
The Design and Evaluation of a Rule Induction

Algorithm

Kevin S. Van Horn and Tony R. Martinez

Computer Science Department

Brigham Young University

Provo, UT 84602

email: vanhorn@bert.cs.byu.edu, martinez@cs.byu.edu

technical report BYU-CS-93-11

June 1993

Keywords: machine learning, rule induction, noise, optimization, greedy algorithm, branch

and bound.

Abstract: We present an algorithm for inductive learning from examples that outputs an

ordered list of if-then rules as its hypothesis. The algorithm uses a combination of greedy and

branch-and-bound techniques, and naturally handles noisy or stochastic learning situations.

We also present the results of an empirical study comparing our algorithm with Quinlan's

C4.5 on 1050 synthetic data sets. We �nd that BBG greatly outperforms C4.5 on rule-

oriented problems, and equals or exceeds the performance of C4.5 on tree-oriented problems.

1 Introduction

Roughly speaking, the problem of inductive learning from examples is the following: Given a

collection of training examples (�x; c), where �x 2 X is a description of some object belonging

to class c 2 C, construct a hypothesis h : X ! C for classifying arbitrary elements of X. The

examples are presumed to be drawn independently and randomly from some distribution D

over X � C, and the goal is to minimize the misclassi�cation error when the constructed

hypothesis is tested on new examples drawn from the same distribution D. Note that, as is a

common assumption in the pattern-recognition literature [8], we assume that the relationship

between a description �x and its class c is in general a stochastic one, and not necessarily

deterministic.

BBG is a learning algorithm we have developed for the case whenX = f0; 1g

n

for some n,

i.e. there are n binary attributes. (In Section 9 we discuss how to handle arbitrary nominal

(unordered) attributes.) BBG represents a hypothesis by a rule list, i.e. an ordered list of

if-then rules which are tested in order until one is found that applies. The algorithm uses

a combination of greedy techniques (successively insert the best new rule into the existing

rule list) with branch-and-bound techniques (to �nd the best new rule); hence the acronym

\BBG". It also uses a heuristic estimate of the actual error of the best rule list found within

a given size bound, based on the size and empirical error, to trade o� the conicting goals

of low empirical error and low hypothesis complexity. Experimental results assessing the

e�cacy of this heuristic are given.

In Section 7 we describe an approach to generating synthetic data sets in order to evaluate

the average-case performance of learning algorithms. In Section 8 we give the results of

testing BBG on 1050 separate synthetic data sets, comparing its performance with that of

Quinlan's C4.5 tree induction algorithm. We �nd that on rule-oriented problems the average

performance of BBG is much superior to that of C4.5, and on tree-oriented problems the

average performance of BBG equals or exceeds that of C4.5.

2 De�nitions

An example is a pair (�x; c), where �x 2 X = f0; 1g

n

and c 2 C for some �xed n and �nite

set C; its attribute vector is �x and its class is c. A learning algorithm is given a collection

of examples (called the training sample) drawn independently and randomly from some

unknown probability distribution D over X � C. Note that it is possible for a training

sample to contain multiple copies of the same example.

1

A training sample is inconsistent if it contains examples (�x; c) and (�x; c

0

) with c 6= c

0

. It

is consistent if it contains no such pair of examples. Inconsistent training samples can arise

because D in general de�nes a stochastic relation between attribute vectors and classes.

A rule is a pair (T; c), where c 2 C and T is a conjunction of zero or more literals x

i

or

:x

i

, 1 � i � n. T is called the rule's precondition. The size of a rule (T; c), written siz(T; c),

is one plus the number of conjuncts in T ; thus the rule (:x

1

^ x

5

; c) has size 3.

The precondition T of a rule can be written as a vector

�

t 2 f{; 0; 1g

n

, where t

i

= 1 if T

contains the literal x

i

, t

i

= 0 if T contains the literal :x

i

, and t

i

= { (don't care) otherwise.

T may also be thought of as a predicate on binary n-vectors, and we write T (�v) for the

predicate T applied to the vector �v. We say that an example (�v; c) matches T , or rule (T; c

0

),

if T (�v) is true (note that class is irrelevant).

A hypothesis is a function h : f0; 1g

n

! C. We say that h misclassi�es an example (�x; c)

if h(�x) 6= c.

A rule list is a list of rules (T

1

; c

1

) � � � (T

k

; c

k

), with T

k

= true (the empty conjunction).

This list represents the hypothesis h such that h(�x) = c

i

, where T

i

(�x) is true and T

j

(�x) is

false for all j < i. The size of a rule list is the sum of the sizes of its rules, i.e. it is the

number of rules plus the total number of literals appearing in rules.

The error of a hypothesis h is the probability that h(�x) 6= c when (�x; c) is drawn at

random from the same distribution D from which the training sample was drawn. The

empirical error of a hypothesis is err(h; S)=jSj, where S is the training sample and err(h; S)

is the number of training examples misclassi�ed by h.

3 Outline of the algorithm

BBG consists of two parts:

1. An algorithm G which, given a training sample, produces a sequence of rule lists of

increasing size and decreasing empirical error. One can think of G as trying to minimize

the empirical error for each of a series of size bounds, or equivalently, trying to minimize

the size for each of a series of bounds on empirical error.

2. A method for choosing one of the rule lists output by G. There is a well-known trade-o�

between low empirical error and simplicity of hypothesis, as there is a tendency to �t

noise or statistical ukes of the training sample when excessively complex hypotheses

are allowed [1, 5, 9, 11].

A number of other machine-learning algorithms have used this two-part strategy; see, e.g.,

[11] or the literature on tree induction algorithms [2, 6].

