
Robust Trainability of Single Neurons

Klaus-U. H�o�gen, Hans-U. Simon

�

Lehrstuhl Informatik II

Universit�at Dortmund

D-4600 Dortmund 50

hoe�gen,simon@nereus.informatik.uni-dortmund.de

Kevin S. Van Horn

Computer Science Department

Brigham Young University

Provo, UT 84602

kevin@bert.cs.byu.edu

June 3, 1994

�

These authors gratefully acknowledge the support of Bundesministerium f�ur Forschung

und Technologie grant 01IN102C/2. The authors take responsibility for the content.

1

Abstract

It is well known that (McCulloch-Pitts) neurons are e�ciently trainable to learn

an unknown halfspace from examples, using linear-programming methods. We

want to analyze how the learning performance degrades when the representa-

tional power of the neuron is overstrained, i.e., if more complex concepts than

just halfspaces are allowed. We show that the problem of learning a probably

almost optimal weight vector for a neuron is so di�cult that the minimum error

cannot even be approximated to within a constant factor in polynomial time

(unless RP = NP); we obtain the same hardness result for several variants of

this problem. We considerably strengthen these negative results for neurons

with binary weights 0 or 1. We also show that neither heuristical learning nor

learning by sigmoidal neurons with a constant reject rate is e�ciently possible

(unless RP = NP).

To Appear in Journal of Computer and System Sciences

2

1 Introduction

A (McCulloch-Pitts) neuron computes a linear threshold function

f(x) =

�

1 if w

1

x

1

+ : : :+w

n

x

n

� �;

0 if w

1

x

1

+ : : :+w

n

x

n

< �:

In order to learn a target concept c (an unknown subset of the Euclidean n-

space R

n

) with respect to distribution D (an unknown probability distribution

on R

n

), we want to apply a learning algorithm L to a sample of labeled and

randomly chosen training examples. The objective of L is to adjust the weights

w

i

and � of the neuron to the concept at hand. A perfect adjustment with

x 2 c () f(x) = 1 exists i� the concept is a linear halfspace. If we restrict

the class of concepts to halfspaces, we may use linear programming for �nding an

adjustment which is consistent to the sample. This leads to the well-known [7]

fact that halfspaces are PAC learnable (and neurons are trainable to PAC-learn

them). This positive result is valid for variable dimension n. Throughout the

paper, we will demand that our learning algorithms work properly for variable

n.

We want to analyze how learning performance degrades when the represen-

tational power of the neuron is overstrained, i.e., if more complex concepts than

just halfspaces are allowed. A rigorous analysis of this question is based on

the notion of PAO (probably almost optimal) learnability, because we must not

insist on probably almost correct hypotheses. If PAO learning is possible for

arbitrary concepts, we speak of robust learning and robust trainability. We will

show that a neuron is not robustly trainable|i.e., it is not in general possible to

�nd a probably almost optimal weight vector in polynomial time|nor is it even

possible to approximate optimality to within a constant factor in polynomial

time, unless RP = NP. As a corollary we �nd the same hardness result for

learning monomials and 1-DL formulas. We considerably strengthen these neg-

ative results for neurons with binary weights 0 or 1. Other variants of learning

more complex concepts than halfspaces by single neurons are also investigated.

We show that neither heuristical learning nor learning by sigmoidal neurons

with a constant reject rate is e�ciently possible (unless RP = NP).

All our proofs are based on a combinatorial method that associates an op-

timization problem with each learning problem. If the optimization problem

is NP-hard, then its corresponding learning problem is also intractable unless

RP = NP.

The paper is structured as follows: Section 2 presents the formal de�nitions

of PAO and robust learnability. In addition, it describes the aforementioned

combinatorial method. Section 3 states the negative results concerning robust

trainability of neurons. Section 4 proves the di�culty of even approximating

optimality to within a constant factor. Section 5 presents strong negative results

for the case that the weights w

i

are restricted to be 0 or 1. Section 6 is devoted

to heuristical learnability and learnability with constant reject rates. It is shown

3

that the former kind of learning is impossible for McCulloch-Pitts neurons, and

the latter is impossible for sigmoidal neurons (unless RP = NP). Section 7 draws

some conclusions, discusses relations between our results and other papers and

mentions some open problems.

2 Robust Learning and Minimization

Let X be a set augmented with a �-algebra A of events. For instance, A might

be the powerset of X if X is countable, or the system of Borel sets if X = R

n

.

D denotes an unknown, but �xed, probability measure on A. We then de�ne

the following:

� A concept c on X is an element of A.

� A concept class is a collection C � A of concepts.

� Any x 2 c is called a positive example for c, and any x 2 X n c is called

a negative example for c. An arbitrary element of X we simply call an

example.

� A positive or negative example augmented with the corresponding label

`+' or `�' is said to be labeled according to c.

� A sample of size m for concept c is a sequence of m examples, drawn

randomly according to D

m

(m independent drawings fromD) and labeled

according to c.

In a typical learning task, the concept is unknown to the learner but can

be explored empirically by gathering more and more labeled random examples.

After a while, the learner should be able to formulate a `hypothesis' representing

its guess for the unknown concept. Formally, we de�ne the following:

� A hypothesis class H is another collection H � A of subsets of X. H

represents the collection of hypotheses taken into consideration by the

learner.

� We say that hypothesis h 2 H is �-accurate for concept c if

D(h�c) � �; where h�c = (h n c) [(c n h);

i.e., if the prediction error of h is at most �.

� We say that h is �-optimal with respect to H for c if

D(h�c) � opt(H) + �; where opt(H) = inf

h2H

D(h�c);

i.e. if the prediction error of h comes within � of the minimum achievable

by hypotheses from H.

4

Let c 2 C and distribution D on X be (arbitrarily) �xed.

� A learning algorithm for concept class C and hypothesis class H is a

polynomial-time algorithm whose input consists of two parameters 0 <

�; � < 1 (accuracy and con�dence parameter) and a sample of m = m(�; �)

examples (drawn randomly according to D

m

and labeled according to c),

and whose output is (a representation of) some h 2 H. We demand that

m be polynomially bounded in 1=�; 1=�.

� A PAO learning algorithm L must also satisfy the following: With a prob-

ability of at least 1� �, L must output (a representation of) an �-optimal

hypothesis h 2 H for c. We demand that L satisfy this condition for all

possible choices of c;D; � and �.

� We say that C is PAO learnable by H if there exists a PAO learning

algorithm for C and H.

The above de�nition is modi�ed slightly if the learning problem is parameterized

by some complexity parameter n. In this case X = (X

n

)

n�1

; C = (C

n

)

n�1

;H =

(H

n

)

n�1

, n is part of the input, and sample size and running time of the al-

gorithm must be polynomially bounded in n (and the other parameters). The

remaining de�nitions of this section are also stated without the complexity pa-

rameter, but are easily generalized to the parameterized case.

An important special case of PAO learning occurs when C � H. In this case

c 2 H, so opt(H) = 0 and �-optimality becomes synonymous with �-accuracy.

