the application. It is possible to instead store an array Da,x,y = vdma(x,y) for HVDM
and DVDM, but the storage would be O(mv2), which is only a savings when C < v.

For WVDM, C probability values must be stored for each continuous attribute value,
resulting in O(nmC) storage which is typically much larger than O(mvC) because n is usually
much larger than v (and cannot be less). It is also necessary to store a list of (pointers to)
instances for each attribute, requiring an additional O(mn) storage. Thus the total storage for
WVDM is O((C+2)nm) = O(Cnm).

Storage
O(mn)
O(mn)
O(mn+mvC)
O(mn+mvC)
O(mn+mvC)
O(Cmn)

Learning Time
O(mn)
O(mn)
O(mn+mvC)
O(mn+mvC)
O(mn+mvC)
O(mnlogn+mvC)

Generalization Time
O(mn)
O(mn)
O(mnC) or O(mn)
O(mnC) or O(mn)
O(mnC) or O(mn)
O(mnC)

Distance Function
Euclidean
HOEM
HVDM
DVDM
IVDM
WVDM

Table 9. Summary of efficiency for six distance metrics.

Table 9 summarizes the storage requirements of each system. WVDM is the only one of
these distance functions that requires significantly more storage than the others. For most
applications, n is the critical factor, and all of these distance functions could be used in
conjunction with instance pruning techniques to reduce storage requirements. See Section 7 for
a list of several techniques to reduce the number of instances retained in the training set for
subsequent generalization.

6.2.2. LEARNING SPEED

It takes nm time to read in a training set. It takes an additional 2nm time to find the standard
deviation of the attributes for Euclidean distance, or just nm time to find the ranges for HOEM.

Computing VDM statistics for HVDM, DVDM and IVDM takes mn+mvC time, which is
approximately O(mn). Computing WVDM statistics takes mnlogn+mnC time, which is
approximately O(mnlogn).

In general, the learning time is quite acceptable for all of these distance functions.

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

27

6.2.3. GENERALIZATION SPEED

Assuming that each distance function must compare a new input vector to all training instances,
Euclidean and HOEM take O(mn) time. HVDM, IVDM and DVDM take O(mnC) (unless
Da,x,y has been stored instead of Pa,x,c for HVDM, in which case the search is done in O(mn)
time). WVDM takes O(logn+mnC) = O(mnC) time.

Though m and C are typically fairly small, the generalization process can require a
significant amount of time and/or computational resources as n grows large. Techniques such
as k-d trees (Deng & Moore, 1995; Wess, Althoff & Derwand, 1994; Sproull, 1991) and
projection (Papadimitriou & Bentley, 1980) can reduce the time required to locate nearest
neighbors from the training set, though such algorithms may require modification to handle both
continuous and nominal attributes. Pruning techniques used to reduce storage (as in Section
6.2.1) will also reduce the number of instances that must be searched for generalization.

7. Related Work

Distance functions are used in a variety of fields, including instance-based learning, neural
networks, statistics, pattern recognition, and cognitive psychology (see Section 1 for
references). Section 2 lists several commonly-used distance functions involving numeric
attributes.

Normalization is often desirable when using a linear distance function such as Euclidean
distance so that some attributes do not arbitrarily get more weight than others. Dividing by the
range or standard deviation to normalize numerical attributes is common practice. Turney
(1993; Turney & Halasz, 1993) investigated contextual normalization, in which the standard
deviation and mean used for normalization of continuous attributes depend on the context in
which the input vector was obtained. In this paper we do not attempt to use contextual
normalization, but instead use simpler methods of normalizing continuous attributes, and then
focus on how to normalize appropriately between continuous and nominal attributes.

The Value Distance Metric (VDM) was introduced by Stanfill & Waltz (1986). It uses
attribute weights not used by the functions presented in this paper. The Modified Value
Difference Metric (MVDM) (Cost & Salzberg, 1993; Rachlin et al., 1994) does not use attribute
weights but instead uses instance weights. It is assumed that these systems use discretization
(Lebowitz, 1985; Schlimmer, 1987) to handle continuous attributes.