The two parts are quite independent, and one can be changed without a�ecting the other.

The second part is discussed in Section 6; for now we concentrate on algorithm G. In this

section and Section 4 we assume that the training sample is consistent. We discuss how to

deal with inconsistent training samples in Section 5.

Algorithm G is given in Figure 1. At its highest level of description G is a simple greedy

algorithm. It successively inserts new rules into the growing rule list, at each step choosing

the rule and insertion position which maximize the ratio (decrease in empirical error) / (rule

size).

2

| Input: training sample S

| Output: sequence of hypotheses h

0

, h

1

, : : : .

i := 0

h

0

:= h := the single rule (true; c), where c is the most common class in S

while (err(h; S) > 0)

i := i+ 1

(T; c; p) := bestRule(h; S)

insert rule (T; c) into h at position p

h

i

:= h

Figure 1: Algorithm G

For a rule list of r rules there are r positions at which a new rule could be inserted,

position p being immediately before rule p. (There is no point in putting a new rule after

the �nal, default rule.) The procedure bestRule(h; S) tries to �nd a rule (T; c) and position

p maximizing

(err(h; S)� err(h

0

; S))=siz(T; c);

where h

0

is obtained from h by inserting (T; c) at position p. The above is called the gain-cost

ratio of (T; c; p).

4 Finding the best rule to insert

The di�cult part, of course, is implementing bestRule(). We use a branch-and-bound algo-

rithm with memory and time limits, which cannot guarantee optimality, but usually produces

optimal or near-optimal results.

Branch-and-bound algorithms explore a search tree, the nodes of which correspond to

sets of possible solutions, and the leaves of which are single solutions. The children of a

node comprise a partition of the set of solutions represented by the node. The goal is to

�nd a solution y maximizing f(y), for some given function f . When a node z is reached

one computes an upper bound u on the value of f for leaf nodes descended from z; if u is

no greater than f(y

?

) for the best solution y

?

found so far, there is no need to explore the

subtree rooted at z.

4.1 Preliminaries

For our purposes a node is a tuple (

�

t; c; p), where

�

t 2 f�; {; 0; 1g

n

, c is a class, and p is

a position to insert a rule. If

�

t has no � (undetermined) entries then the node is a leaf;

otherwise it has three children obtained by choosing one index i for which t

i

= � and setting

t

i

to {, 0, or 1. We say that the node is expanded on variable i.

If z = (

�

t; c; p) is a leaf node then (

�

t; c) is a rule. If z is not a leaf node but y = (

�

t

0

; c; p) is

a leaf node, then y is a descendant of z in the search tree if and only if

�

t

0

may be obtained

3

Z := ;; N := 0; g

?

:= 0

initialize information needed by eval(), using h and S

for (each class c and position p)

z := (

�

�; c; p)

(u; j) := eval(z)

insert(u; j; z; Z)

while (Z 6= ; and N < �)

(u; j; z) := best element of Z

Z := Z � f(u; j; z)g

while (u > g

?

)

let (

�

t; c; p) = z

(z

0

; z

1

; z

2

) := children of z obtained by setting t

j

to {, 1, and 0

for (i := 0 to 2) (u

i

; j

i

) := eval(z

i

)

if (u

1

> u

2

) swap (u

1

; j

1

; z

1

) and (u

2

; j

2

; z

2

)

for (i := 0 to 1) insert(u

i

; j

i

; z

i

; Z)

(u; j; z) := (u

2

; j

2

; z

2

)

return y

?

Figure 2: The procedure bestRule(h; S)

from

�

t by replacing each � entry with {, 0, or 1; this holds regardless of the method for

choosing the variable on which to expand a node.

We write solns(z) for the set of all leaf nodes descended from z. Thus a node z corresponds

to the set of possible solutions solns(z).

We de�ne z

�

= (T; c; p), where T is obtained from

�

t by replacing each � entry with {.

We write solns

�

(z) for solns(z) � fz

�

g. As will be seen, considering z

�

separately from the

other elements of solns(z) allows us to obtain a tighter upper bound on the gain-cost ratio.

Associated with bestRule() are constants � (a memory bound) and � (a time bound). It

also uses variables Z (the collection of unexpanded nodes, with some associated information),

N (the number of nodes evaluated so far), g

?

(the gain-cost ratio of the best solution found

so far), and y

?

(the best solution found so far).

4.2 The branch-and-bound algorithm

The branch-and-bound algorithm for bestRule() is given in Figure 2, where we write

�

�

for the vector consisting of all �'s. The elements of Z are triples (u; j; z), where z is a node,

u is an upper bound on the gain-cost ratio for elements of solns

�

(z), and j is the variable on

which z is to be expanded.

The procedure eval(z), where z = (

�

t; c; p), does the following:

1. It increments N , the number of nodes evaluated.

2. It computes an upper bound u on the gain-cost ratio for elements of solns

�

(z). (This

is described in Section 4.3.) If z is a leaf node then solns

�

(z) is empty, so it sets u = 0.

4

3. As a side-e�ect of the upper-bound computation it produces two more values at little

additional cost in computation: the variable j on which the node is to be expanded,

and the gain-cost ratio g of the solution z

�

. If g > g

?

, then it sets g

?

to g and y

?

to z

�

.

4. The procedure returns (u; j) as its result.

Details on eval() are given in Section 4.3.

The procedure insert(u; j; z; Z) adds (u; j; z) to the collection Z if u > g

?

and either

1. jZj < � (the memory bound has not been reached), or

2. (u; j; z) is better than the worst element w of Z (in which case w is removed to make

room for (u; j; z)).