Also the notion of PAO learnability becomes equivalent to the traditional notion

of PAC learnability in Valiant's learning model. An extreme of the special case

C � H is H = C. In this case we follow the traditional terminology:

� We say C is learnable if C is PAC learnable by C.

The notion of PAO learnability becomes more interesting if H � C. An

extreme situation occurs if we allow arbitrary concepts, i.e., C = A. Let us

imagine that (c

i

; D

i

); i � 1; is a sequence of concepts and distributions such

that the corresponding values of opt(H) slightly increase from small values to

large ones. In other words, we continously overstrain the representational power

of H. It is practically important that learning algorithms be robust in the sense

that their performance degrades `gracefully' when overstraining occurs. These

considerations motivate the following de�nition:

� We say that H allows robust learning if A is PAO learnable by H.

A combinatorial problem closely related to the learnability of a concept class

C is the so-called consistency problem for C:

� Consistency problem for C.

Input: A multiset S = S

+

[S

�

(disjoint union) of positive and negative

5

examples.

Question: Does there exist a concept c 2 C consistent with S, i.e.,

9c 2 C : c \ S = S

+

?

The following result is shown in [17, 23]:

Theorem 2.1 If RP 6= NP and the consistency problem for C is NP-hard, then

C is not learnable.

Similarly, it turns out that the question whether a hypothesis class H allows

robust learning is related to the so-called Minimizing Disagreement problem:

� MinDis(H).

Input: A multiset S = S

+

[S

�

(disjoint union) of positive and negative

examples, and an integer bound k � 0.

Question: Does there exist a hypothesis h 2 H with at most k misclas-

si�cations on S? (If h misclassi�es x, each occurrence of x in S counts as

a separate misclassi�cation.)

� We call S = S

+

[S

�

the input sample of MinDis(H), or simply (but

somewhat ambigously) the sample.

� If C is a concept class, we say that S is C-legal if C contains a concept c

which is consistent with S.

The following result has been already observed in [2] (although the authors state

it in a technically slightly di�erent setting.)

Theorem 2.2 If RP 6= NP and MinDis(H) restricted to C-legal input samples

is NP-hard, then C is not PAO learnable by H.

Proof. We show that a PAO learning algorithm L for C;H can be converted

into a Monte Carlo algorithm A for MinDis(H). Let S = S

+

[S

�

(the C-legal

sample) and k (the bound on the number of misclassi�cations) be the input for

A. Algorithm A proceeds as follows:

1. Let � :=

1

jSj+1

; � := 1=2, c be any element of C consistent with S, and D

be the distribution de�ned by D(x) = w(x)=jSj, where w(x) is the number

of occurrences of x in S.

2. Simulate L w.r.t. �; �; c;D; note that we don't need c itself to do this,

since S

+

= fx 2 c : D(x) 6= 0g. Let h be the hypothesis produced by L.

3. Accept i� h makes at most k misclassi�cations on S.

If each hypothesis of H makes more than k misclassi�cations on S, then A

does not accept (S; k). If there exists a hypothesis h 2 H with at most k

misclassi�cations on S, then, with a probability of 1/2 (the con�dent case), L

6

outputs a hypothesis with at most bk + jSj � �c = k misclassi�cations on S. In

this case, (S; k) is accepted. 2

Corollary 2.3 If RP 6= NP and MinDis(H) is NP-hard, then H does not allow

robust learning.

Proof. Apply Theorem 2.2 with C = A. 2

In the following sections, we investigate concrete hypothesis classes related

to separating hyperplanes in the Euclidean space.

3 Robust Learning and Halfspaces

Euclidean concepts (or hypotheses) are subsets of R

n

(the Euclidean n-space

augmented with the �-algebra of Borel sets). Euclidean examples are vectors

from R

n

. Euclidean concepts are quite important in pattern recognition where

objects are often described by real feature vectors. From now on, we consider

n as a variable complexity parameter of all learning problems associated with

Euclidean concepts (although we omit n as an index for the sake of readability).

A well-known method of �xing an Euclidean hypothesis class H is neu-

ral network design. The architecture of a net represents H, and the �xing of

the net parameters after the learning phase corresponds to the selection of a

particular hypothesis h 2 H. Since simple architectures lead to good general-

izations from training examples to test examples, it happens quite often that

the representational power of the architecture is overstrained. We call a neural

network architecture NNA robustly trainable if the associated hypothesis class

H = H(NNA) allows robust learning. NNA is called trainable if H(NNA) is

learnable.

In this section, we discuss the hypothesis class Halfspaces of linear halfspaces

in R

n

with variable dimension n. Notice that the consistency problem for

Halfspaces is just linear programming, which can be done in polynomial time [19,

16]. It is therefore not surprising that Halfspaces is learnable (see [7]). But

we state that Halfspaces does not allow robust learning (assumed RP 6= NP).

Notice that Halfspaces is the hypothesis class associated with the simplest neural

architecture, consisting of a single McCulloch-Pitts neuron only. It follows that

a McCulloch-Pitts neuron is trainable, but not robustly trainable (assumed

RP 6= NP).

A halfspace is naturally represented by a separating hyperplane of the form

w � x = w

1

x

1

+ : : :+ w

n

x

n

= �:

The corresponding positive and negative halfspaces are given by w � x � � and

w � x < � , respectively. The unmodi�ed term halfspace is used to mean positive

halfspace. The problem MinDis(Halfspaces) is then the following:

7

Given disjoint sets of positive and negative examples from Z

n

and a

bound k � 1, does there exist a separating hyperplane which leads

to at most k misclassi�cations?

Note that we restrict the inputs for MinDis(Halfspaces) to be integers (which is

basically equivalent to assuming rationals) in order to avoid real arithmetic. It

turns out that already this restricted version is NP-hard. We also replaced the

notion multiset in the general de�nition of MinDis(H) above by the notion set,

because in the following sections we will show that even this restricted version

su�ces to prove our results (the only exception is theorem 6.5). It is evident

that MinDis(Halfspaces) belongs to NP because there is always a polynomial

`guess' for the (rational) coe�cients of an optimal separating hyperplane. We

omit the details and refer the reader to standard books on linear programming

such as [22].

Theorem 3.1 MinDis(Halfspaces) is NP-complete.

We give a proof of this theorem in the next section by proving a strengthened

result. A. Blum [5] independently suggested another proof of Theorem 3.1 using

a polynomial transformation from the NP-complete problem Open Hemisphere

(problem MP6 in [12]) to MinDis(Halfspaces). While his proof needs multisets

in the de�nition of MinDis(Halfspaces), or alternatively uses vectors with non-

Boolean entries, our proof will only use sets of Boolean vectors.

Open Hemisphere is just the minimizing disagreement problem for homo-

geneous halfspaces (halfspaces whose separating hyperplane passes through the

origin), so MinDis(Homogeneous Halfspaces) is also NP-complete. Using this

fact and Theorem 3.1, we immediately obtain the following corollary:

Corollary 3.2 If RP 6= NP then

1. Halfspaces do not allow robust learning.

2. McCulloch-Pitts neurons are not robustly trainable.

3. Homogeneous halfspaces do not allow robust learning.

In Section 4 we will strengthen these results.

