
In Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms,
(ICANNGA’97), pp. 514-517, 1997.

Improved Center Point Selection for Probabilistic Neural Networks

D. Randall Wilson, Tony R. Martinez
E-mail: randy@axon.cs.byu.edu, martinez@cs.byu.edu

Neural Network and Machine Learning Laboratory, WWW: http://axon.cs.byu.edu
Computer Science Department, Brigham Young University, Provo, UT 84602, U.S.A.

Abstract. Probabilistic Neural Networks (PNN) typically
learn more quickly than many neural network models and
have had success on a variety of applications. However, in
their basic form, they tend to have a large number of hidden
nodes. One common solution to this problem is to keep only
a randomly-selected subset of the original training data in
building the network. This paper presents an algorithm
called the Reduced Probabilistic Neural Network (RPNN)
that seeks to choose a better-than-random subset of the
available instances to use as center points of nodes in the
network. The algorithm tends to retain non-noisy border
points while removing nodes with instances in regions of the
input space that are highly homogeneous. In experiments on
22 datasets, the RPNN had better average generalization
accuracy than two other PNN models, while requiring an
average of less than one-third the number of nodes.

1 Introduction

Probabilistic Neural Networks (PNN) [1] often
learn more quickly than many neural network models
such as backpropagation networks [2], and have had
success on a variety of applications. PNN’s are a
special form of radial basis function (RBF) network [3]
used for classification.

The network learns from a training set T, which is
a collection of examples called instances. Each
instance i has an input vector yi, and an output class,
denoted as classi. During execution, the network
receives additional input vectors, denoted as x, and
outputs the class that x seems most likely to belong to.

The probabilistic neural network used in this paper
is shown in Figure 1. The first (leftmost) layer
contains one input node for each input attribute in an
application. All connections in the network have a
weight of 1, which means that the input vector is
passed directly to each hidden node.

There is one hidden node for each training
instance i in the training set. Each hidden node hi has a
center point yi associated with it, which is the input
vector of instance i. A hidden node also has a spread
factor, σi, which determines the size of its receptive
field. There are a variety of ways to set this parameter.
In this paper, we set σi equal to a fraction f of the

distance to the nearest neighbor of each instance i. The
value of f begins at 0.5 and a binary search is
performed to fine-tune this value. At each of five steps
the value of f that results in the highest average
confidence of classification is chosen.

zx2

x3

h1

h2

h3

h4

c1

c2

x:

Hidden
nodes

Class
nodes

Input
nodes

x1
Decision

node

Figure 1. Probabilistic Neural Network.

A hidden node receives an input vector x and
outputs an activation given by the Gaussian function g,
which returns a value of 1 if x and y i are equal, and
drops to an insignificant value as the distance grows:

g(x, yi ,σi) = exp[-D2 (x, yi) / 2σi
2] (1)

The distance function D determines how far apart the
two vectors are. By far the most common distance
function used in PNN’s is Euclidean distance.
However, in order to appropriately handle applications
that have both linear and nominal attributes, we use a
heterogeneous distance function HVDM [4][5] that
uses normalized Euclidean distance for linear attributes
and the Value Difference Metric (VDM) [6] for
nominal attributes. It is defined as follows:

HVDM(x, y) = da
2 (xa , ya)

a=1

m

∑ (2)

where m is the number of attributes. The function

da(x,y) returns a distance between the two values x and
y for attribute a and is defined as:

da (x, y) =
1, if x or y is unknown

vdma (x, y), if a is nominal

diff a (x, y), if a is linear








(3)

The function da(x,y) uses the following function, based
on the Value Difference Metric (VDM) [6] for nominal
(discrete, unordered) attributes:

vdma (x, y) =
Na,x,c

Na,x
−

Na,y,c

Na,y

2

c=1

C

∑ (4)

where Na,x is the number of times attribute a had value
x; Na,x,c is the number of times attribute a had value x
and the output class was c ; and C is the number of
output classes.

For linear attributes the following function is used:

diff a (x, y) =
x − y

4sa
(5)

where sa is the sample standard deviation of the values
occurring for attribute a in the training set.

Each hidden node hi in the network is connected to
a single class node. If the output class of instance i is j,
then hi is connected to class node cj. Each class node
cj computes the sum of the activations of the hidden
nodes that are connected to it (i.e., all the hidden nodes
for a particular class) and passes this sum to a decision
node. The decision node outputs the class with the
highest summed activation.

One of the greatest advantages of this network is
that it does not require any iterative training, and thus
can learn quite quickly. However, one of the main
disadvantages of this network is that it has one hidden
node for each training instance and thus requires more
computational resources (storage and time) during
execution than many other models. When simulated
on a serial machine, O(n) time is required to classify a
single input vector. On a parallel system, only O(log
n) time is required, but n nodes and nm connections are
still required (where n is the number of instances in the
training set, and m is the number of input attributes).

The most direct way to reduce storage

requirements and speed up execution is to reduce the
number of nodes in the network. One common
solution to this problem is to keep only a randomly-
selected subset of the original training data in building
the network. However, arbitrarily removing instances
can reduce generalization accuracy. In addition, it is
difficult to know how many nodes can be safely
removed without a reasonable stopping criterion.