Ventura (1995; Ventura & Martinez, 1995) explored a variety of discretization methods for
use in systems that can use only discrete input attributes. He found that using discretization to
preprocess data often degraded accuracy, and recommended that machine learning algorithms
be designed to handle continuous attributes directly.

Ting (1994, 1996) used several different discretization techniques in conjunction with
MVDM and IB1 (Aha, Kibler & Albert, 1991). His results showed improved generalization
accuracy when using discretization. Discretization allowed his algorithm to use MVDM on all
attributes instead of using a linear distance on continuous attributes, and thus avoided some of
the normalization problems discussed above in Sections 3.1 and 3.2. In this paper, similar
results can be seen in the slightly higher results of DVDM (which also discretizes continuous
attributes and then uses VDM) when compared to HVDM (which uses linear distance on
continuous attributes). In this paper, DVDM uses equal-width intervals for discretization, while

WILSON & MARTINEZ

28

Ting’s algorithms make use of more advanced discretization techniques.
Domingos (1995) uses a heterogeneous distance function similar to HVDM in his RISE

system, a hybrid rule and instance-based learning system. However, RISE uses a normalization
scheme similar to “N1” in Sections 3.1 and 3.2, and does not square individual attribute
distances.

Mohri & Tanaka (1994) use a statistical technique called Quantification Method II (QM2) to
derive attribute weights, and present distance functions that can handle both nominal and
continuous attributes. They transform nominal attributes with m values into m boolean
attributes, only one of which is on at a time, so that weights for each attribute can actually
correspond to individual attribute values in the original data.

Turney (1994) addresses cross-validation error and voting (i.e. using values of k > 1) in
instance-based learning systems, and explores issues related to selecting the parameter k (i.e.,
number of neighbors used to decide on classification). In this paper we use k = 1 in order to
focus attention on the distance functions themselves, but accuracy would be improved on some
applications by using k > 1.

IVDM and WVDM use nonparametric density estimation techniques (Tapia & Thompson,
1978) in determining values of P for use in computing distances. Parzen windows (Parzen,
1962) and shifting histograms (Rosenblatt, 1956) are similar in concept to these techniques,
especially to WVDM. These techniques often use gaussian kernels or other more advanced
techniques instead of a fixed-sized sliding window. We have experimented with gaussian-
weighted kernels as well but results were slightly worse than either WVDM or IVDM, perhaps
because of increased overfitting.

This paper applies each distance function to the problem of classification, in which an input
vector is mapped into a discrete output class. These distance functions could also be used in
systems that perform regression (Atkeson, Moore & Schaal, 1996; Atkeson, 1989; Cleveland &
Loader, 1994), in which the output is a real value, often interpolated from nearby points, as in
kernel regression (Deng & Moore, 1995).

As mentioned in Section 6.2 and elsewhere, pruning techniques can be used to reduce the
storage requirements of instance-based systems and improve classification speed. Several
techniques have been introduced, including IB3 (Aha, Kibler & Albert, 1991; Aha, 1992), the
condensed nearest neighbor rule (Hart, 1968), the reduced nearest neighbor rule (Gates, 1972),
the selective nearest neighbor rule (Rittler et al., 1975), typical instance based learning
algorithm (Zhang, 1992), prototype methods (Chang, 1974), hyperrectangle techniques
(Salzberg, 1991; Wettschereck & Dietterich, 1995), rule-based techniques (Domingos, 1995),
random mutation hill climbing (Skalak, 1994; Cameron-Jones, 1995) and others (Kibler & Aha,
1987; Tomek, 1976; Wilson, 1972).

8. Conclusions & Future Research Areas

There are many learning systems that depend on a reliable distance function to achieve accurate
generalization. The Euclidean distance function and many other distance functions are
inappropriate for nominal attributes, and the HOEM function throws away information and does
not achieve much better accuracy than the Euclidean function itself.