4 Limited Degradation and Halfspaces

Under the assumption that RP 6= NP, we have ruled out the possibility that

halfspaces allow robust learning (or that McCulloch-Pitts neurons are robustly

trainable). Robust learning requires in the con�dent case that the prediction

error of the hypothesis is bounded by opt(H) + �. We shall consider two ways

of relaxing the requirements of robust learning. One is to only require that

8

we approach some �xed multiple d � 1 of the minimum error achievable by

hypotheses from H. This can still be of practical use if d is close to 1. The

other is to enlarge our learning environment. Assume that we have a hypothesis

class H

0

, which de�nes the optimal error opt(H

0

) achievable using hypotheses in

H

0

to approximate the given concept. To relax the restrictions of the learning

problem we may now increase the power of the hypothesis class while preserving

the value of opt(H

0

) as the measure of our learning success. This means we use

the class H

0

as a touchstone class to de�ne the goal of the learning problem,

but allow a hypotheses class H � H

0

, which provides the hypotheses of our

learning algorithm. This framework was introduced by Kearns et.al. in [18]. It

is especially useful to overcome representational problems inherent to a given

touchstone class. We combine these in the following de�nitions:

� We say that the H

0

-degradation of a learning algorithm L for C;H is

limited by d if, in the con�dent case, L outputs a hypothesis h 2 H whose

prediction error is at most d �opt(H

0

)+ �. Notice that if C = H

0

= H this

still implies the learnability of C (the case opt(H

0

) = 0.)

� We say that the H

0

-degradation ofH is limited by d when learning concepts

from C if there exists a learning algorithm for C;H whose H

0

-degradation

is limited by d.

� We say that the H

0

-degradation of H is unlimited when learning concepts

from C if the degradation is not limited by any �xed d when learning

concepts from C.

� We use H and A as the default values for H

0

and C respectively, e.g.

\the degradation of H is unlimited" means that the H-degradation of H

is unlimited when learning concepts from A.

The question of whether the H

0

-degradation of H is limited is related to

the hardness of approximating the minimization problem MinDis(H). Before

stating this connection we present some de�nitions which will be needed in this

section.

� A minimization problem � has the following form, for some pair of pred-

icates P and Q and integer-valued `cost' function C: Given x satisfying

P (x) and an integer bound k � 0, does there exist a solution y satisfying

Q(x; y) and C(x; y) � k?

� A polynomial-time approximation algorithm (PTAA) A for � is a

polynomial-time algorithm which takes as input some x satisfying P (x)

and outputs a y satisfying Q(x; y). We write A(x) for the cost of the

solution output by A when run on input x.

� The problem of approximating � to within a factor d is the following:

Given x satisfying P (x), �nd some y satisfying Q(x; y) whose cost is at

most d times the minimum possible.

9

� We say that a sample S is (H;H

0

)-indi�erent if the minimum number of

misclassi�cations on S achievable by hypotheses from H

0

is the same as

the minimum achievable by hypotheses from H.

Theorem 4.1 Let H

0

� H. If RP 6= NP and it is NP-hard to approximate

MinDis(H), restricted to C-legal and (H;H

0

)-indi�erent samples, to within a

rational factor d, then the H

0

-degradation of H is not limited by d when learning

concepts from C.

Proof. Parallels the proof of Theorem 2.2, converting a learning algorithm L

for C;H whose H

0

-degradation is limited by d into a Monte Carlo algorithm for

approximating MinDis(H), restricted to C-legal and (H;H

0

)-indi�erent sam-

ples, to within a factor d. One complication is that we must express d as a ratio

of positive integers d

1

=d

2

, and de�ne � to be 1=(d

2

(jSj+ 1)). Details are given

in [26]. 2

The main result of this section is to demonstrate limits on the approxima-

bility of MinDis(Halfspaces) and variants. Our tool for doing this is the cost-

preserving polynomial transformation:

� A cost-preserving polynomial transformation between two minimization

problems is one for which instances of the form (I; k) are mapped to in-

stances of the form (I

0

; k), i.e., the cost bound is unchanged. In addition,

there must be a polynomial-time algorithm mapping (I; y

0

), for any solu-

tion y

0

of I

0

, to a solution of I of no greater cost. (For many transforma-

tions this mapping is trivial and obvious, and so is not explicitly given.)

We write � �

cp

pol

�

0

if there is a cost-preserving polynomial transformation

from � to �

0

.

We are now ready to strengthen Theorem 3.1. We will do this by

giving a cost-preserving polynomial transformation from Hitting Set to

MinDis(Halfspaces).

� Hitting Set.

Input: A �nite set T , a collectionC of nonempty subsets of T , and integer

k � 1.

Question: Is there a hitting set for C of cardinality at most k, i.e., a

subset R of T s.t. R \M 6= ; for all M 2 C?

Hitting Set is not only NP-complete, it is also di�cult to approximate. Bel-

lare, Goldwasser, Lund and Russel [4] have proven the following:

Theorem 4.2 For all d, no PTAA approximates Hitting Set to within a con-

stant factor d, unless P=NP.

They actually prove the above for Minimum Set Cover, which is isomorphic

to Hitting Set [20, 15]. We now give the transformation from Hitting Set to

MinDis(Halfspaces).

10

Theorem 4.3 Hitting Set �

cp

pol

MinDis(Halfspaces).

Proof. Let (T

0

; C

0

; k) be an instance of Hitting Set. Let s be the cardinality

of the largest set in C

0

, or 2 if this is larger. To every M 2 C

0

add s � jM j

new, distinct dummy elements, and call the result C. Add to T

0

all the dummy

elements, and call the result T . It is clear that any hitting set for C

0

is also a

hitting set for C. Conversely, given any hitting set R for C we can obtain a

hitting set R

0

for C

0

s.t. jR

0

j � jRj, as follows: replace any dummy element i of

R by any non-dummy element of the unique M 2 C s.t. i 2M . Thus there is a

hitting set for C

0

of size at most k i� there is a hitting set for C of size at most

k.

We now construct an instance (S

+

; S

�

; k) of MinDis(Halfspaces) from

(T;C; k), using the fact that all elements of C have the same size s � 2. Let

T = f1; : : : ; ng. Our example vectors will be of dimension sn, which should be

viewed as s groups of n dimensions. We write

�

1

i

1

;:::;i

p

for the n-dimensional

vector having 1 at positions i

1

; : : : ; i

p

and 0 at all other positions, and

�

0 for the

n-dimensional null vector. We then de�ne

� S

+

is the set of \element vectors" (

�

1

i

; : : : ;

�

1

i

), 1 � i � n;

� S

�

is the set of \set vectors"

(

�

1

i

1

;:::;i

s

;

�

0; : : : ;

�

0); : : : ; (

�

0; : : : ;

�

0;

�

1

i

1

;:::;i

s

)

for each set M = fi

1

; : : : ; i

s

g 2 C.

