
Proceedings of the World Congress on Neural Networks, pp. 1091-5, 1996

A General Evolutionary/Neural Hybrid Approach to Learning Optimization Problems
Dan Ventura

Tony R. Martinez

Computer Science Department, Brigham Young University, Provo, Utah 84602
e-mail: dan@axon.cs.byu.edu, martinez@cs.byu.edu

A method combining the parallel search capabilities of Evolutionary Computation (EC) with the
generalization of Neural Networks (NN) for solving learning optimization problems is presented.
Assuming a fitness function for potential solutions can be found, EC can be used to explore the
solution space, and the survivors of the evolution can be used as a training set for the NN which
then generalizes over the entire space. Because the training set is generated by EC using a fitness
function, this hybrid approach allows explicit control of training set quality.

1 INTRODUCTION
Efforts to develop mechanisms that can be considered in some way intelligent have resulted in many

problem solving techniques from various fields including Machine Learning, Neural Networks, Evolutionary
Computation, Fuzzy Logic, and Symbolic Artificial Intelligence. Approaches from these different fields each have
their strengths and their weaknesses. Recent research suggests that further progression may depend upon the
synergistic combination of several complementary approaches from these different fields [4][6][11]. This new
synergistic approach to machine intelligence is sometimes referred to as Hybrid Systems. One such possibility is
the combination of Evolutionary Computation (EC) [3][10] with Neural Networks (NN) [9][13]. For some
examples of such combinations, the reader is referred to [1][5][7][8].

This paper extends work on one such hybrid method, first presented in [12], that combines the broad,
parallel search capabilities of EC with the generalization and execution speed of NN. Given a function to be learned,
under certain reasonable assumptions the EC can be used to solve the problem at selected points in the input space;
the survivors of the evolution become the instances in a training set for the NN, which then generalizes the
optimization for the entire input space.

Section two of the paper presents a generalized formal description of the problem to be solved. Section
three then discusses the combination of NN with EC as a general approach to solving the problem. As a proof-of-
concept for the general approach, section four describes a specific learning optimization problem and presents
empirical results from simulations run on that problem. Finally, section five presents conclusions and directions for
ongoing research.

2 PROBLEM DESCRIPTION

System Θ

Control Γ

maximize f(Status)

Initial Status of Θ

Status

st+δc
si

si

Figure 1. Problem Description

Given a system, Θ, the state of Θ may be described at
time t by a vector of status variables, st. Control of the system
is effected by Γ which applies a control vector, c, to Θ. That is,
given a system Θ at time t described by vector st, the setting of
the values of the vector c will result in a different system Θ' at
time t+δ described by the vector st+δ . The problem is how
should Γ be constructed so that given a status vector, st, Γ
outputs a control vector c such that st+δ describes a better system,
if possible, than st? We assume the existence of some evaluation
function, f, that will determine whether or not one system is
better than another. The operation of Θ may be either continuous
or discrete and Γ knows nothing about Θ except for the value of
st. Given st, Γ is expected to output values for c, the goal being to maximize f for any given instance (status) of Θ.
The problem may be a single-step optimization; alternatively, though this is not pursued here, the problem may
include feedback with the process becoming iterative (see Figure 1).

3 COMBINING EVOLUTIONARY COMPUTATION WITH NEURAL COMPUTATION
Assuming that the status and control variables are defined over even a modest range, it is obvious that the

input (status) and output (control) spaces will be extremely large. Evolutionary computation lends itself well to the
exploration of large spaces. However, such evolutionary exploration is often slow. If we assume that the mapping
s → c is non random and in some sense generelizeable, then a (hopefully) representative set of points may be
discovered via EC, and those points then used to train a NN which may then generalize over the rest of the function.
The goal of the EC/NN synergism is to obtain the accuracy of evolutionary search and the speed of neural execution.