Other subset selection algorithms exist in linear
regression theory [7], including forward selection, in
which the network starts with no nodes and nodes are
added one at a time to the network. Another method
that has been used [8] is k-means clustering [9].

This paper presents an algorithm called the
Reduced Probabilistic Neural Network (RPNN) that
begins with all of the available training instances as
node centers and selectively removes them one at a
time until classification accuracy suffers. The
algorithm tends to retain only non-noisy border points
while removing nodes with instances in regions of the
input space that are highly homogeneous. The next
section gives details of this algorithm.

2 Reduction Algorithm

The Reduced Probabilistic Neural Network
(RPNN) begins with one node per training instance, as
does the original PNN, and then uses the following
basic rule to determine which nodes are removed from
the network:

Remove a node if it does not cause more
instances in the original training set to be
classified incorrectly by the nodes remaining in
the network.

In other words, if the removal of a node does not hurt
classification, remove it. When applying this rule to
the network, the order of removal is important. In
particular, it may be desirable to remove instances far
from decision boundaries first, since they have the least
effect on decisions. RPNN does this by finding the
distance of every instance from its nearest enemy,
which is the nearest neighbor of a different class, and
then sorting the instances by that distance. The above
rule is then applied beginning with the node furthest
from its nearest enemy and proceeding to that which is
closest to its nearest enemy.

In order to decide if the removal of a node

degrades classification accuracy, each instance in the
original training set is queried to see if its classification
would be altered by the removal of the instance in
question.

Specifically, in our serial implementation each
instance maintains a vector of activations with one
activation level for each class. The removal of a
particular node would subtract some amount of
activation (dependent on the distance) from its own
class if removed. In addition, if the removed instance I
is the nearest neighbor of some other instance A, then A
must find a new nearest neighbor, and update its σ
accordingly, which in turn changes what effect A has
on all other instances.

The change in activation due to both the removal
of I and the possible change in σ of other nodes may be
enough to cause the classification of some instances to
change. The change can cause an instance that used to
be correctly classified to be misclassified, or cause an
instance that was misclassified to be correctly
classified. Such changes are counted, and if the
number of newly misclassified instances is less than or
equal to the number of new correctly classified
instances, then the removal is performed, and the
changes in activation values and σ parameters are
made permanent. Otherwise they are restored to their
previous values.

In order to reduce the effect of noisy instances on
the network, the instance corresponding to the node
that is being considered for removal is not included in
the tabulation. This means a node can be removed
even if its instance is itself no longer classified
correctly, as long as other instances are not hurt.

To further reduce the effect of noise, a noise-
reduction pass through the network is done first,
beginning with the instance closest to its nearest
enemy, since noisy instances are often close to
instances of another class. During the noise reduction
step, the criteria for removal is more strict. In order to
be removed, an instance must not hurt classification, as
explained above, and it must also strictly increase the
average confidence of classification. The confidence
for each node is defined as the activation of the correct
class divided by the sum of activations for all of the
output classes.

Noisy instances are often located near instances of
another class but far from instances of their own class,
so their removal will increase confidence of nearby
instance’s classification while having a much smaller

effect on instances of their own class. Other instances,
however, will typically lower confidence of nearby
neighbors, which are largely of the same class, while
having a smaller effect on instances of different
classes. Therefore, the test of confidence is
appropriate during the noise-reduction pass, but would
prevent almost any pruning from taking place if used in
the remainder of the algorithm.

3 Empirical Results

The Reduced Probabilistic Neural Network
(RPNN) algorithm was implemented and tested on 22
applications from the Machine Learning Database
Repository at the University of California, Irvine [10].

Each test consisted of ten trials. Each trial
consisted of learning from 90% of the training
instances, and then seeing how many of the remaining
10% of the instances were classified correctly.

The RPNN was compared to EPNN, a standard
Probabilistic Neural Network (PNN) that retains 100%
of the instances in the training set and uses a
normalized Euclidean distance metric with σ set to the
distance of a node’s instance to its nearest neighbor.
The RPNN was also compared to HPNN, a PNN that
uses the same heterogeneous distance function HVDM
as RPNN, but retains 100% of the instances. HPNN
and RPNN both used a dynamically-adjusted spreading
factor, as explained in Section 1, and RPNN used only
a subset of the available instances for generalization.

Table 1 summarizes the empirical results. For
each database the table shows the average accuracy for
the EPNN and HPNN using all of the instances, and for
the RPNN, using the percentage of instances shown.

The last line of Table 1 shows that RPNN had the
highest average accuracy over all 22 datasets of the
three algorithms, while using less than one-third of the
instances (on average) for generalization. RPNN’s
average accuracy was slightly higher than HPNN, and
both of these were substantially higher than EPNN, due
in part to the use of the HVDM distance function.

Using a dynamically-adjusted spreading factor had
very little effect on the accuracy of HPNN (less than
1% on average), but resulted in a large improvement
on RPNN (75.5% accuracy instead of 71.5%) as well
as improved size reduction.