Thus there are n positive vectors and sjCj negative vectors. The theorem follows

immediately from

Claim For all r, there exists a hitting set R � T for C of size at most

r i� there exists a separating hyperplane with at most r misclassi�cations on

S = S

+

[S

�

.

The proof of the claim splits into two parts:

=) Given R, we de�ne a hyperplane by

P

s

j=1

P

l2R

�x

j;l

= 0. A set vector

derived from M 2 C is evaluated to �jR \M j; since R \M 6= ;, this

expression is less than 0. Hence all set vectors are correctly classi�ed as

negative. An element vector derived from i 2 T is mapped to �s (i 2 R) or

to 0 (i 62 R). In the �rst case the vector is incorrectly classi�ed as negative,

and in the second case the vector is correctly classi�ed as positive. This

gives jRj � r misclassi�cations altogether.

(= Let

P

s

j=1

P

n

l=1

w

j;l

x

j;l

= � be a hyperplane which misclassi�es at most r

vectors of S. We �nd a corresponding hitting set R as follows:

� If an element vector is misclassi�ed, then insert the corresponding

element i into R.

11

� If a set vector is misclassi�ed, then insert an arbitrary element of the

corresponding set M into R.

The resulting set R contains at most r elements. We claim that it is a

hitting set. Assume for the sake of contradiction that there exists a set

M 2 C with i 62 R for all i 2M . This implies that the s element vectors

corresponding to the elements of M are classi�ed as positive, leading to

8l 2M;

s

X

j=1

w

j;l

� �; hence

s

X

j=1

X

l2M

w

j;l

� s�;

and the s set vectors corresponding toM are classi�ed as negative, leading

to

81 � j � s;

X

l2M

w

j;l

< �; hence

s

X

j=1

X

l2M

w

j;l

< s�

| a contradiction.

2

Note that in the polynomial transformation given above, only Boolean exam-

ple vectors were produced. We will call the restriction of Halfspaces to Boolean

vectors \Boolean Halfspaces." Thus we have

Corollary 4.4 Hitting Set �

cp

pol

MinDis(Boolean Halfspaces).

We now consider the concept class of hyperplanes. Because

w � x = � () w � x � � and � w � x � ��;

these concepts are representable by a very simple net architecture that has one

hidden layer containing two neurons. We obtain, however, the following:

Corollary 4.5 Hitting Set �

cp

pol

MinDis(Boolean Halfspaces) restricted to

Hyperplanes-legal samples.

Proof. The positive examples in the proof of Theorem 4.3 all lie on the hyper-

plane

P

n

l=1

w

1;l

= 1, and none of the negative examples lie on this hyperplane.

2

Now let us consider the hypothesis classes of monomials and 1-DL formulas.

These are concepts on Boolean vectors. A monomial has the form

f�x :

1

(x

1

) ^ � � � ^

n

(x

n

)g;

where each

i

(x) is either \true", \x," or \:x." A 1-DL formula [24] is de�ned

by a list of pairs (l

1

; c

1

) � � � (l

p

; c

p

)(l

p+1

; c

p+1

), where each c

i

2 f0; 1g, l

p+1

is

\true", and each l

i

(i � p) is a literal (either x

j

or :x

j

for some j). We

determine if �x is in the concept by scanning the list from left to right until we

�nd an l

i

that is true for �x; then �x is in the concept i� c

i

= 1.

12

Lemma 4.6 Monomials � 1-DL � Boolean Halfspaces.

Proof. The monomial ^

p

i=1

l

i

is the same as the 1-DL formula

(:l

1

; 0) � � � (:l

p

; 0)(true; 1). Thus every monomial is also a 1-DL formula.

Now consider the 1-DL formula L = (l

1

; c

1

) � � � (l

p

; c

p

)(true; c

p+1

). Let

�(1) = 1 and �(0) = �1. Noting that :x

i

= (1 � x

i

), we see that each l

i

is a linear function of �x. A straightforward induction on p shows that the half-

space de�ned by

p

X

i=1

�(c

i

)2

p+1�i

l

i

� ��(c

p+1

)

is equivalent to L. Thus every 1-DL formula is also a Boolean halfspace. 2

Corollary 4.7 Hitting Set �

cp

pol

MinDis(Boolean Halfspaces) restricted to

Hyperplanes-legal, (Boolean Halfspaces, Monomials)-indi�erent samples.

Proof. Returning to the proof of Theorem 4.3, let the instance (T

0

; C

0

; k) of

Hitting Set transform to the instance (S

+

; S

�

; k) of MinDis(Halfspaces). The

proof showed for all r that C

0

has a hitting set of size at most r i� there is a

hypothesis h 2 Halfspaces with at most r misclassi�cations on S = S

+

[S

�

.

In particular, if r is the size of the smallest hitting set of C

0

, then r is also

the minimum number of misclassi�cations on S achievable by hypotheses from

Halfspaces.

It was also shown that if C

0

has a hitting set R of size r, then the half-

space de�ned by

P

s

j=1

P

l2R

�x

j;l

� 0 has at most r misclassi�cations on S.

But this halfspace, when restricted to Boolean vectors, is in fact a monomial,

viz.,

V

s

j=1

V

l2R

:x

j;l

. Thus the minimum number of misclassi�cations on S

achievable by monomials is the same as the minimum achievable by halfspaces.

2

We have a similar corollary for homogeneous halfspaces:

Corollary 4.8 Hitting Set �

cp

pol

MinDis(Halfspaces) restricted to Hyperplanes-

legal, (Halfspaces, Homogeneous Halfspaces)-indi�erent samples.

Proof. Same as the proof of Corollary 4.7, except that this time we note that

the halfspace de�ned by

P

s

j=1

P

l2R

�x

j;l

� 0 is homogeneous. 2

We can readily extend these results to cover the degradation of Monomials,

1-DL formulas, and Homogeneous Halfspaces using the following lemma:

Lemma 4.9 If H

00

� H

0

� H, then MinDis(H) restricted to (H;H

00

)-

indi�erent samples �

cp

pol

MinDis(H

0

) restricted to (H

0

;H

00

)-indi�erent samples.

13

Proof. The required cost-preserving polynomial transformation is just the

identity function:

1. If (S; k) is an instance of MinDis(H) restricted to (H;H

00

)-indi�erent sam-

ples then the minimum number of misclassi�cations achievable with H is

the same as the minimum achievable with H

00

; and this the same as the

minimum achievable with H

0

(since opt(H) � opt(H

0

) � opt(H

00

)).

2. Any solution for MinDis(H

0

) is a hypothesis from H

0

� H, and hence is

also a solution for MinDis(H).

2

Corollary 4.10 The following problems cannot be approximated to within any

constant factor in polynomial time, even when restricted to Hyperplanes-legal

samples, unless P=NP:

1. MinDis(Boolean Halfspaces), even when restricted to (Boolean Halfspaces,

Monomials)-indi�erent samples.

2. MinDis(1-DL), even when restricted to (1-DL,Monomials)-indi�erent

samples.

