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We consider and compare three approaches to 
quantum pattern classification, presenting empirical 
results from simulations. 
 
Introduction 
 

We consider the possibility of using a quantum 
system to classify binary patterns.  Motivations for 
doing so include the potential for classification systems 
to exist on a scale not possible with current classical 
logic circuits and the potential for quantum systems to 
perform computations not feasible on classical systems 
[1] [2] [3] [4].   

The idea of using quantum systems as neural 
information processing systems is not new [5] [6] [7] 
[8] [9] but is not yet well understood.  Here, we present 
some analysis and empirical results for furthering such 
investigations. 

Specifically, let B={0,1} and let T={(xi, yi)} be a 
set of m pairs of points xi in Bn and labels yi in B.  We 
would like to construct a quantum system for correctly 
labeling those points in T and for generalizing in a 
reasonable way to label other points z∈Bn with z∉T.  In 
other words, we would like to construct a quantum 
classification system that approximates the function 
f: Bn→B from which the set T was drawn.  The use of 
entanglement for just such a task has been discussed 
in [10].  We consider three variations on incorporating 
the information contained in the set T into a quantum 
classification system based on Grover’s iterative search 
algorithm [2].  The three methods will be described and 
compared and empirical simulation results from some 
very simple classification problems will be presented.  
 
Approach 
 
Quantum computation is based upon physical 
principles from the theory of quantum mechanics, 
which is in many ways counterintuitive.  Yet it has 
provided us with perhaps the most accurate physical 
theory (in terms of predicting experimental results) 
ever devised by science.   The theory is well 
established and is covered in its basic form by many 

textbooks (see for example [11]).  Quantum 
computation is a relatively new discipline and not yet 
completely understood; however, [12] provides an 
excellent introduction to many of the key ideas.  

A quantum system is described by a superposition 
of a set of basis states, iφ , that span a Hilbert space:  
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ψ  is said to be in a superposition of the basis states 

iφ , and the coefficients ci may be complex with 
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Use is made here of the Dirac bracket notation, where 
the ket ⋅  is analogous to a column vector, and the bra 
⋅  is analogous to the complex conjugate transpose of 

the ket. 
Quantum computation consists of state preparation, 

effecting useful time evolution of the quantum system, 
and measurement of the system to obtain information.  
Upon measurement, the system will probabilistically 
“collapse” to a single basis state, and the object of 
quantum computation is to attempt to ensure that the 
measured basis state is with high probability one which 
gives the correct answer or desired information. 
 Here we consider three different approaches to state 
preparation based on the information in the set T.  
Classification of instances is performed using Grover’s 
search algorithm [2] (the time evolution step) and final 
observation of the system.  In what follows we assume 
a set of n+1 two-state quantum systems, and for 
convenience we will label the two states 0  and 1 . 
 
Learning the Set T 
  

We will consider three different methods for 
learning the pattern classifications by representing 
them in a quantum superposition: inclusion, exclusion, 
and phase inversion.  Inclusion is perhaps the most 
intuitive and is the approach suggested in [10].  It 
represents each of the labeled points in T as a basis 



state in the superposition with a nonzero coefficient.  
Basis states corresponding to points not in T have zero 
coefficients: 
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Exclusion is the opposite approach, including each 
point not in T with a nonzero coefficient while those 
points in T have zero coefficients.  This approach is 
employed in [13] in implementing a quantum 
associative memory. 
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Phase inversion includes all basis states in the 
superposition with coefficients of equal amplitude but 
with differing phases based on membership in T: 
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As an example, consider the case of n=2 and 
T={(00,0), (11,1)}.  The inclusive method using Eq. 3 
produces the superposition 
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The exclusive method using Eq. 4 produces the 
superposition 
 

)110101100011010001(
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And the phase inversion method using Eq. 5 produces 
the superposition 
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Classification 
 

Since the intent here is to focus on the methods for 
representing the set T in a quantum system, we will use 
a straight forward approach to classification, 
employing Grover’s iterate.  This can be described as a 
product of unitary operators GR applied to the quantum 
state iteratively.  This produces a periodic behavior that 
can be predicted, and the probability of the desired 
result maximized by measuring the system after an 
appropriate number of iterations.  The operator R is a 

phase inversion of the state(s) that we wish to observe 
upon measuring the system and is represented by the 
identity matrix I with those diagonal entries 
corresponding to the desired state(s) equal to –1.  The 
operator G has been described as an inversion about 

average and if ∑=
+∈+ 1)(12
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can be represented as the matrix I−ψψ2 . 
 Continuing the example, if we wished to classify 
the point 00, 
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and 
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Figure 1 shows the probability of observing the correct 
classification upon system measurement vs. the number 
of iterations of Grover’s search applied to the exclusive 
superposition obtained using the example set T and 
Eq. 4.  The solid line represents the probability Pc of a 
correct classification (0), and the dotted line the 
probability Pw of an incorrect classification (1).  Note 
that these two probabilities do not sum to one.  This is 
because there is a nonzero probability Pr = 1-(Pc + Pw) 
of an irrelevant classification (classifying a pattern 
other than the one in which we are interested).  The 
periodic nature of the algorithm is clearly discernable, 
and it can be seen that in this case the probability of 
success is maximized after four iterations.  We will be 
interested not only in the maximum of Pc but also more 
particularly in the ratio Pc/Pw.  This is because it is easy 
upon measurement to determine whether or not we 
have made an irrelevant classification (in which case 
we can simply perform the classification again); 
however, if we have classified the desired pattern, it is 
impossible to know for sure whether we have made a 