We consider (u; j; z) to be better than (u

0

; j

0

; z

0

) if u > u

0

(it has a better upper bound) or

u = u

0

and z contains fewer �'s than z

0

(z is closer to a leaf node than z

0

). We use this same

de�nition of \better" when we choose the best element of Z in the �rst element of the while

loop in Figure 2.

Note that bestRule() uses a combination of best-�rst search (to concentrate on the most

promising nodes) and depth-�rst search (to quickly reach some leaf). The most promising

node is removed from Z, and then a linear path downward from that node is explored,

always adding literals to the precondition, until we have determined that further exploration

along the path is fruitless (u � g

?

). No leaf is ever expanded because the upper bound

u = 0 associated with it is never more than g

?

. As each node z is reached, the solution z

�

is considered and evaluated. Once it is decided to stop exploring a path, the (new) most

promising node is removed from Z and the process repeats.

4.3 Computing the upper bound

We now give the details of eval(). Let us de�ne the following:

� �(y) = err(h; S) � err(h

0

; S), where y = (T; c; p) is a leaf node, S is the collection of

training examples, h is the current hypothesis, and h

0

is obtained from h by inserting

the rule (T; c) at position p.

� msiz(z) = siz(T; c), where z is a node and z

�

= (T; c; p), i.e. msiz(z) is the minimum

size that any node derived from z will have.

The gain-cost ratio of a leaf y is just �(y)=siz(y). Thus if � is an upper bound on �(y)

for y 2 solns

�

(z) then �=msiz(z) is an upper bound on the gain-cost ratio for elements of

solns

�

(z).

Let us consider the computation of �(T; c; p) for a rule (T; c) and position p. We de�ne

the following:

� S

p

= those examples in S that match none of the �rst p � 1 rules of h.

� S

T

p

= those examples in S

p

that match T .

5

� G(T; c; p) = those examples (�x; c

0

) in S

T

p

for which c

0

= c and h(�x) 6= c

0

(the \good"

examples).

� G(z) = G(z

�

), where z is a non-leaf node.

� B(T; c; p) = those examples (�x; c

0

) in S

T

p

for which c

0

6= c and h(�x) = c

0

(the \bad"

examples).

G(T; c; p) is the collection of previously misclassi�ed examples which are correctly classi�ed

after inserting rule (T; c) at position p. B(T; c; p) is the collection of previously correctly-

classi�ed examples which are misclassi�ed after inserting the new rule. Then �(T; c; p) =

jG(T; c; p)j � jB(T; c; p)j, i.e. the number of old errors corrected minus the number of new

errors introduced.

Let y = (T; c; p) 2 solns

�

(z) and z

�

= (T

0

; c; p). Then S

T

p

� S

T

0

p

(since T contains every

literal that T

0

does), hence G(y) � G(z

�

) = G(z). Then jG(z)j � jG(y)j � �(y) for every

y 2 solns

�

(z), and we obtain jG(z)j=msiz(z) as an upper bound on the gain-cost ratio for

elements of solns

�

(z).

We can improve this bound without increasing the asymptotic time complexity of eval(z),

at the same time computing the gain-cost ratio of z

�

and identifying a promising variable

on which to expand z. bestRule() precomputes the various S

p

by ordering the examples in

S according to the �rst rule in h which they match, and computing for each p the index

f [p] of the �rst example matching none of the �rst p� 1 rules of h. If there are m examples

then S

p

is just S[f [p]] through S[m]. bestRule() also precomputes an array K such that

K[i] = h(�x), where (�x; c

0

) is the i-th example. Letting z = (

�

t; c; p) and z

�

= (T; c; p), jG(z)j

is computed by stepping through the examples S[f [p]] through S[m], checking to see if each

example S[i] = (�x; c

0

) matches T , and if so, comparing c

0

to K[i] and c to determine if

S[i] 2 G(z). This test of example i takes �(n) worst-case time, where n is the number of

binary attributes. With �(1) additional computation time eval() determines if S[i] 2 B(z

�

);

summing over the examples this gives jB(z

�

)j, which combined with jG(z)j = jG(z

�

)j and

msiz(z

�

) gives the gain-cost ratio for z

�

.

Eval() also use counters �[i; b] (1 � i � n, b 2 f0; 1g) initialized to 0. Once an example

(�x; c

0

) has been identi�ed as an element of G(z), eval() uses �(n) time to step through the

entries of �x, incrementing �[i; x

i

] whenever t

i

= �. This does not increase the asymptotic

time complexity. In essence, for each i such that t

i

= �, eval() splits the elements of G(z)

into those for which x

i

= 0 and those for which x

i

= 1, thus computing jG(z

ch

)j for each

possible child z

ch

of z formed by adding another literal. Let z[i : b] be the possible child of

z obtained by replacing t

i

with b. Then after all the examples in S

p

have been processed

we have �[i; b] = jG(z[i : b])j for all i such that t

i

= �. Since msiz(z[i : b]) = msiz(z) + 1,

we then have �[i; b]=(msiz(z) + 1) as an upper bound on the gain-cost ratio for elements of

solns(z[i : b]). Taking the maximum over b 2 f0; 1g and all i for which t

i

= � gives an upper

bound on the gain-cost ratio for elements of solns

�

(z). Furthermore, the i which attains this

maximum is an obvious choice for the variable on which to expand z in order to quickly

reach a good solution in the depth-�rst part of our search.

Putting all of this together gives us the algorithm shown in Figure 3.