3. MinDis(Monomials).

4. MinDis(Halfspaces), even when restricted to (Halfspaces, Homogeneous

Halfspaces)-indi�erent samples.

5. MinDis(Homogeneous Halfspaces).

Proof. (1) follows from Corollary 4.7. (2) and (3) follow from (1), Lemma 4.6,

and Lemma 4.9. (4) follows from Corollary 4.8. (5) follows from (4) and

Lemma 4.9. 2

Corollary 4.11 Unless RP = NP,

1. Boolean Halfspaces has unlimited (Monomials-) degradation;

2. 1-DL has unlimited (Monomials-) degradation;

3. Monomials has unlimited degradation;

4. Halfspaces has unlimited (Homogeneous Halfspaces-) degradation;

5. Homogeneous Halfspaces has unlimited degradation.

These results hold even when the problem is restricted to learning Hyperplanes.

14

Proof. Follows directly from Corollary 4.10 and Theorem 4.1. 2

The negative results of Corollary 4.11 are rather surprising in light of the fact

that there exist polynomial algorithms for learning all of the hypothesis spaces

mentioned therein, under the PAC model [7, 25, 24]. By allowing concepts that

are not in the hypothesis space, we go from a tractable problem to a problem

that is not only intractable, but cannot even be approximated to within any

constant factor! This suggests that PAO learning may, in general, be much

more di�cult than PAC learning.

5 Limited Degradation and Boolean Threshold

Functions

We now consider more primitive neurons whose weights w

i

(omitting the thresh-

old �) are all 0 or 1. Such neurons compute Boolean threshold functions; in a

sense, they `learn' which variables are essential, and give the same weight to

all essential variables. Pitt and Valiant have shown in [23] that the consistency

problem for Boolean threshold functions is NP-complete. They are therefore

not learnable (unless RP=NP). Of course, no PTAA A for MinDis(Boolean

Threshold Functions) can have a guarantee of the form

A(S) � f(S) � opt(S)

for some function f (unless P=NP), because it is already NP-hard to ask whether

opt(S) = 0. It is therefore more interesting to ask whether there are asymp-

totic performance guarantees of this form, where we restrict ourselves to input

instances S with opt(S) � c and c > 0 su�ciently large. It is not hard to show

the following result:

Theorem 5.1 Assume P 6= NP, and let 0 � � < 1 and b; c > 0. Then no

PTAA A for MinDis(Boolean Threshold Functions) can guarantee that

A(S) � bjSj

�

opt(S) whenever opt(S) � c;

where jSj denotes the length of the string encoding S under any standard encod-

ing of the relevant data structures.

We omit the proof (which is based on standard padding arguments) and

devote the rest of this section to a more structural result. The problem

MinDis(Boolean Threshold Functions) belongs to the class MIN PB of mini-

mization problems such that

1. a proposed solution can be checked for feasibility in polynomial time;

2. the cost of any feasible solution can be computed in polynomial time;

15

3. in polynomial time one can �nd a feasible solution whose cost is bounded

by a polynomial p in the size of the input.

A more formal de�nition is contained in [15, 20], with the only di�erence being

that they do not require that it be possible to �nd a feasible solution in poly-

nomial time. We impose this extra requirement in order to restrict ourselves

to problems where any computational di�culty is in minimizing, and not in

�nding a feasible solution.

Theorem 5.2 MinDis(Boolean Threshold Functions) is MIN PB-complete un-

der cost-preserving polynomial transformations.

The proof uses a technical variant of the well-known satis�ability problem,

called Min SAT and de�ned as follows:

� Min SAT.

Input: a set U of variables, a set U

0

� U of special variables, a collection

F of clauses, and an assignment '

0

: U �! f0; 1g satisfying all the clauses

in F .

Objective: �nd a satisfying assignment ' : U �! f0; 1g which minimizes

P

u2U

0

'(u) (the number of special variables with assignment 1.)

In the world of MIN PB, Min SAT plays the same role as SAT in the world of

decision problems: It is a sort of hardest minimization problem. The following

result is therefore not surprising.

Lemma 5.3 Min SAT is MIN PB-complete under cost-preserving polynomial

transformations.

Proof. The proof is an adaption of analogous reasonings in [21, 9], which

in turn are adaptions of Cook's theorem [8]. Given an instance x of a MIN PB

problem, we �rst compute a feasible solution y

0

for x. Then we construct a

Turing machine M that halts only if its input y is a feasible solution for x of

cost at most p(jxj), in which case it computes the cost of its input and writes

this cost in unary on a reserved portion of the tape. Cook's construction is then

applied to transform M into a set of variables and clauses, and M is simulated

on input y

0

to obtain a satisfying assignment. 2

The MIN PB-completeness of MinDis(Boolean Threshold Functions) follows

now directly from

Lemma 5.4 Min SAT �

cp

pol

MinDis(Boolean Threshold Functions).

Proof. Given m clauses C

1

; : : : ; C

m

over n variables x

1

; : : : ; x

n

, the set

x

i

1

; : : : ; x

i

s

of special variables, and a satisfying assignment '

0

, we will construct

a corresponding Boolean input sample S for Boolean threshold functions.

16

For all 1 � j � m, let �a

j

2 f0; 1g

n

denote the characteristic vector of C

j

, i.e.,

for all 1 � i � n the i-th component of �a

j

is 1 i� non-negated variable x

i

occurs

in C

j

. Let

�

b

j

2 f0; 1g

n

denote the corresponding vector w.r.t. negated variables

x

0

i

. Each vector from S will have the form (�a;

�

b; �c;

�

d), where �a;

�

b;

�

d 2 f0; 1g

n

and

�c 2 f0; 1g

2n

. The �rst 2n dimensions correspond to x

1

; : : : ; x

n

; x

0

1

; : : : ; x

0

n

. The

last 2n+ n dimensions serve for a gadget construction.

The task of the gadget is mainly to force the threshold of each `reasonable'

threshold function f to be 2, and its binary weights in the c part to be 1.

Function f is said to be reasonable on the sample S if it produces fewer than n

misclassi�cations. Notice that for each unreasonable functions f , there is always

the trivial assignment '

0

which has cost at most n (since the number of special

variables is bounded by n.) The negative vectors of the gadget are

(

�

0;

�

0;

�

1

k

;

�

0);

and the positive ones

(

�

0;

�

0;

�

1

k

0

;k

00

;

�

0);

for all 1 � k � 2n and 1 � k

0

< k

00

� 2n. Threshold 0 is impossible because

all 2n negative examples would be classi�ed positive. Symmetrically, thresholds

exceeding 2 are impossible. Threshold 1 leads either to at least n positively

classi�ed negative examples (if at least n weights in the c part are 1) or to at

least

�

n

2

�

� n (n su�ciently large) negatively-classi�ed positive examples (if at

least n weights in the c part are 0). The threshold of each reasonable threshold

function is therefore de�nitely 2. This in turn implies that all weights in the c

part are 1 because, otherwise, at least 2n�1 � n positive examples are classi�ed

as negative. This completes the construction of the gadget (the signi�cance of

the d part will be revealed in a moment.)

