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Abstract – This paper reports results from studying the 
behavior of Hopfield-type networks with probabilistic 
connections.  As the probabilities decrease, network 
performance degrades.  In order to compensate, two network 
modifications – input persistence and a new activation function – 
are suggested, and empirical results indicate that the 
modifications significantly improve network performance.  

 
 

I. INTRODUCTION 
 

This work considers the problem of probabilistic 
connections in artificial neural networks similar to those first 
introduced by Hopfield and Tank [1].  Probabilistic 
connections can model the dynamics of a spatially distributed 
network or, alternatively, a network exhibiting certain types 
of pathologies.  
 Another motivation for considering neural networks with 
probabilistic connections is that of modeling a group of 
cooperating agents as a distributed constraint satisfaction 
network or associative memory.  The stored vectors represent 
patterns of activity among the agents.  Agent activities will 
result in changes to the network inputs, and when the input 
pattern changes are great enough, the network will converge 
to a different pattern of activity for the individual agents.  A 
simple application of this concept is area coverage by a group 
of mobile agents, for example as a distributed sensing 
network.  Symmetric, equal sized weights could represent 
equal spacing with network activations representing physical 
position of the agent.  In the event of agent loss, the network 
will no longer be in equilibrium.  This change is propagated 
through the network until a new equilibrium is reached.  
Since the weights are fixed, this is accomplished through the 
modification of the node activations, which means that the 
agents’ physical locations will change. 
 In general, the weights in the network would be a 
function of agent attributes (for example, power, power 
consumption, location, sensor data, id, etc.) and problem 
constraints (such as time limits, power limits, number of 
agents, spatial limitations, etc).   
 Of course, we can consider network activations to 
represent agent behaviors other than position and, in fact, the 
activation could be a vector with each component 
representing a candidate action.  The vector component with 

the highest activation at a given time could be considered the 
behavior appropriate for that agent at that time.  
Alternatively, any vector component with positive activation 
could be considered an appropriate behavior at that time and 
all such behaviors could be performed in parallel or with 
some probability.   
 In such a scenario, some connections in the network (those 
between agents) may be less reliable or operate on a different 
time scale than others (those within an agent).  Such 
heterogeneity can be modeled by introducing a probability 
term k associated with each network connection.  We define a 
probabilistic connection as a connection that is only active 
with probability 1/k at any given time step during network 
relaxation.  

This paper studies the effects of heterogeneous connections 
in simple constraint satisfaction networks. In particular, it 
considers the case for which there are two distinct types of 
connections within the network – those for which k = 1 and 
those for which k > 1. 
 Two simple networks are employed to perform 
experiments testing network stability and network reliability 
as the value of k is increased for some nodes in the network.  
As expected, network performance degrades as k increases.  
Introducing input persistence or memory mitigates to some 
extent this performance degradation.  Combining input 
persistence with a modified activation function significantly 
improves network performance, almost completely  
compensating for the deficit due to unreliable connections.  
   
 

II. NETWORK EQUATIONS 
 

The networks presented here differ somewhat from 
traditional Hopfield-style networks. The node update 
equations incorporate the sigmoid at a different point and 
include a tunable relaxation parameter. The net input into a 
node i at time t is computed as follows 
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For a node i, the activations of every other node j are 
multiplied by the weight between node j and node i, and the 



sum over all nodes j represents the net input to node i.  In 
order to incorporate probabilistic connections, a value kij is 
associated with each weight and Equation 1 is modified as 
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where δij = 1 with probability 1/kij and δij = 0 with probability 
1-1/kij.  The activation of node i at time t is computed as  
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where ρ is the relaxation rate parameter, and σ is any 
appropriate squashing function. Here we employ a sigmoidal 
function with range [-1,1] so that a value of 0 can represent a 
“don't know” state:  

Figure 1. 4-node network with two connections with k = 1 (solid) 
and four connections with k > 1 (dashed). 
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Assuming all the weights were reliable (k = 1), the network 
provides two basins of attraction: one with characteristic 
pattern 
 

  [-1, 1, -1, 1] 
 where υ controls the gain of the sigmoid.   
and one with characteristic pattern  Similar modifications have been suggested elsewhere.  The 

utility of this type of network relaxation has been shown to 
improve performance on optimization problems [2], and 
networks of this type have been shown to be robust with 
respect to the relaxation rate parameter below a threshold [3].  
A modified activation function has also been introduced and 
shown to provide improved network stability and 
performance [4].  The utility of these kinds of modifications 
to traditional Hopfield networks has also been demonstrated 
for practical  applications such as speech recognition [5].  For 
related discussion of this kind of relaxation network see 
[6][7]. 