The Value Difference Metric (VDM) was designed to provide an appropriate measure of

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

29

distance between two nominal attribute values. However, current systems that use the VDM
often discretize continuous data into discrete ranges, which causes a loss of information and
often a corresponding loss in generalization accuracy.

This paper introduced three new distance functions. The Heterogeneous Value Difference
Function (HVDM) uses Euclidean distance on linear attributes and VDM on nominal attributes,
and uses appropriate normalization. The Interpolated Value Difference Metric (IVDM) and
Windowed Value Difference Metric (WVDM) handle continuous attributes within the same
paradigm as VDM. Both IVDM and WVDM provide classification accuracy which is higher on
average than the discretized version of the algorithm (DVDM) on the datasets with continuous
attributes that we examined, and they are both equivalent to DVDM on applications without any
continuous attributes.

In our experiments on 48 datasets, IVDM and WVDM achieved higher average accuracy
than HVDM, and also did better than DVDM, HOEM and Euclidean distance. IVDM was
slightly more accurate than WVDM and requires less time and storage, and thus would seem to
be the most desirable distance function on heterogeneous applications similar to those used in
this paper. Properly normalized Euclidean distance achieves comparable generalization
accuracy when there are no nominal attributes, so in such situations it is still an appropriate
distance function.

The learning system used to obtain generalization accuracy results in this paper was a nearest
neighbor classifier, but the HVDM, IVDM and WVDM distance functions can be used with a k-
nearest neighbor classifier with k > 1 or incorporated into a wide variety of other systems to
allow them to handle continuous values including instance-based learning algorithms (such as
PEBLS), radial basis function networks, and other distance-based neural networks. These new
distance metrics can also be used in such areas as statistics, cognitive psychology, pattern
recognition and other areas where the distance between heterogeneous input vectors is of
interest. These distance functions can also be used in conjunction with weighting schemes and
other improvements that each system provides.

The new distance functions presented here show improved average generalization on the 48
datasets used in experimentation. It is hoped that these datasets are representative of the kinds
of applications that we face in the real world, and that these new distance functions will
continue to provide improved generalization accuracy in such cases.

Future research will look at determining under what conditions each distance function is
appropriate for a particular application. We will also look closely at the problem at selecting
the window width, and will look at the possibility of smoothing WVDM’s probability landscape
to avoid overfitting. The new distance functions will also be used in conjunction with a variety
of weighting schemes to provide more robust generalization in the presence of noise and
irrelevant attributes, as well as increase generalization accuracy on a wide variety of
applications.

References

Aha, David W., (1992). Tolerating noisy, irrelevant and novel attributes in instance-based
learning algorithms. International Journal of Man-Machine Studies, Vol. 36, pp. 267-287.

Aha, David W., Dennis Kibler, and Marc K. Albert, (1991). Instance-Based Learning
Algorithms. Machine Learning, Vol. 6, pp. 37-66.

WILSON & MARTINEZ

30

Atkeson, Chris, (1989). Using local models to control movement. In D. S. Touretzky (Ed.),
Advances in Neural Information Processing Systems 2. San Mateo, CA: Morgan Kaufmann.

Atkeson, Chris, Andrew Moore, and Stefan Schaal, (1996). Locally weighted learning. To
appear in Artificial Intelligence Review.

Batchelor, Bruce G., (1978). Pattern Recognition: Ideas in Practice. New York: Plenum Press,
pp. 71-72.

Biberman, Yoram, (1994). A Context Similarity Measure. In Proceedings of the European
Conference on Machine Learning (ECML-94). Catalina, Italy: Springer Verlag, pp. 49-63.

Broomhead, D. S., and D. Lowe (1988). Multi-variable functional interpolation and adaptive
networks. Complex Systems, Vol. 2, pp. 321-355.

Cameron-Jones, R. M., (1995). Instance Selection by Encoding Length Heuristic with Random
Mutation Hill Climbing. In Proceedings of the Eighth Australian Joint Conference on
Artificial Intelligence, pp. 99-106.