A consistent assignment of the 2n literals can now be forced by the positive

examples

(

�

1

i

;

�

1

i

;

�

1

k

;

�

0) where (1 � i; k � n);

ruling out x

i

= x

0

i

= 0, and the negative examples

(

�

1

i

;

�

1

i

;

�

0;

�

1

l

); where (1 � i; l � n);

ruling out x

i

= x

0

i

= 1. Note that the running indices l and k create a vir-

tual multiplicity of n for the positive and negative examples, respectively, and

therefore force reasonable functions to classify all these examples correctly.

Similarly, a satisfying assignment can be forced by the following positive

examples:

(�a

j

;

�

b

j

;

�

1

k

;

�

0) where 1 � j � m; 1 � k � n:

The �nal component of our construction is a counter for special variables set

to 1. It is implemented by the following negative examples:

(

�

1

i

�

;

�

0;

�

1

1

;

�

0) where 1 � � � s:

17

Note that the c part is here not used for creating a virtual multiplicity, because

we want the numbers of special variables with assignment 1 and of misclassi�ed

examples to be equal.

It should be evident from the construction that the clauses have a satisfying

assignment with at most r special variables set to 1 i� there is a Boolean thresh-

old function for sample S with at most r misclassi�cations. This completes the

cost-preserving transformation. 2

6 Heuristical Learning and Single Neurons

Let H � A be a hypothesis class which does not allow robust learning. Then

concept classes like C = A (and probably also some smaller classes) cannot be

PAO learned by H (unless RP = NP). It is, however, still possible that good

`rules of thumb' can e�ciently be selected from H for given concepts. More

precisely, we might �nd an h 2 H containing almost no negative examples, but

covering almost a constant fraction of the positive ones. This leads to decisions

with very trustworthy `yes' answers, but overcareful `no' answers.

A more formal approach to these ideas is based on Valiant's notion of heuris-

tical learning (see [23]). As with PAC learning, we have some unknown concept

c; we also have unknown distributions D

+

and D

�

on c (the positive exam-

ples) and �c (the negative examples), respectively, because it will be technically

convenient to have two separate distributions for the two types of examples.

� A heuristical learning algorithm L with accept rate r (0 < r < 1, r 2 Q)

for concept class C and hypothesis class H is de�ned as follows:

Input: Two parameters 0 < �; � < 1 and a sample of m

+

= m

+

(�; �)

positive and m

�

= m

�

(�; �) negative examples (drawn according to D

m

+

+

and D

m

�

�

, respectively). We demand that m

+

and m

�

be polynomially

bounded in 1=�; 1=�.

Objective: After polynomially many steps, L must ouput a rule h 2 H

which satis�es with a probability of at least 1� � (the con�dent case) the

following condition:

D

�

(h \ �c) � � and D

+

(h \ c) � r � �:

If however no rule from H satis�es

D

�

(h \ �c) = 0 and D

+

(h \ c) � r;

then L may output an error message.

The requirements for L must be satis�ed for all c; �; �;D

+

; D

�

. Notice that �

is part of the input, whereas r is a �xed constant. In the con�dent case, the

probability that a negative example for c is correctly classi�ed can be made

18

arbitrarily close to 1, whereas positive examples may always be misclassi�ed

with a probability of 1� r + �.

� We say that C is heuristically learnable by H with accept rate r if a heuris-

tical learning algorithm with accept rate r for C and H exists.

These de�nitions generalize to the parameterized case in the obvious way.

There is again a combinatorial problem, called Rule(C;H; r), which is

strongly related to heuristical learnability:

� Rule(C;H; r).

Input: A C-legal sample S = S

+

[S

�

(disjoint union of multisets.)

Question: Is there a rule h 2 H that is consistent with S

�

(i.e., S

�

�

�

h)

and covers at least a fraction r of S

+

(i.e., jS

+

\ hj � r � jS

+

j)?

The following result is from [23]:

Theorem 6.1 If RP 6= NP and Rule(C;H; r) is NP-hard, then C is not heuris-

tically learnable by H with accept rate r.

One main result of this section is the following.

Theorem 6.2 For all rationals 0 < r < 1, Rule(Hyperplanes,Halfspaces,r) is

NP-complete.

Proof. The proof uses restricted versions of Vertex Cover called s-Ratio Vertex

Cover for all �xed rational constants 0 < s < 1:

� Vertex Cover.

Input: A graph G = (V;E) and an integer bound k � 0.

Question: Does there exist a set U � V (called the vertex cover) such

that jU j � k and for each edge fu; vg 2 E at least one of u and v belongs

to U?

� s-Ratio Vertex Cover.

Input: A graph G = (V;E) with n = jV j vertices.

Question: Does there exist a vertex cover of G of size at most sn?

Let G = ((V;E); k) be an arbitrary input instance of Vertex Cover. WLOG

assume that k � sn + 1 (this constraint can always be satis�ed by adding

arti�cial isolated vertices to G). We now obtain a polynomial transformation to

s-Ratio Vertex Cover by adding a disjoint N -clique to G for a properly chosen

N . The new number of vertices is n + N . The new bound on the size of the

vertex cover is k+N � 1 because the minimum vertex cover of an N -clique has

size N � 1. Ideally, N should satisfy k+N � 1 = s(n+N). N can be chosen as

the integer part of the solution of this equality, i.e., N = b(sn� k+1)=(1� s)c.

This transformation works properly, if N � 0, which holds because k � sn+ 1.

Let 0 < r < 1 be a �xed rational constant and s = 1� r. We now construct

an instance (S

+

; S

�

; k) of Rule(Hyperplanes,Halfspace,r) from an instance G =

(V;E) of s-Ratio Vertex Cover, as follows:

19

� S

+

is the set of \vertex examples"

�

1

i

, 1 � i � n = jV j.

� S

�

is the vector

�

0 together with the set of \edge examples"

�

1

i;j

, for all

fv

i

; v

j

g 2 E.

Note that all positive examples lie on the hyperplane

P

i

x

i

= 1, and none of the

negative examples lie on this hyperplane; thus this is a Hyperplanes-consistent

sample.

If U � V is a vertex cover of size k � sn, then consider the halfspace w�x � 1,

where w

i

= �1 if v

i

2 U and w

i

= 1 otherwise. It is easy to verify that this

halfspace misclassi�es exactly the k examples corresponding to vertices from U .

For the reverse direction, assume that w �x � � is a halfspace that misclassi-

�es k � (1� r)n vertex examples and is consistent with the negative examples.

We insert a vertex v

i

into the vertex cover U i�

�

1

i

is misclassi�ed. Thus, jU j = k.

Note that for each edge fv

i

; v

j

g, at least one of

�

1

i

;

�

1

j

is misclassi�ed, since

�

0 and

�

1

i;j

are both classi�ed as negative. Thus U is a vertex cover for G. It follows

that there exists a vertex cover with at most sn = (1 � r)n vertices i� there

exists a halfspace covering at least (1 � s)n = rn positive (and no negative)

examples. This shows that Rule(Hyperplanes,Halfspaces,r) is NP-complete. 2

Corollary 6.3 If RP 6= NP, then hyperplanes (or the hyperplane architecture)

are not heuristically learnable by halfspaces (or McCulloch-Pitts neurons) with

a �xed constant accept rate.