6

let (

�

t; c; p) = z and (T; c; p) = z

�

 := 0; � := 0

init all �[i; b] to 0

for (j := f [p] to m) if (S[j] matches T)

let (�x; c

0

) = S[j]

if (c

0

6= c and c

0

= K[j]) increment � | S[j] 2 B(z

�

)

if (c

0

= c and c

0

6= K[j]) | S[j] 2 G(z

�

)

increment

for (i := 1 to n) if (t

i

= �) increment �[i; x

i

]

g := (� �)=msiz(z

�

) | gain-cost ratio of z

�

if (g > g

?

)

g

?

:= g; y

?

:= z

�

d := 0

for (i := 1 to n and b := 0 to 1) if (�[i; b] > d)

d := �[i; b]; j := i

u := d=(msiz(z) + 1)

N := N + 1 | increment # of nodes evaluated

return (u; j)

Figure 3: The procedure eval(z)

4.4 Time complexity of bestRule(h; S)

Let m be the number of examples in S, r the number of rules in h, k the number of classes,

and n the number of binary attributes.

Each call to eval() takes �(mn) worst-case time. There are at least kr calls to eval(),

which take place when Z is being initialized. If kr < � then there are at most � + 3n � 1

calls to eval()|at the top of the outer while loop we have N < � , hence N � � � 1, and

there are at most 3n total calls to eval() in the inner loop. Thus we have �(kr+ � +n) calls

to eval() in the worst case.

Since Z is implemented using a pair of heap structures serving as priority queues, each

call of insert() takes �(log �) worst-case time, and to remove an element of Z takes �(log �)

worst-case time. There are kr calls to insert() when Z is being initialized. There are upwards

of max(0; �+2n�1) total additional calls to insert(), �guring as in the preceding paragraph.

Thus we have �(kr+ � +n) calls to insert() in the worst case. Since every element removed

from Z must have been inserted earlier, there are O(kr + � + n) removals of elements from

Z. Thus we have �(kr + � + n) calls to insert() or removals from Z in the worst case.

If we use a bucket sort, the sorting of S and initialization of f [] to produce the various

S

p

takes �(mnr) time. Initializing K[] then takes an addition �(m) time.

If the training sample is inconsistent, then sorting S (to identify the clans) and then

reducing the clans takes �(nm logm+ km) time.

We will make the following assumptions:

7

1. � = O(2

mn

) (and hence log � = O(mn)). It certainly makes no sense to have the

memory bound grow at a rate that is exponential or greater in mn, so this is a safe

assumption.

2. m = O(2

n

) (and hence logm = O(n)). Otherwise the number of training examples

grows large compared to the total number of possible attribute vectors.

Then the total worst-case time of bestRule() is

�((kr + � + n)mn) + �((kr + � + n) log �) + �(mnr) + �(nmlogm+ km)

= �((kr + � + n)mn) +O((kr + � + n)mn) + �(mnr) +O(nmn) + �(km)

= �((kr + � + n)mn):

4.5 Termination of G

For algorithm G to terminate we need to guarantee that bestRule(h; S) returns a solution

with positive gain-cost ratio whenever err(h; S) > 0, so that err(h; S) decreases. We can

guarantee this as long as � > jCj+ 3n (time bound su�ciently large to allow a leaf node to

be reached.)

To see this, �rst note that whenever err(h; S) > 0 there is some leaf node with positive

gain-cost ratio, viz. (�x; c; 1) where (�x; c) is any example misclassi�ed by h. This solution has

a gain-cost ratio of o=n > 0, where o is the number of occurrences of (�x; c) in S. Thus at

least one of the nodes initially created|in fact, the �rst chosen for expansion|will have a

positive upper bound. The depth-�rst search starting from this node will continue (at least)

until either

1. g

?

> 0 (we have found a solution with positive gain-cost ratio), or

2. g

?

= 0 and we reach a node whose upper bound is 0.

We will show that (2) cannot happen.

The initial depth-�rst search starts from a node with no `{' entries ((

�

�; c; p) for some c

and p), and at each step the search continues with a child obtained by replacing a � with

0 or 1. Thus no node expanded in the initial depth-�rst search contains a `{' entry. We

show that (2) above cannot happen by showing that whenever a positive upper bound is

computed for a node z with no `{' entries, either

a. we will compute a positive upper bound for the child z

ch

of z next expanded, or

b. some child of z is a leaf with positive gain-cost ratio.

If (b) occurs then it will cause g

?

> 0, since eval() is called for each child of z when z is

expanded.

It is clear from inspection of eval() that if z is a non-leaf node, a positive upper bound

is computed for z if and only if G(z) is nonempty. Now suppose an upper bound u > 0 and

variable j on which to expand are computed for a node z with no `{' entries. Then z is not

a leaf node, and u = jG(z[j : b])j > 0 for some b 2 f0; 1g, i.e. G(z[j : b]) is nonempty. There

are two cases:

8

� z[j : b] is not a leaf node. Then a positive upper bound is computed for z[j : b] (since

G(z[j : b]) is nonempty). Since z

ch

is either z[j : 0] or z[j : 1]|whichever has a higher

upper bound|this tells us that a positive upper bound is computed for z

ch

, and (a)

above holds.

� z[j : b] is a leaf node. Since G(z[j : b]) is nonempty, it contains at least one example

(�x; c) 2 S

p

. This example is misclassi�ed by the current rule list h and matches

�

t, where z[j : b] = (

�

t; c; p). In fact, �x =

�

t, since

�

t contains no `{' entries. Then

�(z[j : b]) = �(�x; c; p) = o, where o is the number of occurrences of (�x; c) in S, hence

z[j : b] has a gain-cost ratio of o=n > 0, and (b) above holds.