From the space defined by s that describes Θ we choose a representative set of system states by choosing n
initial status vectors. We denote these i

t=0s , 0<i≤n and refer to the system state described by i
t=0s as i

t=0Θ , 0<i≤n.
These choices could of course be biased by any a priori heuristics as to what constitutes a realistic system (see below
and section 5). The goal is to know, given one of these i

t=0s , what a “good” c vector would be. For each of the

i
t=0s , EC is used to discover such a c in the following way.

evolve()
generate si
for each i

t=0s
initialize population ck, 0<k≤m.
evaluate(ck,Θi)
until(done)

select parents from ck
apply genetic operators to parents
evaluate(children,Θi)
ck

 ← choose m survivors from ck and children

evaluate(c,Θi)
run i

t=0Θ for δ time steps with control vector c
return f(i

t=δs)

Figure 2. Algorithm for evolving training set

Assume a fitness function f that takes as
input a status vector s and returns a real-valued fitness
measure. Now for each i

t=0s , randomly initialize a
population of m control vectors, denoted ck, 0<k≤m.
Evaluate the initial population by simulating the
workings of i

t=0Θ for δ time steps (where δ time
steps are sufficient for Θi to stabilize) for each ck, and
then applying fitness function f to i

t=δs . Next, until
some stopping criterion is reached (a maximum
number of generations, for example) choose parents
and use genetic operators (crossover, mutation, etc.) to
produce m offspring, evaluate the children and select m
survivors from amongst the parents and children. The
algorithm is sketched in figure 2.

Finally, for each of the n populations, choose
the individual, cmaxi

, (the individual with the highest
fitness) and build a set of n training examples of the
form i

t=0s → cmaxi
.

The EC has now found “good” approximate solutions for n points from the input (status) space but can say
nothing about any other points, many of which we are likely to encounter during normal execution of Θ .
Obviously, one solution to the problem defined in section 2 would be to employ the evolutionary scheme discussed
above as the control Γ. However, this would likely be unacceptable in terms of execution speed. Therefore, the NN
is employed to generalize over the entire space defined by s using the relatively small set of approximate solutions as
a training set. While the initial training of the network maybe somewhat time consuming, depending on the
network and training algorithm employed, the generalization during execution will be extremely fast. The
synergistic combination of EC and NN is then employed as the control Γ as in figure 3.

Γ

{si}

EC

NN

si → ck

learning

s

c

Training
Set

execution

Random
choice

Figure 3. The control Γ

In experiments performed to date, the original set

i
t=0s is simply chosen randomly. However, it is possible

that techniques such as active learning [2] can be employed
to choose the set i

t=0s , leading to smaller training and/or
better NN generalization.

The power of this EC/NN hybrid approach is its
combination of the thoroughness of evolutionary search
with the speed of neural generalization as well as its general
applicability to any learning problem for which a fitness
function can be found and for which “blackbox” access to
the system to be learned (or a reasonable simulation thereof)
is possible. In order to provide proof-of-concept, the next
section presents a specific example of a problem and the
results of applying the EC/NN hybrid to solve it.

4 SIMULATION
In the simulations, the EC/NN combination attempts to learn to use a simple gun to hit a target moving in

2-d space. An artificial problem was used for two reasons. First, it is much easier to work with in terms of
analysis, reproduction of results, etc. Second, it is possible to create a test set which can be used to show how well
the NN is performing in relation to optimum, and thus to establish (to some extent) both the quality of the training
set generated as well as the quality of the NN’s generalization.

The problem is difficult in several respects. Most notably in the fact that there are many optimal bullets
(in the sense that they hit the target) for each target, and no attempt is made to constrain which of these is
genetically chosen. However, it is unclear how a neural network trained with these two instances would generalize.

A second difficulty arises from the fact that only integer values are allowed for velocity values. This makes
the optimization much more difficult than if real values were allowed, analogous to the difference in difficulty
between the linear and integer programming problems.