 
[1, -1, 1, -1] 

 
If we limit our consideration to the 16 unique bipolar 
patterns, besides these two trivial cases each basin attracts 
four other patterns (those with Hamming distance 1 from the 
characteristic patterns).  The remaining  six patterns converge 
to the spurious stable state 
 

[0, 0, 0, 0] 
 
because of the symmetry of the network weights and the fact 
that they are Hamming distance 2 from both characteristic 
patterns.  These patterns will be referred to as symmetric 
while those that converge to a characteristic pattern will be 
called asymmetric. 

 
 

III. EXPERIMENTAL RESULTS 
 

Figures 1 and 2 show the two networks used for 
investigating the effect of probabilistic connections on 
network stability and fidelity.  The first is a 4-node network 
with two reliable connections (indicated as solid lines in the 
figure) and four probabilistic connections (indicated as 
dashed lines).  From the standpoint of interacting agents, this 
network can be considered to represent the cooperative 
dynamics of two simple agents.  Alternatively, we may 
consider the network to represent a distributed constraint 
satisfaction system or a Hopfield-type network exhibiting 
some pathology. 

In order to quantify network behavior with respect to k, this 
network behavior at k = 1 will be considered the target 
behavior.  The experiments investigate the network’s 
deviation from this “ideal” behavior as we increase the value 
of k for the probabilistic network connections. 

Figure 2 shows a 6-node generalization of the network with 
three reliable connections and 12 probabilistic ones, possibly 
representing three simple cooperative agents.  The network 
weights are again set to encode two basins of attraction with 
characteristic patterns 

 
[-1, 1, -1, 1, -1, 1] 

 
and 
 

[1, -1, 1, -1, 1, -1] 
 



Of the 64 possible bipolar patterns, 22 (including the 
characteristic pattern) converge to one of the basins, 22 
converge to the other and 20 again converge to the pattern 

 ρ = 0.0001 
 υ = 0.1 
 

 Each experiment measured the effect of k on average pattern 
error (as measured against the “ideal” network behavior when 
k = 1).  For each value of k, each possible bipolar pattern is 
introduced into the network and the network is allowed to 
relax to equilibrium.  The first experiment employs 
Equations 2-4 to simulate a standard network.  As k is 
increased, for any given time step input to a node is often 
incomplete in the sense that some connections that should 
contribute do not.  As expected, this has a significant effect 
on network performance (see Figure 4). 

[0, 0, 0, 0, 0, 0] 
 
which may reasonably considered as a “don’t know” state. 
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Figure 2. 6-node network with three connections with k = 1 
(solid) and twelve connections with k > 1 (dashed). 

 
The network equations depend on two parameters: the 
relaxation rate ρ and the gain υ.  Figure 3 shows the results of 
experimenting with a 4-node network with various 
relaxations rates, tracking average pattern error vs. k.  To 
facilitate readability, results have been translated along the y 
axis.  For larger learning rates, the network is unstable; but 
for ρ ≤ 0.0001 the network dynamics are robust (in good 
agreement with the results in [3]). 

Figure 4. Average pattern error vs. k for standard network.  The 
upper curve includes all patterns.  The lower curve includes 
only those patterns that are not “don’t know” patterns. 
 

 Because the error is due to the fact that some connections 
are not regularly contributing to the input summation, the 
natural way to attempt to remedy the situation is to somehow 
compensate for the missing input.  Implementing input 
persistence can be accomplished by replacing Equation 2 
with 
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and  Figure 3. Average pattern error vs. k for various relaxation 

rates.   
   (7)  0)0( =jiIThe network dynamics were also found to be robust over a 

range of values for the gain υ.  For all the experiments 
reported, we used the values 

 
Equations 6-7 ensure that the summation term almost always 
is reasonably close to the value it would be if k = 1.  Equation 
7 says that for node i the initial input from any node j is 0 and 

 



Equation 6 says that unless the connection from node j to 
node i is active at time t, then the input from node j to node i 
is the same as it was at time t-1.  Therefore, after an initial lag 
all inputs to a node will be nonzero and on average no more 
than k time steps “out of date”.  ( )
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σ  (8)   Figure 5 compares the average pattern error using the input 
persistence of Equations 5-7 with that of the original network.  
The results shown with a broken line reproduce the upper 
curve from Figure 4.  The solid line indicates network 
performance incorporating input persistence.  Note that 
although performance is not quantitatively improve, it is 
improved qualitatively as the network exhibits better stability. 

 
with two unstable regions centered around γ and –γ.  Figure 6 
shows an example of this improved activation function with γ 
= 3 and υ = 0.8. 