5 Inconsistent training samples

In sections 3 and 4 we assumed that the training sample was consistent. Two simple mod-

i�cations su�ce for dealing with inconsistent training samples. The �rst and most obvious

modi�cation is that the test \err(h; S) > 0" in the top level of algorithm G should be replaced

by \err(h; S) > E", where E is the minimum number of misclassi�ed training examples that

can be achieved by any hypothesis. E can be computed as follows. Partition the training

sample into maximal groups of examples with the same attribute vector; such a group we

call a clan. Let E

c

i

be the number of examples in clan i whose class is not c, and compute

E

i

= minfE

c

i

: c 2 Cg. Then E =

P

i

E

i

.

The second modi�cation involves bestRule(). The termination proof given in Section 4.5

breaks down for inconsistent samples, because it is possible to have a misclassi�ed example

(�x; c) 2 S

p

and yet have �(�x; c; p) � 0. This is because the gain from correcting the

misclassi�cation of (�x; c) may be o�set by a loss for misclassifying examples (�x; c

0

), c

0

6= c,

that were previously correctly classi�ed.

We can �x this problem with a preprocessing step. For each class c, we de�ne reduce(S; c)

to be the collection of examples obtained from S by reducing each clan as follows. Let �x be

the attribute vector de�ning the clan, and let c

0

= h(�x). If c

0

= c, remove the entire clan.

Otherwise, remove from the clan all examples whose output class is neither c nor c

0

. Then

repeatedly remove one example (�x; c) and one example (�x; c

0

) until all examples in the clan

have the same class.

reduce(S; c) is a consistent collection of examples, since all members of a clan have the

same class. Furthermore, for any possible solution y = (T; c; p) the gain-cost ratio of y is the

same whether computed using S or using reduce(S; c). Proof: Consider a clan with attribute

vector �x and h(�x) = c

0

. If c

0

= c then �(y) does not depend on the examples in the clan

(their classi�cation is unchanged by y). Otherwise, �(y) depends only on those examples

in the clan with class c or c

0

, as the remainder are misclassi�ed by h and not corrected by

y. In addition, each example (�x; c) adds one to �(y) (it is an element of G(y)), and each

example (�x; c

0

) subtracts one from �(y) (it is an element of B(y)); thus if we remove one of

each �(y) is una�ected.

So we precompute reduce(S; c) for each c 2 C at the beginning of bestRule(), then use

reduce(S; c) in place of S when evaluating a node z = (

�

t; c; p).

9

6 Trading o� empirical error and hypothesis com-

plexity

Algorithm G produces a sequence of hypotheses h

0

; h

1

; : : : of increasing complexity and de-

creasing empirical error. In this section we describe how BBG trades o� the conicting

goals of low empirical error and low complexity to choose one of the h

i

output by G. In

the literature can be found a number of methods for handling this trade-o�; these include

cross-validation [2, 11], using a separate hold-out set on which to test the sequence of hy-

potheses produced [3], the minimum description-length principle [7], Vapnik's structural risk

minimization [9, 10], and heuristic estimates of the actual error of the best hypothesis found

for a given size bound [6]. Any of these methods can be used in combination with algorithm

G.

BBG uses the last approach mentioned. The various h

i

are compared according to a

heuristic estimate of their actual error, computed from their empirical error and size, and

the best is chosen. (This method bears some resemblance to Vapnik's structural risk mini-

mization [9, 10].) In particular let s

i

be the size of h

i

and e

i

= errs(h

i

; S). BBG chooses the

rule list h

i

for which estErr(s

i

; e

i

) is smallest, where estErr(s; e) is our heuristic estimate of

the actual error of the best rule list found of size at most s, given that it misclassi�es e of

the training examples.

We now describe estErr(s; e). In what follows let m be the number of training examples,

n the number of attributes, and R the set of hypotheses de�ned by rule lists of size at most

s.

Consider the probability �(m; e; �; jRj) that at least one hypothesis in R misclassi�es e

or fewer examples, under the following simplifying (but unrealistic) assumptions:

1. All hypotheses in R have the same error �.

2. The number of examples misclassi�ed by one hypothesis is completely independent of

the number misclassi�ed by any other hypothesis.

We then de�ne

estErr(s; k) = (that � for which �(m; e; �;

~

N) = �)

(typically we set � = 0:5), where

~

N is an estimate of jRj. Since �() is monotonically

decreasing in �, we can compute estErr(s; e) using a binary search of the interval [0; 1]. It

remains only to discuss the computation of �() and

~

N .

For any single hypothesis h

0

with error �, the number of training examples misclassi�ed

out ofm total examples is a random variable following the binomial distribution Binom(m; �).

Thus there is a probability of

LB(m; e; �) =

e

X

i=0

m

i

!

�

i

(1� �)

m�i

that h

0

will misclassify at most e out of m randomly and independently drawn training

examples.

10

Given N di�erent hypotheses, let �

i

(1 � i � N) be the number of training examples

misclassi�ed by hypothesis i. Under the assumptions 1 and 2 above, the �

i

are N independent

random variables, each distributed as Binom(m; �). So

�(m; e; �;N) = Pr[

N

_

i=1

(�

i

� e)]

= 1�Pr[

N

^

i=1

:(�

i

� e)]

= 1� (1�Pr[�

1

� e])

N

= 1� (1� LB(m; e; �))

N

The estimate

~

N of jRj is computed as follows. A nontrivial rule list of size s can have at

most b(s) = b(s� 1)=2c non-default rules|if it has more than this then some rule other than

the �nal, default rule must have size 1, meaning that its precondition is the empty conjunction

(true), and no rule following it is ever reached. A rule list with r non-default rules can have

no more than a total of nr literals, and so has a size of at most r + 1 + nr. Applying some

algebra, this tells us that a rule list of size s has at least a(s) = d(s� 1)=(n+ 1)e rules.

