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Abstract

Discretization of continuously valued data is a useful
and necessary tool because many learning paradigms
assume nominal data. A list of objectives for efficient
and effective discretization is presented. A paradigm
called BRACE (Boundary Ranking And Classification
Evaluation) that attempts to meet the objectives is
presented along with an algorithm that follows the
paradigm. The paradigm meets many of the objectives,
with potential for extension to meet the remainder.
Empirical results have been promising. For these
reasons BRACE has potential as an effective and
efficient method for discretization of continuously
valued data. A further advantage of BRACE isthat it is
general enough to be extended to other types of
clustering/unsupervised learning.

1 INTRODUCTION

Many machine learning and neurally inspired
algorithms are limited, at least in their pure form, to
working with nominal data. Examplesinclude ID3 [8],
AQ" [6], COBWEB [2], and ASOCS [5]. For many
real-world problems, some provision must be made to
support processing of continuously valued data. The
main effort of this research is to develop an effective
and efficient method for discretization of continuously
valued data as a preprocessor for supervised learning
systems. Discretizing continuously valued data
produces inherent generalization by grouping data into
several ranges, representing it in amore general way. It
has been shown that for some learning algorithms,
efficient discretization as preprocessing resulted in
significant speedup [1]. Further, discretization has
some psychological plausibility since in many cases
humans apparently perform asimilar preprocessing step

representing temperature, weather, speed, etc., as
nominal values.

This paper attempts to support models which
naturally work with nominal data by presenting a
method of quickly and intelligently discretizing
continuously valued datainto several useful ranges that
can then be handled as nominal data. The method
concentrates on finding the natural boundaries between
ranges and creates a set of possible classifications using
these boundaries. All classifications in the set are
evaluated according to a criterion function and the
classification that maximizes the criterion function is
selected. This extended abstract gives a high-level view
of the BRACE paradigm with brief examples and
discussion. The full paper fleshes out the description of
the paradigm with formal definitions, detailed
examples, and samples of empirical results.

2 RELATED WORK

Many methods for general clustering of data suggest
themselves for the purpose of discretizing continuously
valued data. Methods considered include K-means,
Mini-max, Bayes, and K-nearest neighbor [9][3]. These
methods solve many general clustering problems.
However, each of these methods has been empirically
evaluated on real-world applications, and none of them
are particularly suited to this specific task of
discretizing real data into nominal data. Reasons for
this include use of a Euclidean distance metric to
determine range assignment, dependence on user-
defined parameters, dependence on unknown statistical
distributions, tendency of "good" parameter settings to
be application dependent, and sensitivity to initial
ordering of data.

Several methods specifically for discretization also
exist including the equal-width-intervals method, the
equal-frequency-intervals method, and ChiMerge [4].
These generally outperform the methods mentioned
above since they are designed specifically for the task
of discretization. However, these too have inherent
weaknesses that limit their usefulness. For example, the
two former methods are very simple and arbitrary.



They make no attempt to discover any information
inherent in the data. The latter is more robust; however,
it performs only pairwise evaluation of ranges and
depends on some user-defined parameters.

Study of these methods has resulted in the
compilation of a list of desirable attributes for a
discretization method:

Measure of classification “ goodness’
No specific closeness measure

No parameters

Globality rather than locality
Simplicity

Use of feedback

Use of a priori knowledge

Higher order correlations

Fast

3 BRACE: BOUNDARY RANKING AND
CLUSTERING EVALUATION

Boundary Ranking And Clustering Evaluation
(BRACE) is a paradigm designed to meet the objectives
presented above. A high-level description of the
paradigm consists of the following 4 steps:

1. Find all natura boundariesin the data;

2. Calculate the rank of each boundary;

3. Construct a set of possible classifications;

4. Evaluate dll classifications in the set and choose
the best one.

Each specific algorithmic instantiation of the
BRACE paradigm uses a unique boundary definition
(BD) for finding boundaries, boundary ranking function
(BRF) for measuring each boundary and classification
optimization function (COF) for evaluating
classifications. A classification is defined as a
grouping of the datainto two or more discrete intervals.
The definition and functions are based on some
heuristic or bias and depend on the specific algorithm.
One such algorithm is presented in section 4. Other
BRACE agorithms introduce other methods of finding
boundaries in the data, measuring those boundaries,
and evaluating the classifications in the set.