Carpenter, Gail A., and Stephen Grossberg, (1987). A Massively Parallel Architecture for a
Self-Organizing Neural Pattern Recognition Machine. Computer Vision, Graphics, and
Image Processing, Vol. 37, pp. 54-115.

Chang, Chin-Liang, (1974). Finding Prototypes for Nearest Neighbor Classifiers. IEEE
Transactions on Computers, Vol. 23, No. 11, pp. 1179-1184.

Cleveland, W. S., and C. Loader, (1994). Computational Methods for Local Regression.
Technical Report 11, Murray Hill, NJ: AT&T Bell Laboratories, Statistics Department.

Cost, Scott, and Steven Salzberg, (1993). A Weighted Nearest Neighbor Algorithm for
Learning with Symbolic Features. Machine Learning, Vol. 10, pp. 57-78.

Cover, T. M., and P. E. Hart, (1967). Nearest Neighbor Pattern Classification. Institute of
Electrical and Electronics Engineers Transactions on Information Theory, Vol. 13, No. 1,
pp. 21-27.

Dasarathy, Belur V., (1991). Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques. Los Alamitos, CA: IEEE Computer Society Press.

Deng, Kan, and Andrew W. Moore, (1995). Multiresolution Instance-Based Learning. To
appear in The Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI’95).

Diday, Edwin, (1974). Recent Progress in Distance and Similarity Measures in Pattern
Recognition. Second International Joint Conference on Pattern Recognition, pp. 534-539.

Domingos, Pedro, (1995). Rule Induction and Instance-Based Learning: A Unified Approach.
to appear in The 1995 International Joint Conference on Artificial Intelligence (IJCAI-95).

Dudani, Sahibsingh A., (1976). The Distance-Weighted k-Nearest-Neighbor Rule. IEEE
Transactions on Systems, Man and Cybernetics, Vol. 6, No. 4, April 1976, pp. 325-327.

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

31

Gates, G. W., (1972). The Reduced Nearest Neighbor Rule. IEEE Transactions on Information
Theory, Vol. IT-18, No. 3, pp. 431-433.

Giraud-Carrier, Christophe, and Tony Martinez, (1995). An Efficient Metric for Heterogeneous
Inductive Learning Applications in the Attribute-Value Language. Intelligent Systems, pp.
341-350.

Hart, P. E., (1968). The Condensed Nearest Neighbor Rule. Institute of Electrical and
Electronics Engineers Transactions on Information Theory, Vol. 14, pp. 515-516.

Hecht-Nielsen, R., (1987). Counterpropagation Networks. Applied Optics, Vol. 26, No. 23, pp.
4979-4984.

Kibler, D., and David W. Aha, (1987). Learning representative exemplars of concepts: An
initial case study. Proceedings of the Fourth International Workshop on Machine
Learning. Irvine, CA: Morgan Kaufmann, pp. 24-30.

Kohonen, Teuvo, (1990). The Self-Organizing Map. In Proceedings of the IEEE, Vol. 78, No.
9, pp. 1464-1480.

Lebowitz, Michael, (1985). Categorizing Numeric Information for Generalization. Cognitive
Science, Vol. 9, pp. 285-308.

Merz, C. J., and P. M. Murphy, (1996). UCI Repository of Machine Learning Databases.
Irvine, CA: University of California Irvine, Department of Information and Computer
Science. Internet: http://www.ics.uci.edu/~mlearn/MLRepository.html.

Michalski, Ryszard S., Robert E. Stepp, and Edwin Diday, (1981). A Recent Advance in Data
Analysis: Clustering Objects into Classes Characterized by Conjunctive Concepts.
Progress in Pattern Recognition, Vol. 1, Laveen N. Kanal and Azriel Rosenfeld (Eds.).
New York: North-Holland, pp. 33-56.