If there are only two classes, then there are a total of 2

s

�

nr

l

�

di�erent rule lists of size s

with r rules and l = s� r � 1 literals. This gives us a total of

N

0

=

s

X

t=1

2

t

b(t)

X

r=a(t)

nr

t� r � 1

!

rule lists of size at most s. jRj will actually be smaller than this, because several di�erent

rule lists may represent the same hypothesis. For example, a rule list may have a non-default

rule with the precondition true (even given the requirement r � b(t)), making it equivalent

to a variety of smaller rule lists. With this in mind we set

~

N = N

�

0

for some 0 < � < 1.

The above estimate of jRj assumed there were only two classes. Theoretical results using

the Vapnik-Chervonenkis dimension to bound the di�erence between empirical error and

actual error [1], applied to conjunctive concepts [4], suggest that this di�erence does not

depend on the number of classes. Thus we compute

~

N as described above even when there

are more than two classes.

The reader may be concerned at the unrealistic assumptions and rough approximations

used in the derivation of estErr(). In fact, our experience has been that estErr() tends to

greatly overestimate the actual errors of the rule lists G produces. What matters, though,

is how well estErr() works at picking the best rule list from the sequence G produces. We

give evidence in Section 8 that it works rather well at this task.

7 Evaluation strategy

We have evaluated the performance of BBG by testing it on a large number of synthetic data

sets. The data sets were produced using two problem generators we developed: rgenex (for

11

rule-oriented problems) and tgenex (for tree-oriented problems). These generators take the

parameters n (number of attributes), k (number of classes), � (noise level),m (size of training

sample), m

0

(size of test sample), and others described below. We require 0 � � < 0:5. In

outline, the problem generators work as follows:

1. A target h is randomly generated. For rgenex h is a rule list, and for tgenex h is a

decision tree; for both we have n Boolean attributes and k classes C = f1; : : : ; kg.

2. A probability distribution D

X

over X = f0; 1g

n

is constructed.

3. A distribution D over X�C is obtained from D

X

and h by adding a level � of uniform

noise. Speci�cally, the probability of (�x; c) under D is pq, where p is the probability of

�x under D

X

, q = 1� � if c = h(�x), and q = �=(k � 1) if c 6= h(�x).

4. The m training examples and m

0

testing examples are randomly and independently

selected from the distribution D.

Note that the target h has an error of � on the distribution D, and that this is the minimum

error achievable by any hypothesis.

For any �xed setting of the parameters to rgenex and tgenex one can investigate the

expected error of a learning algorithm as follows: generate a series of data sets using these

parameters, run the algorithm on the training samples and average the resultant error rates

on the test samples.

7.1 Rgenex

Rgenex takes additional parameters r and l, which specify the number of non-default rules

and total number of literals the target h must have. The target h is generated as follows:

1. Classes are (nearly) evenly distributed among the r+1 rules. Each class is used between

b(r + 1)=kc and d(r + 1)=ke times, with the (r + 1) mod k classes that occur an extra

time being chosen randomly without replacement from a uniform distribution over C.

The assignment of classes to rules is obtained by initializing an array of length r + 1

with the appropriate numbers of each class, then randomly permuting the array, with

all permutations being equally likely.

2. The literals are randomly chosen by selecting l pairs (i; j) randomly without replace-

ment from a uniform distribution over f1; : : : ; r + 1g � f1; : : : ; ng. For each pair (i; j)

we add either x

j

or :x

j

to the precondition of rule i, the choice being made at random

with equal probabilities.

3. Rule lists with superuous rules are disallowed. A rule is superuous whenever its

precondition is true the precondition of some preceding rule is also true.

Let T

i

be the precondition of rule i of the target h, and let W

i

be the set of �x 2 X such

that T

i

(�x) is true and T

j

(�x) is false for j < i. The distribution D

X

is de�ned by the following

two properties:

12

if (s = 1) return leaf

if (s = 2) return mktree(rand(A); leaf; leaf)

(u; l) := setBounds(s; jAj)

ls := rand(fl; : : : ; ug); rs := s� ls

i := rand(A); A

0

:= A� fig

return mktree(i; rtree(ls;A

0

); rtree(rs;A

0

))

Figure 4: The procedure rtree(s;A)

1. The rules are equally likely to be chosen, i.e. if �x is randomly selected according to D

X

then Pr[�x 2 W

i

] = 1=(r + 1) for all i.

2. The distribution is uniform \within" each rule, i.e. for each i the elements of W

i

are

equally likely.

7.2 Tgenex

Tgenex takes the additional parameter s, which speci�es the size (number of leaves) of

the target h. The structure of the target h (h with class labels omitted from the leaves) is

generated by calling rtree(s; f1; : : : ; ng), where rtree() is de�ned in Figure 4. Mktree(i; t

1

; t

2

)

returns the decision tree whose root node is labeled x

i

, with left subtree t

1

and right subtree

t

2

. Rand(F), for any �nite set F , returns an element of F randomly selected from a uniform

distribution. We write leaf for an unlabeled leaf. The call to setBounds() guarantees that

both ls and rs are between 1 and 2

jAj�1

inclusive. This ensures that each subtree has at

least one node, and that we won't run out of attributes (A = ;) on a recursive call of rtree().