In the second part of this section, we consider heuristical learning with con-

stant reject rates r (0 < r < 1; r 2 Q). A hypothesis (or rule) with reject is

a partition of X into 3 disjoint sets h

+

; h

�

; h

rej

. In the following condition

it is again more convenient to deal with a common distribution D for both

types of examples. We demand that the outputs of the corresponding learning

algorithms satisfy

D(h

+

\ �c) +D(h

�

\ c) � � and D(h

rej

) � r + �:

If however no rule from H satis�es

D(h

+

\ �c) +D(h

�

\ c) = 0 and D(h

rej

) � r;

then the output may be an error message. It should be clear without a detailed

de�nition what we mean by heuristical learning algorithms with reject rate r for

concept class C and hypothesis class H (the omitted details are quite similar to

the de�nition of heuristical learning algorithms with accept rate r.)

� We say that C is heuristically learnable by H with reject rate r if an

algorithm of the kind described above exists.

20

Again, the generalization to the parameterized case is obvious. We also de�ne

a related combinatorial problem:

� Reject-Rule(C;H; r).

Input: A C-legal sample S = S

+

[S

�

(disjoint union of multisets.)

Question: Is there a rule h = (h

+

; h

�

; h

rej

) such that

h

+

\ S

�

= ;; h

�

\ S

+

= ; and jh

rej

\ Sj � r � jSj?

Reasonings analogous to those of Section 2 lead to the following.

Theorem 6.4 If RP 6= NP and Reject-Rule(C;H; r) is NP-hard, then C is not

heuristically learnable by H with reject rate r.

We now de�ne a new class of hypotheses:

� A (closed) stripe is the intersection of two (closed) halfspaces whose de�n-

ing hyperplanes are parallel. Each stripe � partitions the Euclidean space

into � and two open halfspaces �

+

;�

�

.

� Reject-Stripes is the class of Euclidean rules (with reject) of the form

(�

+

;�

�

;�) where the reject region � is a stripe (see Figure 1.)

Reject stripes correspond to sigmoidal neurons. These neurons compute

f(w � x) for some continuous function f which strictly monotonously increases

from 0 to 1. They are naturally interpreted as rules with reject if we identify

outputs below a certain threshold � with 0, outputs above a certain threshold

� > � with 1, and the remaining outputs with `reject'. The resulting class of

reject regions is just the class of stripes.

The second main result in this section is the following.

Theorem 6.5 For all rational 0 < r < 1:

Reject-Rule(Hyperplanes,Reject-Stripes,r) is NP-complete.

Proof. We give a polynomial transformation from Vertex Cover to Reject-

Rule(Hyperplanes, Reject-Stripes, r). Let (G = (V;E); k) be an instance of

Vertex Cover, and let n = jV j. As in the proof of Theorem 6.2, we may assume

WLOG that k � rn. Let G

0

= (V

0

; E

0

) be the graph obtained from G by adding

a disjoint N -clique, where N will be de�ned later, and let V

c

be the vertices

of this N -clique. We now construct an instance of Reject-Rule(Hyperplanes,

Reject-Stripes, r), using essentially the same examples as in the proof of Theo-

rem 6.2:

� S

+

is the multiset containing t copies of each vector

�

1

i

, 1 � i � n+ N (t

will be de�ned later.)

� S

�

is the vector

�

0 together with the set of

�

1

i;j

, for all fv

i

; v

j

g 2 E

0

.

21

As before, this is a Hyperplanes-consistent sample. In what follows, let m =

jEj+ 1 and q = t(n+ N) +m+

�

N

2

�

(the total number of examples.)

Suppose that U is a vertex cover of G, of size at most k. Then for all v 2 V

c

,

U

0

= U[V

c

nfvg is a vertex cover ofG

0

, of size at most k+N�1. De�ning w

i

= 1

if v

i

=2 U

0

and w

i

= �1 if v

i

2 U

0

, the reject stripe � given by �2 � w � x � 0

correctly classi�es all positive examples

�

1

i

, v

i

62 U

0

, and rejects the remaining

B

1

= t(k + N � 1) +m +

�

N

2

�

examples. We thus need B

1

� rq.

For the reverse direction, suppose that � is a reject stripe containing at most

rq examples and being consistent with all remaining examples. We de�ne U

0

to be set of v

i

for which

�

1

i

2 �. Then jU

0

j � rq=t. We claim that for each

edge fv

i

; v

j

g 2 E

0

, at least one of

�

1

i

;

�

1

j

must belong to �. Assume for the sake

of contradiction that

�

1

i

;

�

1

j

=2 �. Let �

+

;�

�

be the two halfspaces outside �.

Then

�

1

i

;

�

1

j

2 �

+

and

�

0;

�

1

i;j

2 � [�

�

| a contradiction to the convexity of

�

+

and �[�

�

. So U

0

is a vertex cover of G

0

of size at most brq=tc. Since any

vertex cover of G

0

contains at least N � 1 elements of V

c

, U

0

contains a vertex

cover of G of size at most brq=tc �N + 1. We thus need k + 1 > rq=t�N + 1,

i.e. rq < t(k +N) = B

2

.

The theorem will be proven if we can �nd choices for t and N that satisfy

B

1

� rq < B

2

. Applying some algebra, these two inequalities are rewritten as

1

1� r

�

rn� k + r

�

m +

�

N

2

��

=t

�

< N �

1

1� r

(rn�k+1)�

�

m+

�

N

2

��

=t:

Setting

t =

�

2

r

�max

�

m;

�

N

2

���

it becomes su�cient to satisfy

B

3

:=

1

1� r

(rn�k+rm=t)+

r

2

2(1� r)

< N �

1

1� r

(rn�k+1)�

m

t

�

r

2

=: B

4

:

An easy calculation shows that B

4

� B

3

� 1. Setting N = bB

4

c, we ob-

tain a successful polynomial transformation from Vertex Cover to Reject-

Rule(Hyperplanes,Reject-Stripes,r). 2

Corollary 6.6 If RP 6= NP, then hyperplanes are not heuristically learnable by

reject stripes (or the sigmoidal neuron) with a �xed, constant reject rate.

7 Conclusions and Open Problems

The results of this paper show that the learning performance of single neurons

degrades rapidly when their representational power is overstrained (assuming

22

RP 6= NP). It appears likely that the same phenomenon occurs in larger net-

works. There are two possible conclusions.

One conclusion is that a learning algorithm should not run on a �xed ar-

chitecture. It should expand the architecture when overstraining occurs, or

contract it if there is evidence for understraining. This coincides with the em-

pirical observation of many researchers and their heuristical attempts to specify

appropriate rules for expansion or contraction (see [10, 11]). We may consider

our results as complexity-theoretical support for their approaches. It is also

interesting to note that the concept class we have used for knocking out a single

neuron (hyperplanes) is PAC learnable. Two hidden units in one hidden layer

are su�cient to represent hyperplanes. Thus, learning tasks which are hard for

a single neuron can be quite easy for slightly stronger architectures.