4.1 The system Θ
 The vector s describes the x and y components of the target’s velocity and is therefore comprised of two
elements: s1 and s2. The vector c describes the x and y components of the bullet’s velocity and so consists of two
elements: c1 and c2. The target vector is subject to a gravitational constant, but the bullet vector is not (it is
assumed negligible). The system Θ describes the trajectories of both bullet and target as in figure 4.

trajectories(targetx, targety, bulletx, bullety)
targetx = targetx + targetxvelocity
targety = targety + targetyvelocity
bulletx = bulletx + bulletxvelocity
bullety = bullety + bulletyvelocity
if(mindistance > ((targetx-bulletx)+(targety-bullety)2)1/2)

mindistance = ((targetx-bulletx)+(targety-bullety)2)1/2

targetyvelocity = targetyvelocity - gravity
return(mindistance)

Figure 4. The target/bullet system

Notice that the function
trajectories() returns the minimum distance
between bullet and target in the course of
their trajectories. It therefore acts as the
system simulator and the fitness function.
Optimizing this system entails minimizing
the Euclidean distance between target and
bullet at their nearest point. The fitness
function therefore is simply

fitness(s) = 1 - mindistance(s,c)

which is to be maximized. The default
fitness is the distance between the initial
bullet position and the initial target position. Obviously, the ideal fitness is 0, and thus fitness() is defined over the
range [0,default fitness].

4.2 Creating a training set
Training sets were comprised of 250 instances obtained using the evolutionary method described above. For

each randomly generated target (left hand side), a population of bullets was allowed to evolve and the bullet that came
closest to hitting the target was selected as the right hand side. The function trajectories is substituted for the step
“run i

t=0Θ for δ time steps with control vector c” in the evaluate procedure, and
fitness(bullet) = mindistance(bullet, target).

4.3 Training the neural network
The PDP group’s software implementation of the backpropagation algorithm [9] was used for all

simulation results. For the simulations, 2 integer “status” variables and 2 integer “control” variables were defined
that describe the x and y velocities of the target and the bullet respectively. The inputs to the backpropagation NN
(the “status” variables) were binary encoded, while the outputs were simple localist nodes, one for each control
variable. Ten hidden units were used so that the entire network consisted of 12 input nodes, 10 hidden units (number
of hidden nodes was determined empirically), and 2 output nodes. The output nodes produce values in the range (0,
1) and these are scaled to produce an integer “control” vector in the desired range. All NN simulations were run with
the default settings and training was allowed to proceed for 1000 epochs.

4.4 Creating a test set
Creating a test set for this problem is extremely simple. Obviously, the optimum fitness for any bullet is

0. Therefore, to create a test set, simply randomly generate targets (left hand sides) that have not been seen by the
NN before. Right hand sides are not necessary as explained below. All test sets generated contained 20 instances.

4.5 Testing the neural network
For this problem, the NN is expected to produce bulletapprox, which represents the x and y velocities of a

bullet that should come close to (hopefully hit) the target. Thus, given a target vector target the NN generates the
bullet vector bulletapprox. Trajectories(target, bulletapprox) is then used to determine how close bulletapprox
comes to the target. Even though both bulletopt and bulletworst are unknown, trajectories(target, bulletopt) = 0
and trajectories(target, bulletworst) = default fitness (the default minimum distance between the target origin point
and the bullet origin point in the simulation). A measure of the correctness (normalized % of optimum) of
bulletapprox is therefore

trajectories(worsttarget, bullet) − trajectories(approxtarget, bullet)

trajectories(worsttarget, bullet) − trajectories(opttarget, bullet)
= 1 −

trajectories(approxtarget, bullet)

default fitness
.

4.6 Empirical Results
All simulations were run 15 times and the results averaged. Initially, the evolutionary computation was

able in every case to generate a perfect training set in the sense that all the examples had the maximum fitness (all
were direct hits). This seems to indicate that the EC has generated a training set that faithfully represents the
problem and the results of the NN’s generalization accuracy bear this out.