A set C of possible classifications is constructed
which consists of the most likely 2-interval
classification, the most likely 3-interval classification,
etc. up to the most likely B+ 1-interval classification,
where B is the number of boundaries identified. The
first classification consists of dividing the data into two
intervals by using the boundary with the highest rank as
a division. The second classification is obtained by
dividing the data into three intervals using the first two
highest ranked boundaries. This continues until the
data has been split into B+1 intervals and C contains B
different classifications.

Once a set of possible classifications has been
created, one of them must be selected for use in
discretizing the data. Each of the classifications in the
set are evaluated according to the COF and the one
classification that maximizes it is selected. All vaues
placed into the same range by the chosen classification
are assigned the same nominal value.

4 VALLEY: ANINSTANTIATION OF BRACE

Define:

H as a histogram of the continuously valued data
points. Therange of the datais defined as the
interval on the real numbers from the smallest
data point to the largest. This range is broken
up into an initial number of intervals and the
height of each interval is the number of data
points that appear in it. It must be noted that
this number of intervals may be considered a
parameter. However, it is more of a parameter
of the physical implementation rather that one
of the logical algorithm. Any reasonably large
number of intervals (~50) will reveal roughly
the same profile for the data. Of course, the
greater the number of intervals created, the
greater the number of spurious valleys that
must be processed.

valley asaloca minimumin H.
V asthe set of all valleys.

rank(valley) as the rank (measure of "goodness') of
agiven valley.

C as the set of possible classifications to be
considered by the COF.

instance as a set of attribute values (Left Hand
Side) implying a set of output values (Right
Hand Side). For example,

YES 7.5 BLUE --> TRUE
training set as a set of instances. For example,

YES 75 BLUE -->TRUE
NO 12 RED --> FALSE
YES 45 GREEN -->FALSE

VALLEY as an instantiation of the BRACE
paradigm defined by its specific Boundary
Definition, Boundary Ranking Function, and
Classification Optimization Function:



BD (Boundary Definition) is a valley in a
histogram. Seefigure 1.
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Figure 1. Arrows indicate several valleys

BRF (Boundary Ranking Function) is the area of a
valey under the imaginary line between the
valley's two bounding local maxima (figure 2.)
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Figure 2. Areaof avalley (shaded)

COF (Classification Optimization Function)
depends on the data being part of an instance.
It is defined as the number of consistent output
class predictions minus the number of
inconsistent output predictions. These
predictions are made considering the
discretization of the attribute currently being
processed as the entire left-hand side of each
instance.

Inserting BD, BRF, and COF into BRACE resultsin the
VALLEY agorithm, which consists of five basic steps:

1. Order the data and build histogram H.

2. Find the set V of all valleys.

3. For each valley v € V, rank(v) = area of v.
4. Construct set C of possible classifications.
5. Evaluate C and chose max{ COF(c)}, ce C.

Thefirst three steps are relatively straight forward.

Once the valley sizes for all valleys have been
calculated, the set C of possible classifications is built
using the biggest valley, then the 2 biggest valleys and
so on until we have split the histogram into |V|+1
intervals and obtained |V| classificationsin C (i.e. using
BD and BRF.)

Since the data is being discretized for a supervised
learning system, knowledge of the output value for each
instance in the training set is assumed. It isimportant to
note that this is an assumption made by the VALLEY
algorithm and not by the general BRACE paradigm.

Using this knowledge, each classification in C is
evaluated according to its ability to correctly predict
output values for the training set, using only the current
attribute under consideration. The number of
inconsistent predictions is subtracted from the number
of consistent predictions, and the result is the score for
that classification. The classification with the highest
scoreis selected (i.e. using COF.)

4.1 An Example

Consider the following training set of instances, only
the first five of which are actualy shown.

YES 7.5 BLUE -->TRUE
NO 1.2 RED -->FALSE
YES 4.5 GREEN -->FALSE
YES 9.2 GREEN -->TRUE
YES 22 RED -->FALSE

Since the second attribute is continuously valued it
must be discretized. Assume that H for attribute 2
ranges from 1 to 10 and looks as in figure 3a. Finding
all the valleys proceeds as in figure 3 where the
numbers above the various valleys indicate their
relative rank.
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Figure 3. (a) Histogram H (b) 1 valley (c) 2 valleys
(d) complete set V



Recall that the set C includes the classification
shown in figure 3b, the classification shown in figure
3c, and all the classifications implied between steps ¢
and d in figure 3. Each of these classificationsin C are
evaluated as shown in Table 1. A simplified copy of
the training set is “constructed” considering only
atribute 2. Thetableisinterpreted asfollows: dividing
the data into two intervals (asin figure 3b), value 7.5 is
ininterval 2 and implies TRUE, 1.2 isininterval 1 and
implies FALSE, 4.5isininterva 2 and implies FALSE,
9.2 isiin interval 2 and implies TRUE, and 2.2 isin
interval 1 and implies FALSE. The score for column
one is calculated by finding the number of consistent
output predictions minus the number of inconsistent
predictions.