Another conclusion is that our learning model might be too pessimistic or

too restrictive: too pessimistic in the sense that worst-case concepts or worst-

case distributions do (hopefully) not occur in practice; too restrictive in the

sense that learning should use more powerful tools than random examples only.

It is however not quite clear which additional tools are available for the purposes

of neural learning.

Our notions of learnability are not new, except for limited degradation and

heuristical learning with constant reject rate. Robust learning has already been

used by Abe, Takeuchi and Warmuth in [1, 2]. Their notion of robust learn-

ing includes also stochastic rules (without a deterministic distinction between

positive and negative examples) and allows cost measures di�erent from the

prediction error. Notice however that negative results are stronger for the more

speci�c situation, whereas positive results are stronger for the general case.

Therefore, we did not introduce the notion of robust learning in full generality.

Heuristical learning with constant accept rate has been introduced by Pitt and

Valiant in [23]. They also applied the combinatorial method to PAC learning

and heuristical learning. In [2], this method is used for showing that probabilis-

tic automata are not robustly trainable.

There exist some other nonlearnability results concerning neural nets, which

we will mention briey. Judd proved various nonlearnability results in this

context (see [14]). His polynomial transformations from NP-hard problems to

consistency problems su�er a little bit from using quite arti�cial architectures

which are not likely to be used in any existing learning environment. Neverthe-

less, his results are among the �rst rigorously proven negative results concerning

neural learning. Blum and Rivest in [6] showed nonlearnabilty for quite sim-

ple architectures: one hidden layer with k � 2 hidden units and one output

unit which computes the logical AND. This architecture represents polyhedrons

with k facets, i.e., intersections of k halfspaces. Our paper followed this ten-

dency of simpli�cation by investigating single neurons: the simplest architecture

(we guess).

Finally, we would like to mention that our negative results are turned to the

positive side when the dimension n of the Euclidean space is �xed. The approxi-

23

mation problems are then solvable in polynomial time if we apply the algorithm

of Johnson and Preparata for the Densest Hemisphere problem (see [13]).

As for future work, we suspect that the phenomenon of unlimited degra-

dation occurs also for heuristical learning. The analysis of learning algorithms

on dynamical architectures seems to be one of the most striking problems for

future research on neural learning.

References

[1] N. Abe, J. Takeuchi, and M. K. Warmuth, Polynomial learnability of prob-

abilistic concepts with respect to the Kullback-Leibler divergence, in \Pro-

ceedings of the 4th Annual Workshop on Computational Learning Theory,

1991," pp. 277{289.

[2] N. Abe and M. K. Warmuth, On the computational complexity of approxi-

mating distributions by probabilistic automata, in \Proceedings of the 3rd

Annual Workshop on Computational Learning Theory, 1990," pp. 52{66.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof veri-

�cation and intractability of approximation problems, in \Proceedings of

the 33rd Annual IEEE Symposium on Foundations of Computer Science,

1992," pp. 14{23.

[4] M. Bellare, S. Goldwasser, C. Lund, & A. Russell, E�cient probabilistically

checkable proofs and applications to approximation, in \Proceedings of the

25th Annual ACM Symposium on Theory of Computing," pp. 294{304.

[5] A. Blum, personal communication, 1992.

[6] A. Blum and R. L. Rivest, Training a 3-node neural network is NP-

complete, in \Proceedings of the 1988 Workshop on Computational Learn-

ing Theory," pp. 9{18.

[7] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Learnabil-

ity and the Vapnik-Chervonenkis dimension, J. Assoc. Comput. Mach. 36

(1989), 929{965.

[8] S. A. Cook, The complexity of theorem-proving procedures, in \Proceed-

ings, 3rd Annual ACM Symposium on Theory of Computing, 1971," pp.

151{158.

[9] P. Crescenzi and A. Panconesi, Completeness in approximation classes,

Inform. and Comput. 93 (1991), 241{262.

[10] Y. L. Cun, J. S. Denker, and S. A. Solla, Optimal brain damage, in \Ad-

vances in Neural Information Processing Systems 2" (D. S. Touretzky, Ed.),

pp. 598{605, Morgan Kaufmann, San Mateo, CA, 1990.

24

[11] S. E. Fahlman AND C. Lebiere, The cascade-correlation learning architec-

ture, in \Advances in Neural Information Processing Systems 2" (D. S.

Touretzky, Ed.), pp. 524{532, Morgan Kaufmann, San Mateo, CA, 1990.

[12] M. R. Garey and D. S. Johnson, \Computers and Intractability: A Guide

to the Theory of NP-Completeness," Freeman, New York, 1979.

[13] D. S. Johnson and F. P. Preparata, The densest hemisphere problem,

Theor. Comp. Sci. 6 (1978), 93{107.

[14] J. S. Judd, \Neural Network Design and the Classi�cation of Learning,"

MIT Press, Cambridge, MA, 1990.

[15] V. Kann, \On the Approximability of NP-complete Optimization Prob-

lems," Ph.D. thesis, Royal Institute of Technology, Dept. of Numerical

Analysis and Computing Science, Stockholm, Sweden, 1992.

[16] N. Karmarkar, A new polynomial time algorithm for linear programming,

Combinatorica 4 (1984), 373{395.

[17] M. J. Kearns, M. Li, L. Pitt, and L. Valiant, On the learnability of boolean

formula, in \Proceedings, 19th ACM Symposium on Theory of Computing,

1987," pp. 285{295.

[18] M. J. Kearns, R. E. Schapire, and L. M. Sallie, Toward e�cient agnostic

learning, in \Proceedings of the 5th Annual Workshop on Computational

Learning Theory, 1992," pp. 341{353.

[19] L. G. Khachian, A polynomial algorithm for linear programming, Soviet

Math. Doklady 20 (1979), 191{194.

[20] P. G. Kolaitis and M. N. Thakur, Approximation properties of NP mini-

mization classes, in \Proceedings of the 6th Annual Conference on Struc-

tures in Complexity Theory, 1991," pp. 353{366.

[21] P. Orponen and H. Mannila, On approximation preserving reductions:

Complete problems and robust measures, Research Report C{1987{28, Uni-

versity of Helsinki, 1987.

[22] C. H. Papadimitriou and K. Steiglitz, \Combinatorial Optimization,"

Prentice-Hall, Englewood Cli�s, NJ, 1982.

[23] L. Pitt and L. G. Valiant, Computational limitations on learning from

examples, J. Assoc. Comput. Mach. 35 (1988), 965{984.

[24] R. L. Rivest, Learning decision lists, Machine Learning 2 (1987), 229{246.

[25] L. G. Valiant, A theory of the learnable, Communications of the ACM 27

(1984), 1134{1142.

25

[26] K. S. Van Horn, \Learning as Optimization," Ph.D. dissertation, Computer

Science Department, Brigham Young University, 1994.

26