 

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500

k

A
ve

ra
ge

 P
at

te
rn

 E
rr

or

standard

input persistence

 

 

-2

-1

0

1

2

-5 -2.5 0 2.5 5

U

σ

 
Figure 5. Average pattern error vs. k for standard network and 
for network with input persistence. 

Figure 6. Improved activation function with stable region 
around 0.  

 Interestingly, the symmetric patterns contribute almost all 
of the error (refer back to Figure 4).  If we consider only 
asymmetric patterns (lower curve in Figure 4), there is almost 
no error even for large values of k.  In other words, the 
network error is due to the fact that the symmetric patterns 
are not converging to the “don’t know” pattern [0, 0, 0, 0].  
The ideal network (for which all connections have k = 1) 
converges to “don’t know” for the symmetric patterns 
because its weights are symmetric and because all 
connections contribute to the input summation every time 
step.  For networks with probabilistic connections this second 
condition is violated and the symmetry is broken.  To 
understand why the symmetry is so fragile, consider the 
activation function given in Equation 4.  It is most unstable 
around 0.  Therefore, even slight perturbations to the network 
dynamics will have drastic (and recoverable effects).  As has 
been noted in [4], this is not intuitively reasonable if 0 is to 
act as “don’t know” – lack of confidence should instead entail 
little effect.  In other words the activation function should not 
be unstable around 0. 

 
What value should γ take?  It must be large enough to ensure 
stability around 0 in order to restore symmetry to the “don’t 
know” patterns.  However, if γ is too large, some asymmetric 
patterns may experience an artificial equilibrium around the 
pattern [0, 0, 0, 0].  Figure 7 demonstrates this, showing error 
results using the improved activation function (together with 
input persistence) for three different values of γ.  Note the 
excellent network performance and stability when γ = 2.  In 
contrast, with γ = 1 the network is very unstable and exhibits 
little error reduction; and with γ = 3, although the network 
maintains its stability error is actually increased significantly 
(even over the networks employing the original sigmoid 
function – refer back to Figure 5).  

 Using a approach similar to [4], Equation 4 can be replaced 
with a sigmoidal function that introduces a tunable stable 
region around 0: 
 



IV. CONCLUSION 
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Probabilistic delays in constraint satisfaction networks can 

be used to model network pathologies, distributed network 
processing or a group of cooperative agents.  The 
probabilistic connections can severely degrade network 
performance and we have suggested two modifications – 
input persistence and the use of a modified activation 
function – that together appear to adequately compensate.  
Empirical results from experiments with small networks are 
favorable and suggest that the techniques may scale to larger 
networks.  The improved network is sensitive to the value of 
the parameter γ and further work must be done to discover the 
appropriate value for γ for a particular network.  Will γ be 
tied closely to the number of “partitions” in the network?  
Also, the maximum k for which stability can be maintained in 
the network must be related to the relaxation rate.  If statistics 
on connection activity could be maintained, the network 
relaxation rate could be optimized to balance speed with 
network performance.  Future work will include evaluating 
these results in the context of a network partitioned by 
delayed connections rather than probabilistic ones.  Can these 
results or modifications thereof be applied to overcome 
connection delays?   Could the network learn those delays 
and compensate for them or better yet, make use of them 
(perhaps for some type of temporal processing)? 

Figure 7. Average pattern error for input persistent network 
employing improved activation function for three different sizes 
of the stable region around 0. 

 
Figure 8 summarizes the results of repeating the experiments 
on the 6-node network, reporting average pattern error for a 
standard network, for a network with input persistence and 
for a network with both input persistence and one of four 
different versions of the improved activation function.  As 
before, adding input persistence improved performance over 
the standard network and employing the new activation 
function further improved network performance, producing 
excellent results for the right value of γ.  Note that for the 6-
node network, γ = 3 is the best value.  Network performance 
and stability are very similar for the 6- and 4- node networks 
suggesting that the results scale. 
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