Mitchell, Tom M., (1980). The Need for Biases in Learning Generalizations. in J. W. Shavlik
& T. G. Dietterich (Eds.), Readings in Machine Learning. San Mateo, CA: Morgan
Kaufmann, 1990, pp. 184-191.

Mohri, Takao, and Hidehiko Tanaka, (1994). “An Optimal Weighting Criterion of Case
Indexing for both Numeric and Symbolic Attributes. In D. W. Aha (Ed.), Case-Based
Reasoning: Papers from the 1994 Workshop, Technical Report WS-94-01. Menlo Park,
CA: AIII Press, pp. 123-127.

Nadler, Morton, and Eric P. Smith, (1993). Pattern Recognition Engineering. New York:
Wiley, pp. 293-294.

Nosofsky, Robert M., (1986). Attention, Similarity, and the Identification-Categorization
Relationship. Journal of Experimental Psychology: General, Vol. 115, No. 1, pp. 39-57.

Papadimitriou, Christos H., and Jon Louis Bentley, (1980). A Worst-Case Analysis of Nearest
Neighbor Searching by Projection. Lecture Notes in Computer Science, Vol. 85,
Automata Languages and Programming, pp. 470-482.

WILSON & MARTINEZ

32

Parzen, Emanuel, (1962). On estimation of a probability density function and mode. Annals of
Mathematical Statistics. Vol. 33, pp. 1065-1076.

Quinlan, J. R., (1989). Unknown Attribute Values in Induction. In Proceedings of the 6th
International Workshop on Machine Learning. San Mateo, CA: Morgan Kaufmann, pp.
164-168.

Rachlin, John, Simon Kasif, Steven Salzberg, David W. Aha, (1994). Towards a Better
Understanding of Memory-Based and Bayesian Classifiers. In Proceedings of the
Eleventh International Machine Learning Conference. New Brunswick, NJ: Morgan
Kaufmann, pp. 242-250.

Renals, Steve, and Richard Rohwer, (1989). Phoneme Classification Experiments Using Radial
Basis Functions. In Proceedings of the IEEE International Joint Conference on Neural
Networks (IJCNN’89), Vol. 1, pp. 461-467.

Rittler, G. L., H. B. Woodruff, S. R. Lowry, and T. L. Isenhour, (1975). An Algorithm for a
Selective Nearest Neighbor Decision Rule. IEEE Transactions on Information Theory,
Vol. 21, No. 6, pp. 665-669.

Rosenblatt, Murray, (1956). Remarks on Some Nonparametric Estimates of a Density Function.
Annals of Mathematical Statistics. Vol. 27, pp. 832-835.

Rumelhart, D. E., and J. L. McClelland, (1986). Parallel Distributed Processing, MIT Press,
Ch. 8, pp. 318-362.

Salzberg, Steven, (1991). A Nearest Hyperrectangle Learning Method. Machine Learning,
Vol. 6, pp. 277-309.

Schaffer, Cullen, (1993). Selecting a Classification Method by Cross-Validation. Machine
Learning, Vol. 13, No. 1.

Schaffer, Cullen, (1994). A Conservation Law for Generalization Performance. In Proceedings
of the Eleventh International Conference on Machine Learning (ML’94), Morgan
Kaufmann, 1994.

Schlimmer, Jeffrey C., (1987). Learning and Representation Change. In Proceedings of the
Sixth National Conference on Artificial Intelligence (AAAI’87), Vol. 2, pp. 511-535.

Skalak, D. B., (1994). Prototype and Feature Selection by Sampling and Random Mutation Hill
Climbing Algorithsm. In Proceedings of the Eleventh International Conference on
Machine Learning (ML94). Morgan Kaufman, pp. 293-301.

Sproull, Robert F., (1991). Refinements to Nearest-Neighbor Searching in k-Dimensional
Trees. Algorithmica, Vol. 6, pp. 579-589.

Stanfill, C., and D. Waltz, (1986). Toward memory-based reasoning. Communications of the
ACM, Vol. 29, December 1986, pp. 1213-1228.

