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Abstract  This paper discusses an approach to
constructing an artificial quantum associative memory
(QuAM).  The QuAM makes use of two quantum
computational algorithms, one for pattern storage and
the other for pattern recall.  The result is an exponential
increase in the capacity of the memory when compared
to traditional associative memories such as the Hopfield
network.  Further, the paper argues for considering
pattern recall as a non-unitary process and demonstrates
the utility of non-unitary operators for improving the
pattern recall performance of the QuAM.

1. Introduction
The field of artificial neural networks (ANN) seeks,

among other things, to develop algorithms for imitating
in some sense the functionality of the brain.  One
particular area of interest is that of associative pattern
recall, with perhaps the most well known approach
being the Hopfield network [7].  Such ANN approaches
to the pattern completion problem allow for associative
pattern recall, but suffer severe storage restrictions.
Storing patterns of length n requires a network of n
neurons, and the number of patterns, m, is then limited
by m ≤ kn, where typically .15 ≤ k ≤ .5.

Quantum computation was introduced in the mid
1980s [4].  The field offers exciting possibilities --
perhaps the most notable to date being the discovery of
quantum computational algorithms for computing
discrete logarithms and prime factorization in
polynomial time, two problems for which no known
classical polynomial-time solutions exist [9].  These
algorithms provide theoretical proof not only that
interesting computation can be performed at the
quantum level but also that it may in some cases have
distinct advantages over its classical cousin.

As quantum computer technology continues to
develop, ANN methods that are amenable to and take
advantage of quantum mechanical properties will
become possible.  In particular, can quantum
computation be applied to ANNs for problems such as
associative memory?  Recently, work has been done in
the area of combining classical neural networks with
ideas from the field of quantum mechanics [1] [8] [12].

This paper briefly discusses a quantum associative
memory (QuAM) developed in [12] and offers an
important extension to that work by appealing to non-
unitary operators.  This is not typical of quantum

algorithms, and arguments for the utility of the
extension as well as for its justification are given.

2. Quantum Concepts
Quantum computation is based upon physical

principles from the theory of quantum mechanics,
which is in many ways counterintuitive. Yet it has
provided us with perhaps the most accurate physical
theory ever devised.  The theory is well-established and
is covered in its basic form by many textbooks (see for
example [5]).  Several ideas are briefly reviewed here.

Linear superposition is closely related to the
familiar mathematical principle of linear combination of
vectors.  Quantum systems are described by a wave
function ψ that exists in a Hilbert space.  The Hilbert
space has a set of states, φi , that form a basis, and the
system is described by a quantum state,

ψ = ci
i

∑ φi . (1)

ψ  is said to be in a linear superposition of the basis
states φi , and in the general case, the coefficients ci

may be complex.  Use is made here of the Dirac bracket
notation, where the ket ⋅  is analogous to a column
vector, and the bra ⋅  is analogous to the complex
conjugate transpose of the ket.

Coherence and decoherence are closely related to the
idea of linear superposition.  A quantum system is said
to be coherent if it is in a linear superposition of its
basis states.  According to quantum mechanics, if a
coherent system interacts in any way with its
environment, the superposition is destroyed.  This loss
of coherence is called decoherence and is governed by the
wave function ψ .  The coefficients ci are called
probability amplitudes, and ci

2
 gives the probability

of ψ  collapsing into state φi  if it decoheres.  Note
that the wave function ψ  describes a real physical
system that must collapse to exactly one basis state.
Therefore, the probabilities governed by the amplitudes
ci must sum to unity.  This necessary constraint is
expressed as the unitarity condition

ci
2

i
∑ = 1. (2)

Consider, for example, a discrete physical variable called
spin.  The simplest spin system is a two-state system,
called a spin-1/2 system, whose basis states are usually
represented as ↑  (spin up) and ↓  (spin down).  In
this system the wave function ψ is a distribution over



two values and a coherent state ψ  is a linear
superposition of ↑  and ↓ .  One such state might be

ψ = 2

5
↑ + 1

5
↓ . (3)

As long as the system maintains its quantum coherence
it cannot be said to be either spin up or spin down.  It
is in some sense both at once.  When this system
decoheres the result is, for example, the ↑  state with
probability (2 5)2 = 0.8.

A simple two-state quantum system, such as the
spin-1/2 system just introduced, is used as the basic
unit of quantum computation.  Such a system is referred
to as a quantum bit or qubit, and renaming the two
states 0  and 1 , it is easy to see why this is so.

Operators on a Hilbert space describe how one wave
function is changed into another.  Here they will be
denoted by a capital letter with a hat, such as Â , and
they may be represented as matrices acting on vectors.
Using operators, an eigenvalue equation can be written
Â φi = ai φi , where a i is the eigenvalue.  The
solutions φi  to such an equation are called eigenstates
and can be used to construct the basis of a Hilbert space
as discussed above.  In the quantum formalism, all
properties are represented as operators whose eigenstates
are the basis for the Hilbert space associated with that
property and whose eigenvalues are the quantum allowed
values for that property.  Operators in quantum
mechanics must be linear and further, operators that
describe the time evolution of a state must be unitary so
that Â† Â = ÂÂ† = Î , where Î  is the identity operator,
and Â† is the complex conjugate transpose of Â .