Leaf nodes are labeled as follows. If the leaf node is not the right sibling of a pair of sibling

leaf nodes then its class is randomly chosen from a uniform distribution over C. Otherwise

the leaf node's class is randomly chosen from a uniform distribution over C � fcg, where c

is the class of its sibling leaf node. (There is no point in having two sibling leaf nodes with

the same class, as the tree could be simpli�ed by deleting them and labeling their parent

with the common class.) In addition, labelings in which some class labels more than twice

as many leaves as another class are disallowed.

Let W

i

be the set of �x 2 X satisfying each of the tests on the path from the root of h to

leaf i. The distribution D

X

is de�ned by the following two properties:

1. The leaves are equally likely to be chosen, i.e. if �x is randomly selected according to

D

X

then Pr[�x 2 W

i

] = 1=s for all i.

2. The distribution is uniform \within" each leaf, i.e. for each i the elements of W

i

are

equally likely.

13

l r n k � BBG c4.5 c4.5rules

29 12 38 3 0.03 1.85 � 0.84 9.47 � 1.79 8.31 � 1.49

32 9 38 5 0.02 1.38 � 0.51 12.20 � 2.04 9.76 � 1.57

30 11 45 5 0 0.45 � 0.26 11.41 � 1.58 8.30 � 1.62

34 7 50 4 0.04 3.56 � 0.77 13.22 � 2.42 13.21 � 2.20

34 7 52 2 0.05 4.05 � 1.01 8.17 � 1.42 7.44 � 1.32

30 11 54 6 0 0.58 � 0.30 12.57 � 1.82 9.31 � 1.58

32 9 61 4 0.02 2.19 � 0.82 12.50 � 1.78 10.99 � 1.73

36 5 64 3 0.05 6.21 � 0.93 6.75 � 1.43 8.17 � 1.41

31 10 67 3 0.04 2.97 � 0.80 13.73 � 2.11 12.10 � 2.14

28 13 79 2 0.02 4.36 � 1.02 6.39 � 1.50 5.30 � 1.42

Table 1: Comparison of BBG and C4.5 on rule-oriented problems

8 Experimental results

We tested BBG on 1050 synthetic data sets generated by rgenex and tgenex. We wanted to

compare its performance on the same data sets with that of some well-respected and widely-

known learning algorithm; for this purpose we chose Quinlan's C4.5. We compiled the code

that came with his book [6] on DECstation 5000's and HP 710's. Since C4.5 can produce

either decision trees (the c4.5 program) or rule lists (the c4.5rules program), we tested both

alternatives. The default parameters were always used with these programs.

For BBG we set the memory limit � and time limit � as follows. Let m be the number

of examples and n the number of Boolean attributes. For the 500 data sets summarized

in Table 1 we set � to 2mn. For the 550 data sets summarized in Table 2 we set � to

max(50000; 2mn). In both cases we set � to max(250000; 10mn). (For n = 50 and m = 500

we get 2mn = 50000 and 10mn = 250000.) For estErr() we set � = � = 0:5. Typical

execution times on an HP 710 workstation with 32 MB of memory and little else running on

the machine were around 25 minutes for m = 500, but varied signi�cantly from one data set

to another.

We generated 50 data sets for each of 10 di�erent parameter settings of rgenex (a total of

500 data sets), and compared BBG with C4.5 on these. We always had m = 500, m

0

= 30000,

and r + l = 41, giving a size of 42 for all of our target rule lists. Beyond this, we came up

with the 10 parameter settings by choosing them at random.

The results are summarized in Table 1. The column labeled BBG gives the amount by

which the average error of BBG exceeds �, and the columns labeled c4.5 and c4.5rules give

the amounts by which the average errors of the corresponding algorithms exceed that of

BBG. Each of these amounts is in percent, with a 95% con�dence interval computed. For

each of the ten settings of parameter values for rgenex, BBG outperforms both c4.5 and

c4.5rules by wide margins.

We next generated 50 data sets for each of 11 di�erent parameter settings of tgenex (a

total of 550 data sets), and compared BBG with C4.5 on these. We set s = 20, m = 500,

and m

0

= 30000 in all cases. The �rst ten parameter settings used the same values for n, k,

14

s n k � BBG c4.5 c4.5rules

20 38 3 0.03 2.33 � 0.56 8.94 � 1.94 3.25 � 1.22

20 38 5 0.02 0.69 � 0.28 2.87 � 1.14 0.86 � 0.67

20 45 5 0 0.58 � 0.32 3.88 � 1.30 0.09 � 0.35

20 50 4 0.04 1.43 � 0.49 6.33 � 1.72 3.13 � 1.16

20 52 2 0.05 10.69 � 1.90 14.46 � 2.49 12.84 � 2.63

20 54 6 0 0.76 � 0.43 1.63 � 0.84 �0:18 � 0.48

20 61 4 0.02 1.77 � 0.54 7.01 � 2.02 2.14 � 1.38

20 64 3 0.05 4.68 � 0.96 12.93 � 2.78 8.40 � 2.58

20 67 3 0.04 4.66 � 1.36 12.22 � 2.82 6.24 � 2.42

20 79 2 0.02 12.95 � 2.63 15.79 � 2.78 12.98 � 3.20

20 50 2 0 3.33 � 0.93 21.31 � 2.38 14.71 � 2.49

Table 2: Comparison of BBG and C4.5 on tree-oriented problems

r l n k � m BBG-O DIFF

16 5 50 2 0.05 500 6.05 0.13 � 0.14

32 9 30 2 0.05 500 8.44 0.44 � 0.24

32 9 50 2 0 500 2.89 0.38 � 0.25

32 9 50 2 0.05 250 18.22 3.48 � 0.69

32 9 50 2 0.05 500 9.07 0.94 � 0.51

32 9 50 6 0.05 500 6.23 0.37 � 0.30

50 15 50 2 0.05 500 15.34 1.18 � 0.60

32 9 50 2 0.05 750 7.22 0.30 � 0.18

32 9 80 2 0.05 500 7.65 1.19 � 0.65

Table 3: Comparison of BBG and BBG-O

and � as we used for rgenex. An eleventh parameter setting was added with n = 50, k = 2,

and � = 0.