The success of RPNN varies depending upon the
application. For example, on the Vowel dataset, it
retained almost two-thirds of the instances while

suffering a large drop in accuracy compared to the
other two models. However, in the Echocardiogram
dataset, the RPNN used only 9% of the data while
improving generalization accuracy by over 12%.
Future research will focus on identifying
characteristics of applications that help determine
whether the RPNN model is appropriate.

It should be noted that these datasets are not
especially large (only a few hundred instances in most
cases), and that the reduction in size can be even more
dramatic when there are more instances available. This
is especially true when the number of instances is large
compared to the complexity of the decision surface.

Dataset
Anneal
Audiology
Australian
Breast Cancer (WI)
Bridges
Crx
Echocardiogram
Flag
Heart (Hungarian)
Heart (More)
Heart
Heart (Swiss)
Hepatitis
Horse-Colic
Iris
Liver-Bupa
Pima-Indians-Diabetes
Promoters
Soybean-Large
Vowel
Wine
Zoo
Average

EPNN
76.2
36.0
80.1
97.0
52.4
75.4
78.0
45.7
64.0
46.0
80.7
38.9
79.3
67.1
94.0
62.5
76.3
54.3
13.0
92.0
94.4
78.9
67.4

HPNN
76.2
57.0
83.8
94.7
55.2
84.4
76.8
53.6
66.7
68.8
81.5
93.5
80.6
67.1
91.3
66.6
74.1
84.5
13.0
92.4
97.2
71.1
74.1

RPNN
94.9
54.0
79.7
92.9
57.3
82.3
90.9
47.0
80.3
71.8
73.3
78.3
77.3
68.7
94.7
57.6
67.2
88.7
49.9
84.7
92.2
82.2
75.7

(size)
38.3
38.9
27.5
20.0
21.4
27.2

9.0
35.7
25.1
21.3
24.8

1.4
15.3
17.8
44.2
29.2
30.3
52.5
51.5
65.2
40.7
26.1
30.2

Table 1. Generalization Accuracy of PNN and RPNN.

4 Conclusion

The Reduced Probabilistic Neural Network
(RPNN) reduces the size and execution time of a PNN
by removing nodes from the network that are estimated
to be least needed for proper generalization. It tends to
retain non-noisy border points in the input space while
removing nodes that are either noisy or have centers
that are far from the decision boundaries. By so doing,

it can fairly quickly find a reasonable subset of nodes
to include in the PNN, thus reducing network
complexity and execution time, as well as reducing
sensitivity to noise.

The RPNN requires O(n2) time for learning on a
serial machine, but only O(nlogn) time in a parallel
network, and in our experiments on 22 datasets
reduced storage by over two-thirds on average.

It is possible that the RPNN could achieve even
higher size reduction as well as more robust accuracy
by employing search techniques such as genetic
algorithms after initial pruning. Such search
techniques could find additional nodes to remove, fine
tune the spreading factor of individual nodes, and even
adjust the nodes’ center points. Future research will
address this question, and continue to seek improved
size reduction techniques. The results of this study are
encouraging and show the potential for substantial
reduction without sacrificing generalization ability.

References
[1] Specht, Donald F., “Enhancements to Probabilistic
Neural Networks,” in Proceedings of the International Joint
Conference on Neural Networks (IJCNN ’92), 1, pp. 761-
768, 1992.
[2] Rumelhart, D. E., and J. L. McClelland, Parallel
Distributed Processing, MIT Press, 1986.
[3] Wasserman, Philip D., Advanced Methods in Neural
Computing, New York, NY: Van Nostrand Reinhold, pp.
147-176, 1993.
[4] Wilson, D. Randall, and Tony R. Martinez,
“Heterogeneous Radial Basis Functions,” Proceedings of the
International Conference on Neural Networks (ICNN’96), 2,
pp. 1263-1267, 1996.
[5] Wilson, D. Randall, and Tony R. Martinez, “Improved
Heterogeneous Distance Functions,” Journal of Artificial
Intelligence Research (JAIR), 6, 1, pp. 1-34, 1997.
[6] Stanfill, C., and D. Waltz, “Toward memory-based
reasoning,” Communications of the ACM, 29, 1986.
[7] Rawlings, J. O., Applied Regression Analysis.
Wadsworth & Brooks/Cole, Pacific Grove, CA, 1988.
[8] MacQueen, J., “Some methods for classification and
analysis of multivariate observations,” in Proceedings of the
Fifth Berkeley Symposium on Mathematics, Statistics and
Probability, Berkeley, CA, pp. 281-297, 1967.
[9] Leonard, J. A., M. A. Kramer, and L. H. Ungar, “Using
Radial Basis Functions to Approximate a Function and Its
Error Bounds,” IEEE Transactions on Neural Networks, 3, 4,
pp. 624-627, 1992
[10] Merz, C. J., and P. M. Murphy, UCI Repository of
Machine Learning Databases. Irvine, CA: University of
California Irvine, Department of Information and Computer
Science, 1996. Internet: http://www.ics.uci.edu/~mlearn/
MLRepository.html.