Interference is a familiar wave phenomenon.  Wave
peaks that are in phase interfere constructively while
those that are out of phase interfere destructively.  This
phenomenon is common to all kinds of wave mechanics
from water waves to optics, and the well-known double
slit experiment proves empirically that interference also
applies to the probability waves of quantum mechanics.

2.1. Quantum Algorithms
The field of quantum computation offers exciting

possibilities -- the most important quantum algorithms
discovered to date all perform tasks for which there are
no classical equivalents.  For example, Deutsch’s
algorithm [3] is designed to solve the problem of
identifying whether a binary function is constant
(function values are either all 1 or all 0) or balanced (the
function takes an equal number of 0 and 1 values).
Deutsch’s algorithm accomplishes the task in order O(1)
time, while classical methods require O (2n) time.
Simon’s algorithm [10] is constructed for finding the
periodicity in a 2-1 binary function that is guaranteed to
possess a periodic element.  Here again an exponential

speedup is achieved; however, admittedly, both these
algorithms have been designed for artificial, somewhat
contrived problems as a proof of concept.  Grover’s
algorithm [6], on the other hand, provides a method for
searching an unordered quantum database in time
O( 2n ), compared to the classical lower bound of
O(2n).  Here is a real-world problem for which quantum
computation provides performance that is classically
impossible.  Finally, the most well-known and perhaps
the most important quantum algorithm discovered so far
is Shor’s algorithm for prime factorization [9].  This
algorithm finds the prime factors of very large numbers
in polynomial time, while the best classical algorithms
require exponential time.

3. Quantum Associative Memory
The QuAM is composed mainly of two key

quantum computational algorithms, one for pattern
storage and the other for pattern recall.  In [12], both
processes were considered evolutionary in nature and the
algorithms for their implementation were developed
using unitary operators.  The two algorithms are briefly
described here with references provided for further detail.

3.1 Storing Patterns
A quantum algorithm for constructing a coherent

state over n qubits to represent a set of m patterns is
presented in [11].  The algorithm is implemented using
a polynomial number (in the length and number of
patterns) of elementary operations on one, two, or three
qubits.  The key operator in this process is
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, (4)

where m≤p≤1.  This is actually a set of operators that
are conditional transforms -- there is a different Ŝ p

operator associated with each pattern to be stored.  The
algorithm also makes use of various versions of some
standard quantum computational operators such as the
Controlled-Not and Fredkin gates.

Now given a set P of m binary patterns of length
n , the quantum algorithm for storing the patterns
requires a set of 2n+1 qubits, the first n  of which
actually store the patterns and can be thought of as n
neurons in a quantum associative memory.  The
remaining n+1 qubits are ancillary qubits used for
bookkeeping and are restored to the state 0  after every
storage iteration.  Each iteration through the algorithm
makes use of a different Ŝ p  operator and results in
another pattern being incorporated into the quantum



system.  The result is a coherent superposition of states
that corresponds to the patterns, with the amplitudes of
the states in the superposition all being equal.  The
algorithm requires O(mn) steps to encode the m patterns
as a quantum superposition over n quantum neurons.
This is optimal in the sense that just reading each
instance once cannot be done any faster than O(mn).

3.2 Completing Patterns
Grover has developed an algorithm for finding one

item in an unsorted database [6].  Classically, if there
are 2n items in the database, this requires O(2n) queries
to the database.  However, Grover has shown how to do
this using quantum computation with only O( 2n )
queries.  In the quantum computational setting, finding
the item in the database means measuring the system
and having the system collapse to the basis state which
corresponds to the item in the database for which we are
searching.  The basic idea of Grover’s algorithm is to
invert the phase of the desired basis state and then to
invert all the basis states about the average amplitude of
all the states.  Repetition of this process produces an
increase in the amplitude of the desired basis state to
near unity followed by a corresponding decrease in the
amplitude of the desired state back to its original
magnitude.  The process has a period of π

4
2n , and

thus after O( 2n ) queries, the system may be observed
in the desired state with near certainty.  Define

Îφ = identity matrix except for iφφ = −1 (5)

which inverts the phase of the basis state φ ,

Ŵ = 1

2

1 1

1 −1






(6)

which is often called the Walsh transform, and

Ĝ = −ŴÎ
0
Ŵ (7)

which is the inversion about average.
Now to perform the quantum search on a database

of size 2n, where n is the number of qubits, begin with
the system in the 0  state and apply the Ŵ  operator.
This initializes all the states to have the same
amplitude.  Finally, apply the operator sequence ĜÎτ ,
where τ  is the state being sought, π

4
2n  times and

observe the system.