Next, varying levels of noise were introduced into the training sets. The majority of instances in each
training set were still direct hits, but each training set also contained a few instances with very poor fitness (the
bullet did not come anywhere near the target). One of the most difficult aspects of learning with NN is obtaining a
good training set. In contrast, the EC/NN hybrid approach described here allows for explicit control of training set

quality because of the fact that a fitness function exists. Therefore, the fitness or quality of each individual example
as well as the overall fitness of the training set (taken as the average) is known. Any examples whose fitness is
below a certain threshold can simply be thrown out.

Table 1 presents the results of training a backpropagation NN with 10 hidden nodes on the genetically
generated training sets and then testing it on test sets that it had not seen before. The first column of results is from
simulations run with no noise in which the EC was always able to find training sets comprised entirely of examples
with maximum fitness (direct hits). The remaining three columns are from simulations run with varying degrees of
noise injected into the training sets, with each column representing the results from a different noise level as labeled.
Each is further divided in half with the left half representing the results of training the NN on the noisy training set
and the right half the results of training the NN on the smaller training set obtained by eliminating the noisy
example using the fitness function.

Average training set fitness (EC)

Average NN generalization

Best NN generalization

Worst NN generalization

Average number of direct hits

Most direct hits (of 20)

Least direct hits (of 20)

Noise level 0% 35%25%15%

.943

1.00

.851

10.8

16

3

.991

1.00 1.00 1.00.958 .915 .866

.876

.944

.757

5.5

9

2 3 2 0 1 4

19

11.3

.809

.999

.910.775.834.804.920

.996

.842

10.2

16 7 6 5

2.7

.653

.887.895.925

.741

4.4

.632

4.0

Table 1. Results of simulation

The f i rs t row
indicates the average training
set fitness over all 15 runs.
Recall, this is n o t the
performance of the NN on the
training set, but rather a
measure of how good the
training set (generated by the
EC) is compared to the
theoretical optimum of all
instances being direct hits.
As mentioned earlier, in the
case of 0% noise, the EC was
always able to create a
training set with maximum
fitness. This is an indication

that the training set is a good representation of the problem. However, this was not the case with the noisy
simulations. Still, the majority of the 250 instances in all the training sets were direct hits; however, in each of the
three scenarios, a few instances of each training set in each run were always very poor. The second row indicates
how well, on average, the NN generalized on a test set after being trained on one of the training sets. Since each of
the 15 runs themselves represent averages over 250 training instances and 20 test instances, the first two rows of the
table are really averages of averages.

The third row shows the best NN generalization over any of the test sets and the fourth row shows the
corresponding worst generalization. The fifth row shows the average number of times (out of 20 test instances) that
the NN actually hit the test target (a hit entails the minimum distance between bullet and target being 0). The sixth
row shows the most hits in a single test set, and the last row shows the least hits in a single test set. The results
are encouraging because they show that the EC can generate a good training set that allows the NN to generalize well
over the entire problem space. From another perspective, the EC/NN hybrid has potential for effectively
approximating a system.

For example, the best NN generalization in six of the seven scenarios (the right half of the 25% noise level
column being the exception) is very close to the training set fitness. As for the average NN generalization under
noisy conditions, the better the training set fitness (quality), the better the NN generalization. Obviously, the
noisier the training set, the poorer the generalization (see the left halves of the three noisy columns). This is
certainly no surprise. However, as discussed earlier, the EC/NN hybrid can be used to explicitly control training set
quality by detecting and eliminating any training example whose fitness falls below an arbitrary threshold. This
ability allows the hybrid to perform well even under noisy conditions (see the right halves of the three noisy
columns). Also, averages of 10+ direct hits out of 20 test instances is respectable (again, the exception being the
25% column), given the EC/NN hybrid’s complete lack of a priori knowledge for the problem, and the maximum
number of direct hits for the 35% noise column (19) is excellent. (The one miss was within .00041 of being a hit.)

The results of the 25% noise column are a little less encouraging. In comparison to the other two noisy
columns, detection and removal of noisy instances results in much less improvement in NN performance (still, some
improvement is gained). This is probably due to the EC choosing somewhat unrepresentative points in the input
space. Due to the nature of EC, this situation cannot always be avoided but increasing initial population size (if
feasible) can minimize these effects.