2int. 3int. 4int. 5int 11 int.
2->T 3->T 4->T 4->T

1->F 1->F 1->F 1->F

2->F 2->F 3->F 3->F o«
2->T 3->T 4->T 5->T

1->F 1-->F 2->F 2->F

3 5 5 5 5

Table 1. Calculating scores for each classification
in C using the COF

For the two interval case, interval 1 predicts F
twice and interval 2 predicts T twice and F once. The
total scorefor 2 intervals is therefore 4-1=3. The other
columns of the table are calculated similarly. For the
purpose of illustration, sub scores calculated using only
the 5 instances shown are used as the total column
score.

Breaking the data into 3 intervals gives the
maximum score. Note that every classification
thereafter also gives the maximum score. However, in
the interest of parsimony and generalization the
smallest number of intervals with the maximum scoreis
selected. The data is discretized into three intervals as
shown in figure 3c. Values 1.2 and 2.2 arein class 1,
45isinclass 2, and 7.5 and 9.2 arein class 3. The
modified instance set now looks like:

YES 3 BLUE -->TRUE
NO 1 RED -->FALSE
YES 2 GREEN -->FALSE
YES 3 GREEN -->TRUE
YES 1 RED -->FALSE

As a final comment, it should be noted that
although the output in the preceding example is binary,

VALLEY and BRACE can handle any nominal output.
They are not limited to the binary case.

5 EMPIRICAL RESULTS

VALLEY was tested on various data sets from the UC
Irvine machine learning database [7]. One example is
the hepatitis data set, which has a number of
continuously valued variables with widely varying
distributions. These six continuously valued variables
were discretized with encouraging results (see figure 4.)
The next natural step is to compare this method with
more traditional ones by feeding the respective
discretizations into a supervised learning system and
noting effects on the system'’s ability to learn.

In a study of K-nearest neighbor clustering we
found that the K-NN algorithm performed well for
discretizing real data--provided that the proper values
for K and T (parameters corresponding to size of
neighborhood and number of shared neighbors) were
used. Unfortunately, there is no method for finding
good K and T values other than experimentation.
Further, these good values appear to be dependent on
theinitial data. Sample datafrom another UCI database
on iris flowers was discretized using both K-NN and
VALLEY. VALLEY found the same best clustering
that K-NN did; however K-NN required repeated
attempts with various values for K and T, via
interaction with the user, as well as amanual evaluation
of classification "goodness." VALLEY found the
clustering in one iteration with no user intervention.

Variable: Age
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Variable: Biliruben

8

Variable: Alk Phosphate

O n

26 54 96 295

Figure 4. Continuous valued variables from hepatitis
data set discretized by VALLEY
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Figure 4. Continued
6 ANALYSIS

Because BRACE is an abstract concept, meaningful
analysis of it must be performed upon a concrete
instantiation such as VALLEY. Both complexity
analysis (O(nlogn)) and comparison of advantages vs.
disadvantages prove VALLEY to be a promising
algorithm for discretization. These encouraging results
for VALLEY as an agorithm help validate BRACE as
aparadigm.

BRACE and its VALLEY instantiation meet most
of the objectives presented. The two notable exceptions
are higher order correlations and feedback. A further
advantage isthat of generality. BRACE may be applied
to many different types of clustering and unsupervised
learning tasks because of its dynamic Boundary
Definition, Boundary Ranking Function, and
Classification Optimization Function.

7 FUTURE RESEARCH

Current research focuses on extensions to the basic
paradigm and algorithms in order to meet those
objectives not met by the paradigm. This includes
exploring higher order correlations between attributes,
extension to multi-dimensional data, and the use of
feedback.

This research was supported in part by grants from
Novell, Inc. and WordPerfect Corporation.
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