Figure 3 makes a similar comparison amongst the 
three methods for the conditional probability of a 
correct classification, given that the classification is not 
irrelevant.  Here the inclusive method appears to be the 
best choice.  Recall that this probability is more critical 
than the one shown in Figure 2 because there is no way 
of knowing whether the classification is correct or not; 
thus a high conditional probability is desirable. 

correct classification.  For this reason we are interested 
in large values for the ratio Pc/Pw – the larger the ratio, 
the higher the confidence that the classification is 
correct.  
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Figure 1. Probability of correct classification for exclusive 
representation of a set of two example patterns. 
 

For example, Figure 1 shows that after four 
iterations the probability of classifying the desired 
pattern (00) is Pc + Pw ≈ 0.67+0.17 = 0.84.  Therefore 
there is a probability Pr = 0.16 that a pattern other than 
00 will be classified.  If the desired pattern is classified, 
there is a probability P(Pc |~ Pr) = Pc/( Pc + Pw) ≈ 0.8 
that the classification will be correct.  The higher the 
ratio Pc/Pw, the higher the conditional probability. 

Figure 3. Conditional probability of correct classification 
(given that the classification is not irrelevant). 
 
Generalization 
 

To this point nothing has been done to facilitate 
generalization, and new patterns will be classified 
randomly.  This can be changed by modifying Eqs. 3-5 
so that states whose labels are close (according to some 
metric) will have similar coefficients.  Therefore, 
known patterns from the set T will influence the 
classification of similar unknown patterns. 

 Figure 2 compares the three methods for encoding 
patterns in a quantum system with regards to the 
probability of an irrelevant classification.  Note that the 
exclusion method demonstrates the lowest overall 
probability of irrelevant classification. 
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For the inclusion method, this may be 
accomplished by measuring Hamming distance from a 
known pattern and setting the coefficient 
proportionally.  If the pattern (xi, yi) is in the set T, then 
for patterns (xj, yj) not in T, the coefficient 
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where h(xi, xj) gives the Hamming distance and r, s and 
t are chosen to appropriately weight the patterns and to 
maintain the unitarity demanded by Eq. 2.  For the 
exclusion method, a similar approach sets the 

coefficients as 
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For the phase inversion method, information is 
stored in the relative phases of the states, all of whose 
coefficients have the same magnitude.  Since the 
coefficients can be complex, we can rotate patterns 
“partially” out of phase to facilitate generalization, 
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Figure 2. Probability of irrelevant classification for 
inclusion, exclusion and phase inversion. 
 
Since it is obvious when an irrelevant classification is 
made, this probability simply governs the number of 
times the classification will have to be repeated.  On 
average this will be 1/(1- Pr).  



abuse notation by using i both as a subscript and to 
represent 1− . 

Figures 4 and 5 show results for incorporating such 
generalization into a system learning the very simple 
set T={(00,0)}.  As before, exclusion appears to 
produce the lowest probability of irrelevant 
classification; however, inclusion produces better 
conditional probability of correct classification.  
Interestingly, at least in this simple example, 
performance for unknown patterns is actually better 
than that for known patterns. 
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Figure 4. Probability of irrelevant classification for 
generalizing system for both known and unknown 
patterns. 

0

0.2

0.4

0.6

0.8

1

1.2

Inclusion Exclusion Phase
Inversion

P(
P c
|~
P r
)

Known

Unknown

 
Figure 5. Conditional probability of correct classification 
(given that the classification is not irrelevant) for 
generalizing system for both known and unknown 
patterns. 
 
Discussion 
 

We have presented empirical results comparing 
three approaches to quantum pattern classification.  
These results favor the inclusion method based on the  
fact that the inclusion method appears to produce the 
best conditional probability of correct classification.  It 
should be emphasized, however, that these results are 

not yet conclusive and that they apply only to the case 
where Grover’s search is involved – other less general 
approaches may be more useful in pattern 
classification.  If probability of irrelevant classification 
is considered, the exclusion method appears to exhibit 
the best performance, and it may be interesting to 
consider an inclusive/exclusive hybrid approach.   

Finally, we note that an efficient method for 
constructing the state shown in Eq. 3 is presented in 
[14], and the state shown in Eq. 5 can easily be 
generated using simple rotation matrices; the state 
shown in Eq. 4 can perhaps be generated efficiently 
using something akin to the reverse of the algorithm in 
[14], but to the author’s knowledge, this has not yet 
been shown conclusively. 
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