5 CONCLUSION
Empirical simulation results suggest that for a broad class of problems (any problem for which a fitness

function can be found to evaluate possible solutions), a combination of evolutionary and neural computation is
indeed capable of efficiently learning to control a system by combining the thorough search capabilities of EC with
the generalization and processing speed of NN. This is possible because the EC is able to generate a training set that
closely represents the actual underlying function and the NN is then able to generalize from the training set. Further,

the hybrid is capable of explicitly controlling the quality of the training set. The key to this process is the
assumption that an appropriate fitness function f can be defined. We conjecture that in many cases this will indeed
be the case (e.g. in a network control problem f would attempt to maximize throughput while minimizing resource
usage). Although it is very difficult to solve optimization-type problems, determining the relative worth of one
solution over another (via some fitness measure) appears, in general, to be a much simpler endeavor. This paper has
developed proof-of-concept on a relatively simple problem.

There are many fruitful areas for future research including active learning of the training set, testing the
hybrid on feedback problems, using other search techniques (other evolutionary approaches, simulated annealing,
etc.), using other function approximation techniques (machine learning, fuzzy logic, etc.), the trade-off between a
training set with few optimal examples vs. one with many sub-optimal examples, and determining better stopping
criteria for the evolution and for the NN training. Also, application to real-world problems is an important next
step. Unfortunately, ascertaining what percentage of optimum the approximate solutions achieve will not be
possible (since the underlying function describing the system to be optimized will be unknown); however, a
measure of performance can be obtained by comparing this approach with current methods for solving these
problems.

REFERENCES
[1] Caudell, T. P. and Dolan, C. P., “Parametric Connectivity: Training of Constrained Networks using Genetic

Algorithms”, Proceedings of the Third International Conference on Genetic Algorithms, 1989.

[2] Cohn, David, Atlas, Les and Ladner, Richard, “Improving generalization with active learning” Machine
Learning, 15:201-21, May 1994.

[3] Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley
Publishing, 1989.

[4] Goonatilake, Suran and Khebbal, Sukhdev (eds.), Intelligent Hybrid Systems, John Wiley & Sons, 1995.

[5] Harp, S. A., Samad, T., and Guha, A., “Designing Application-Specific Neural Networks Using the Genetic
Algorithm”, NIPS-89 Proceedings, 1990.

[6] Honavar, Vasant, and Uhr, Leonard (eds.), Artificial Intelligence and Neural Networks: Steps Toward
Principled Integration, Academic Press, Inc., San Diego, California, 1994.

[7] Montana, D. J. and Davis, L., “Training Feedforward Neural Networks Using Genetic Algorithms”,
Proceedings of the Third International Conference on Genetic Algorithms, 1989.

[8] Romaniuk, Steve G., “Evolutionary Growth Perceptrons”, Genetic Algorithms: 5th International Conference
(ICGA-93), S. Forrest (ed.), Morgan Kaufman, 1993.

[9] Rumelhart, David E., McClelland, James L. and the PDP Research Group, Parallel Distributed Processing,
MIT Press, Massachusetts, 1988.

[10] Spears, W. M., Dejong, K. A., Baeck, T., Fogel, D., and de Garis, H., “An Overview of Evolutionary
Computation”, European Conference on Machine Learning (ECML-93), 1993.

[11] Sun, Ron and Bookman, Lawrence (eds.), Computational Architectures Integrating Neural and Symbolic
Processes: A Perspective on the State of the Art, Kluwer Academic Publishers, Massachusetts, 1995.

[12] Ventura, Dan, Andersen, Tim, and Martinez, Tony R., "Using Evolutionary Computation to Generate
Training Set Data for Neural Networks", Proceedings of the International Conference on Neural Networks
and Genetic Algorithms, pp. 468-471, 1995.

[13] Wasserman, Philip D., Advanced Methods in Neural Computing, Van Nostrand Reinhold, New York,
1993.