IMPROVED HETEROGENEOUS DISTANCE FUNCTIONS

33

Tapia, Richard A., and James R. Thompson, (1978). Nonparametric Probability Density
Estimation. Baltimore, MD: The Johns Hopkins University Press.

Ting, Kai Ming, (1994). Discretization of Continuous-Valued Attributes and Instance-Based
Learning. Technical Report No. 491, Basser Department of Computer Science, University
of Sydney, Australia.

Ting, Kai Ming, (1996). Discretisation in Lazy Learning. To appear in the special issue on
Lazy Learning in Artificial Intelligence Review.

Tomek, Ivan, (1976). An Experiment with the Edited Nearest-Neighbor Rule. IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 6, No. 6, June 1976, pp. 448-452.

Turney, Peter, (1994). Theoretical Analyses of Cross-Validation Error and Voting in Instance-
Based Learning. Journal of Experimental and Theoretical Artificial Intelligence (JETAI),
pp. 331-360.

Turney, Peter, (1993). Exploiting context when learning to classify. In Proceedings of the
European Conference on Machine Learning. Vienna, Austria: Springer-Verlag, pp. 402-
407.

Turney, Peter, and Michael Halasz, (1993). Contextual Normalization Applied to Aircraft Gas
Turbine Engine Diagnosis. Journal of Applied Intelligence, Vol. 3, pp. 109-129.

Tversky, Amos, (1977). Features of Similarity. Psychological Review, Vol. 84, No. 4, pp. 327-
352.

Ventura, Dan, (1995). On Discretization as a Preprocessing Step for Supervised Learning
Models, Master’s Thesis, Department of Computer Science, Brigham Young University.

Ventura, Dan, and Tony R. Martinez (1995). An Empirical Comparison of Discretization
Methods. In Proceedings of the Tenth International Symposium on Computer and
Information Sciences, pp. 443-450.

Wasserman, Philip D., (1993). Advanced Methods in Neural Computing. New York, NY: Van
Nostrand Reinhold, pp. 147-176.

Wess, Stefan, Klaus-Dieter Althoff and Guido Derwand, (1994). Using k-d Trees to Improve
the Retrieval Step in Case-Based Reasoning. Stefan Wess, Klaus-Dieter Althoff, & M. M.
Richter (Eds.), Topics in Case-Based Reasoning. Berlin: Springer-Verlag, pp. 167-181.

Wettschereck, Dietrich, and Thomas G. Dietterich, (1995). An Experimental Comparison of
Nearest-Neighbor and Nearest-Hyperrectangle Algorithms. Machine Learning, Vol. 19,
No. 1, pp. 5-28.

Wettschereck, Dietrich, David W. Aha, and Takao Mohri, (1995). A Review and Comparative
Evaluation of Feature Weighting Methods for Lazy Learning Algorithms. Technical
Report AIC-95-012. Washington, D.C.: Naval Research Laboratory, Navy Center for
Applied Research in Artificial Intelligence.

WILSON & MARTINEZ

34

Wilson, D. Randall, and Tony R. Martinez, (1993). The Potential of Prototype Styles of
Generalization. In Proceedings of the Sixth Australian Joint Conference on Artifical
Intelligence (AI’93), pp. 356-361.

Wilson, D. Randall, and Tony R. Martinez, (1996). Heterogeneous Radial Basis Functions. In
Proceedings of the International Conference on Neural Networks (ICNN’96), Vol. 2, pp.
1263-1267.

Wilson, Dennis L., (1972). Asymptotic Properties of Nearest Neighbor Rules Using Edited
Data. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 2, No. 3, pp. 408-421.

Wolpert, David H., (1993). On Overfitting Avoidance as Bias. Technical Report SFI TR 92-
03-5001. Santa Fe, NM: The Santa Fe Institute.

Zhang, Jianping, (1992). Selecting Typical Instances in Instance-Based Learning. Proceedings
of the Ninth International Conference on Machine Learning.