3.3 Combining the Algorithms
A quantum associative memory (QuAM) can now

be constructed from the algorithms of Sections 3.1 and
3.2.  Define P̂ as an operator that implements the
algorithm for memorizing patterns described in Section
3.1.  Then the operation of the QuAM can be described
as follows.  Memorizing a set of patterns is simply

ψ = P̂ 0 , (8)

with ψ  being a quantum superposition of basis
states, one for each pattern.  Now, suppose we know
n - k bits of a pattern and wish to recall the entire
pattern.  We use a modification of Grover’s algorithm
to recall the pattern as

  ψ = ĜÎP ĜÎτ ψ (9)

followed by

ψ = ĜÎτ ψ (10)

repeated O( 2n ) times, with   ÎP  inverting the phases
of all the states representing stored patterns and Îτ
inverting the phases of those states matching the n - k
known bits.  (Since there are 2k states that will match
the n-k bits, there will be 2k states that have their
phases inverted by the Îτ  operator.)  Thus, with 2n+1
neurons (qubits) the QuAM can store up to 2n patterns
in O(mn) time and requires O( 2n ) time to recall a
pattern.  This last bound is somewhat slower than
desirable and may perhaps be improved with an
alternative pattern recall mechanism.

4. Non-Unitary Pattern Completion
As mentioned earlier, evolutionary operators in

quantum mechanics must be unitary, and thus far we
have treated both the storage and recall segments of the
QuAM as evolutionary processes.  In fact, in the case of
the storage algorithm, evolutionary processes are a
necessity since the system must maintain a coherent
superposition that represents the stored patterns.
Fortunately, the necessity of using unitary operators has
not precluded the discovery of an efficient mechanism
for pattern storage.

On the other hand, requiring the recall mechanism
to be evolutionary seems to limit the efficiency with
which the recall may be accomplished.  This is because
in the general case, the pattern recall problem will be
equivalent to Grover’s search of a random database, and
his algorithm has been shown to be within a constant
factor of optimal for such problems [2].  However, non-
unitary operators do exist in quantum mechanics and in
nature.  For example, any observation of a quantum
system can be thought of as an operator that is neither
evolutionary nor unitary.  In fact, this non-evolutionary
behavior of quantum systems is just as critical to our
understanding of quantum mechanics as is their
evolutionary behavior.  Now, since the pattern recall
mechanism in the QuAM requires the decoherence and
collapse of the system, it can be argued that pattern
recall may be a non-unitary process.  In which case, the
use of unitary operators becomes unnecessary and, in
fact, may be detrimental to the operation of the QuAM.
For example, unlike the case of pattern storage, using
unitary operators for pattern recall seems to preclude
efficient recall of the correct pattern.  This unwanted



effect is due to the unitary evolution of the system,
which introduces spurious states into the superposition
-- states that had zero amplitude after the initial pattern
storage acquire non-zero amplitude during the pattern
recall.  Since the decoherence and collapse of a quantum
wave function is non-unitary and since pattern recall in
the QuAM requires decoherence and collapse at some
point, why not make explicit use of this non-unitarity,
in the pattern recall phase?

With this motivation, we can define a new set of
(non-unitary) operators for the pattern recall phase of the
QuAM.  Call these new recall operators R̂ and represent
them as matrices rφχ, indexed by column and row as the
basis states of the system.   Now define a string q over
the alphabet {0, 1, ?}, with ‘?’ representing “don’t
know”.  We can represent queries to the associative
memory with different values for q.  Each such query
would be represented as a unique non-unitary operator,
R̂q  defined as

rφχ =
1 if φ ≡ χ and h(φ , q) ≥ 1

−1 if h(φ , q) > h(χ, q) ≥ 1

0 otherwise






(11)

where h(a,b) is a hamming function, and the character
‘?’ matches anything.

The ‘1’ entries in the matrix allow certain states the
possibility of being the recalled state, and in fact, any
state whose label matches q in even one character is
included.  The ‘-1’ entries in the matrix cause
destructive interference in such a way that a state with
maximal h value is always chosen.

As a very simple example, consider the case of
n = 2 qubits and suppose that the QuAM has stored the
patterns “01” and “11” so ψ = 1 2 01 + 1 2 11 .
To query the system with q = ”11” requires the operator

R̂11 =

0 0 0 0

0 1 0 −1

0 0 1 −1

0 0 0 1
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and results in

R̂11 ψ = 11 . (13)

Notice that if the QuAM had not stored the pattern
“11”, for example if ψ = 1 2 00 + 1 2 10 , then
a pattern as close to the query as possible (in terms of
hamming distance) would be chosen (in this case, “10”).

Now, suppose that we have the query q = “?1”.
The appropriate operator is

R̂?1 =

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1
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(there are no interference terms because all the entries in
the matrix have equal h values).  The result with the
original ψ = 1 2 01 + 1 2 11  is now

R̂?1 ψ = 1 2 01 + 1 2 11 (15)

with either outcome equally likely.  For each query, the
application of a single operator suffices.

5. Concluding Comments
Quantum processes can be used to implement

useful artificial neural network constructs.  Here, an
artificial quantum associative memory is described that
has a capacity far superior to its classical analogs.  In
addition, it is conceivable to consider the pattern recall
mechanism as a non-unitary quantum process.  Initial
discussion of what sort of non-unitary operator might
be useful in this context has produced a significant
improvement in recall time over the more traditional
quantum computational approach of treating the recall
as a system evolution (and thus as a unitary process).
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