The results are summarized in Table 2 (the last three columns have the same meaning

as before). In each case the average performance of BBG exceeds that of c4.5 and either

is very close to or exceeds that of c4.5rules. BBG's performance advantage is greater when

there are few classes, and is quite striking when k = 2 and � = 0 (the last case).

One additional experiment tested the performance of our heuristic for choosing one of the

hypotheses output by G. Let BBG-O be a variant of BBG in which we replace this heuristic

with an oracle that always picks the best hypothesis. (This is implemented by letting BBG-

O peek at the test sample so that it can pick from the sequence of rule lists output by G,

that which has the lowest error on the test sample.) We generated 30 data sets for each of

9 di�erent parameter settings of rgenex (270 data sets total). Each parameter setting had

m

0

= 30000. On each data set we ran both BBG and BBG-O. We set � , �, �, and � as for

the experiment summarized in Table 2. The results are summarized in Table 3. The column

15

labeled BBG-O gives the average error of BBG-O (in percent), and the column labeled DIFF

gives the amount by which the average error of BBG exceeds that of BBG-O (in percent),

with a 95% con�dence interval computed.

1

These results indicate that our heuristic works

rather well, in spite of the questionable assumptions used to derive it.

9 Extending BBG to handle nominal attributes

We can extend BBG to handle arbitrary nominal attributes in either of two ways, depending

on what kinds of rule preconditions we wish to allow. In either case the size of a rule is still

one plus the number of conjuncts in its precondition. For simplicity we assume that each

attribute i takes values from X

i

= f0; : : : ; d

i

� 1g for some positive integer d

i

.

A literal x

i

is equivalent to either of the tests x

i

= 1 or x

i

6= 0, and :x

i

is equivalent

to either of x

i

= 0 or x

i

6= 1. The �rst possibility then is to allow as a precondition any

conjunction of tests of the form x

i

= v or x

i

6= v, where v 2 X

i

. In this case we can just

transform each attribute i into a sequence of Boolean attributes j

0

; : : : ; j

d

i

�1

, with attribute

j

v

being true if and only if the original attribute i has value v, and apply BBG to the result.

The output of BBG is transformed back by replacing each literal x

j

v

with x

i

= v and :x

j

v

with x

i

6= v.

The second possibility is to allow as preconditions only conjunctions of tests of the form

x

i

= v for v 2 X

i

. If we use the transformation of the preceding paragraph, we then need

a modi�cation of BBG in which only positive literals are allowed. We obtain this via the

following modi�cations to bestRule():

1. A node is now a tuple (

�

t; c; p), where

�

t 2 f�; {; 1g

n

. Each non-leaf node now has only

two children, instead of three.

2. The body of the inner while loop (\while (u > g

?

)") becomes

let (

�

t; c; p) = z

(z

0

; z

1

) := children of z obtained by setting t

j

to { and 1

for (i := 0 to 1) (u

i

; j

i

) := eval(z

i

)

insert(u

0

; j

0

; z

0

;H)

(u; j; z) := (u

1

; j

1

; z

1

)

3. In the upper-bound computation, counters �[i; 0] and �[i; 1] are replaced by a single

counter �[i], for each Boolean attribute i. The statement \increase �[i; x

i

]" is replaced

by \if (x

i

) increase �[i]". All references to �[i; b] are replaced by �[i].

10 Acknowledgements

This research was supported in part by grants from Novell and Wordperfect.

1

The con�dence intervals for the �rst, third and sixth rows of the table are questionable, as the computed

averages are less than three standard errors from 0, the minimum possible value for DIFF.

16

References

[1] Blumer, A., et al. (1989.) Learnability and the Vapnik-Chervonenkis dimension. Journal

of the ACM 36, 929{965.

[2] Breiman, L., et al. (1984.) Classi�cation and Regression Trees. Belmont, CA:

Wadsworth.

[3] Devroye, L. (1988.) Automatic pattern recognition: a study of the probability of error.

IEEE Transactions on Pattern Analysis and Machine Intelligence 10, 530{543.

[4] Haussler, D. (1988.) Quantifying inductive bias: AI learning algorithms and Valiant's

learning framework. Arti�cial Intelligence 36, 177{221.

[5] Haussler, D. (1992.) Decision theoretic generalizations of the PAC model for neural net

and other learning applications. Information and Computation 100, 78{150.

[6] Quinlan, J. R. (1993.) C4.5: Programs for Machine Learning. San Mateo, CA: Morgan

Kaufmann.

[7] Quinlan, J. R., & Rivest, R. L. (1989.) Inferring decision trees using the Minimum

Description Length Principle. Information and Computation 80, 227{248.

[8] Tou, J., & Gonzalez, R. (1974.) Pattern Recognition Principles. Reading, MA: Addison-

Wesley.

[9] Vapnik, V. N. (1982.) Estimation of Dependences Based on Empirical Data. New York:

Springer-Verlag.

[10] Vapnik, V. N. (1989.) Inductive principles of the search for empirical dependences.

In Proceedings of the 2nd Annual Workshop on Computational Learning Theory. San

Mateo, CA: Morgan Kaufmann.

[11] Weiss, S., & Kulikowski, C. (1991.) Computer Systems That Learn. San Mateo, CA:

Morgan Kaufmann.

17

